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Abstract

Alliances in undirected graphs were introduced by Hedetniemi, Hedet-
niemi, and Kristiansen, and generalized to k-alliances by Shafique
and Dutton. We translate these definitions of alliances to directed
graphs. We establish basic properties of alliances and examine bounds
on the size of minimal alliances in directed graphs. In general, the
bounds established for alliances in undirected graphs do not hold
when alliances are considered over the larger class of directed graphs
and we construct examples which break these bounds.

Hedetniemi, Hedetniemi, and Kristiansen [4] introduced several defini-
tions of alliances in undirected graphs. This model represents groups of
nations or individuals who form alliances either for mutual protection or
for aggression. Shafique and Dutton [8, 9] further generalize these defi-
nitions to k-alliances. Both models reflect two way relationships, so that
if one nation can threaten another, then the relationship goes both ways
and if one nation can defend another the relationship is mutual. This
two-way model reflects relationships that are determined, for example, by
geographic proximity. In this paper we consider the possibility that some or
all of these relationships may be one way: Some nations may have greater
power than neighboring nations, or some individuals may have the ability
to influence others in a non-reciprocal fashion. We will expand the defi-
nitions for alliances in undirected graphs to directed graphs, but require
some preliminary definitions.

A directed graph D will consist of a set of vertices V(D) and a set
of directed arcs A(D). The directed graph may contain the pair of arcs
(u,v) and (v,u) but may not have loops or multi-arcs. If there is an arc
from w to v then u is an in-neighbor of v, and v is an out-neighbor of
u. The set of in-neighbors of v is the open in-neighborhood of v, denoted
I(v). The closed in-neighborhood of v is the set I[v] = I(v) U {v}. For
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a set of vertices S, the open in-neighborhood of S is I(S) = Upes N(v),
and the closed in-neighborhood of S is I[S] = I(S)U S = Uves N(v]. The
in-boundary of S, 8;(S) is I[S] — S. The out-neighborhoods O(v), O(S),
closed out-neighborhoods O[v], O[S] and out-boundary 8,(S) are defined
analogously.

The in-degree of a vertex v, denoted id(v), is the size of the inset of v,
[Z(v)|. The minimum in-degree in D is denoted §_(D) and the maximum
in-degree is A_(D). The out-degree of v, denoted od(v) is the size of the
outset of v, |O(v)|. Likewise 6;(D) and A,(D) are the minimum and
maximum out-degrees of D, respectively.

A non-empty set of vertices S C V is called a k-defensive alliance if and
only if, for every v € S, [I(v) N S| > |I(v) N (V — 8)| + k. Consistent with
the alliances found in [4], if k = —1, then S is a defensive alliance, and
forall v e S, I[N S| > [I[vJN(V - 8)|. If k = 0, then S is a strong
defensive alliance and for all v € S, |I[v)N S| > |[I[v] N (V — S)|. Given
v € S, u€ (I[v)NS) defends v, and u € (I(v) — S) attacks v. Note that we
say v defends itself, which is consistent with [4]. If k < 0 then V is always
a k-defensive alliance, but it is possible, if & > 1, that a directed graph has
no k-defensive alliance.

A non-empty set of vertices S C V is a k-offensive alliance if for every
v € 8o(S), [I(v)NS| > [I(w)N(V = S)|+ k. If k =1, then S is an offensive
alliance, and for all v € 8,(S), [I[v]NS| > [I[v]JN(V ~8)|. If k = 2, then S is
a strong offensive alliance, and for all v € 8,(S), |I[v]NS| > |I[v)N(V - 8)|.
Given v € 9,(S5), u € (I(v)NS) attacksv, and u € (I[v] - S) defends v. The
vertex v defends itself. In any directed graph V is a k-offensive alliance for
any k.

In the case of k-defensive alliances, if every vertex is in S or I[S], then §
is a global alliance. A k-offensive alliance is global if every vertex is in § or
O[S]. If k =0, then S is an offensive alliance if and only if for every vertex
v, v € S or at least 1/2 of I(v) is in S. This makes a global 0-offensive
alliance a 1/2-dominating set, as defined on undirected graphs by Dunbar,
Hoffman, Laskar, and Markus (2] and generalized to directed graphs by
Langley, Merz, Stewart, and Ward [5].

If D is a symmetric digraph, then the above definitions for alliances are
consistent with the definitions for alliances on undirected graphs as seen in
(4, 8]. Both papers consider bounds on alliance sizes. The definitions for
bounds for directed graphs follow.

An alliance, S, of any kind is called critical if no proper subset of S is
an alliance of the same kind.

The lower k-defensive alliance number, ar(D) is the minimum size of a
k-defensive alliance in D. If k = —1, we will write a(D). If &k = 0, we will
write a(D).

The upper k-defensive alliance number, A(D) is the maximum size of
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a critical defensive alliance in D. If £ = —1, we will write A(D). If £ =0,
we will write A(D).

The lower k-offensive alliance number, af(D) is the minimum size of a
k-offensive alliance in D. If k = 1, we will write a®°(D). If k = 2, we will
write a°(D).

The upper k-offensive alliance number, A(D) is the maximum size of
a critical defensive alliance in D. If k = 1, we will write A°(D). If k = 2,
we will write A°(D).

Observe, as in undirected graphs, if S is a k-defensive alliance then
S is a (k — 1)-defensive alliance, and if S is a k-offensive alliance then S
is a (k — 1)-offensive alliance, so if k < I, ar(D) < a;(D) provided each
number is defined and af(D) < aP(D). Likewise, Ax(D) < A;(D) and

2(D) < A7(D).

Next we look at examples of classes of directed graphs in defensive and

offensive alliances, as well as possible bounds for the alliance numbers.

1. Defensive Alliances

Since the definitions of defensive alliances on directed graphs are con-
sistent with the definitions of defensive alliances on graphs, many of the
properties for defensive alliances in [4] still hold for the corresponding sym-
metric digraphs. We will not list constructions for classes of such symmetric
graphs here.

Observation 1.1. If S is a critical k-defensive alliance of a directed graph
D, then the induced subgraph of D restricted to S is weakly connected.

In any symmetric digraph a weakly connected subgraph is necessarily
strongly connected. For general digraphs other possibilities may hold.

Observation 1.2. In a directed graph D, any vertex of in-degree zero
is a k-defensive alliance for any & < 0. In general, any set S such that
I(S) — S =0 is a k-defensive alliance if k < 0.

Observation 1.3. Suppose D is weakly connected with vertex set V! Cc V'
such that 8;(V’) = 0 and let D’ be the induced subgraph of D on V'. If S
is a k-defensive alliance of D', then S is a k-defensive alliance of D. If S is
critical in D', then S is critical in D.

Observation 1.4. If S is a k-defensive alliance and v € S is a vertex such
that |I(v)| = ¢, then |S| > (t +k)/2+ 1.

Proof. This is an immediate consequence of the definition. If S is a k-
defensive alliance, then |I{v) N S} 2 |[I(v) N(V — S)| + k. Since |I(v)| = ¢,
[ I@YN S|+ | I@)N(V = 8)| =t, s0 [I(v)NS| >t —|I(v)NS|+k and
[I(v)NS| > (t+k)/2. Since S includes I(v)NS and v as well, the inequality
follows. O

151



Corollary 1.5. For any directed graph D, a(D) > [(6-(D) +1)/2] and
&(D) z [6-(D)/2 +1].

Corollary 1.6. For any directed graph D, ax(D) = 1 if and only if D
contains a vertex v with id(v) < —k.

For undirected graphs, it is conjectured in [4] that a(G) < [%] and
@(G) < [2] +1. The second bound was proven in [7]. Neither bound holds
for directed graphs in general.

Define D on 3r vertices as follows: Partition the vertices into r directed
3-cycles: Cy,Cs,Cs,...,Cy, then place arcs from each vertex of C; to each
vertex of C» and so on, with C, directed toward C;. Each vertex will have
in-degree 4, so if v € S, then at least two in-neighbors of v are in S as
well. Consequently, at least one vertex in each component must be in S.
If v is any vertex in C; such that I(v) N C; = 0, then at least two vertices
of C;_1 must be in S. So, if C; has exactly one vertex in S, then all 3 of
Ciy1 must be in S. If z is the number of C; with exactly one vertex, then
|S} > =+ 3z + 2(r — 2z) = 2r.

; VZ,
/‘@}\V ""\\

Figure 1: Graphs with relatively large a(D) and &(D).

Conjecture 1. If D is a directed graph on n vertices, a(D) < 3.

What about @(D)? On a directed cycle a(D) = n. If we require vertices
have out-degree at least two, then construct D on 2r vertices as follows:
Partition the vertices into r pairs C;, where C; consists of a pair of mutually
adjacent vertices. Place arcs from each vertex of C) to each vertex of C,
and so on, with C,. directed toward C,. Since each vertex has inset of size
3, if z is in S then so are at least two in-neighbors of z. If z € C; N S,
but y € C; N'S, then both vertices of C;;; must be in S. Consequently,
|S| > 3r/2.
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Conjecture 2. If D is a directed graph on n vertices and §_(D) > 2,
(D) < [3].

If D is an acyclic digraph, any k-defensive alliance must have a vertex
v with I(v) NS = 0. If k < 0, such a vertex is necessarily a k-defensive

alliance on its own, but if k£ > 0, no vertex in S may have only itself as a
defender. Consequently we have the following:

Theorem 1.7. Let D be acyclic digraph.
1. If k €0, then Ag(D) = ar(D) = 1.
2. If k > 0, then D has no k-defensive alliance.

We say D is m-regular if all vertices have the same in-degree and out-
degree, both equal to m. If a regular graph is weakly connected it is also
strongly connected. A component of D is a maximal strongly connected
induced subgraph of D, and is necessarily regular.

Theorem 1.8. Let D be an m-regular directed graph. A set S is a k-
defensive alliance in D if and only if the in-degree of each vertex in D
restricted to S is at least (m + k)/2.

Proof. This follows from from the definition of k-defensive alliances. Sup-
pose S is a defensive alliance. If v € S, |I(v)NS| > |I(v)N(V —85)|+k. Since
[I(v)| = m, |[I(@)NS|+{I(v)N(V =S)| = m. So, |I(v)NS| = m—|I(v)NS|+k
and |I(v)N S| > (m + k)/2. On the other hand, suppose every vertex in D
restricted to S has degree at least (m + k)/2. Then 2|I(v) N S| > (m + k).
So, [I(v)NS| >m—|{I(w)NS|+k=|I(v)N(V -S)|+k. O

Corollary 1.9. If k < —m, ax(D) = Ax(D) = 1.

Proof. If k < —m then (m+k)/2 < 0. Any set of vertices form a k-defensive
alliance in D, so the only critical defensive alliances are single vertices. [J

Corollary 1.10. If k = m — 1 or k¥ = m then ar(D) is the size of the
smallest component of D and Ay (D) is the size of the largest component
of D.

Proof. If k = m, then (m +k)/2=m. If k =m — 1, then (m + k)/2 =
m—1/2. However, the in-degree of any vertex is an integer. So, if k =m~1,
then every vertex has in-degree m. In either case, the only subgraph of an
m-regular graph D that is itself m-regular is a connected component of D.

Corollary 1.11. If k > m + 1, then D has no non-empty alliances.
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Proof. If k > m + 1, then every vertex in a defensive alliance must have
in-degree at least (m + m + 1)/2, which is greater than m. O

If D is 1-regular then D consists of the disjoint union of directed cycles.
It follows from the preceding theorem and corollaries that any vertex of D
is a defensive alliance, so ay(D) = Ax(D) = 1if k < —1. On the other hand
if a vertex is in a strong alliance or £ = 1, its in-neighbor must also be in
the alliance. So, ax(D) is the size of the smallest directed cyclic component
of D and Ax(D) is the size of the largest directed cyclic component of D if
k=0ork=1.

Note, as a consequence, any directed cycle has a(D) = 1 and (D) = n.
So, the difference between a(D) and a(D) may be arbitrary large.

If D is 2-regular, then any alliance is also a strong alliance. From the
preceding corollaries, ax(D) = Ax(D) = 1 if k < -2, a(D) = a(D) equals
the size of the smallest cycle in D, and A(D) = 4(D) = the size of the
largest chordless cycle in D. Also, if k = 1 or 2, ax(D) equals the size of
the smallest connected component of D, and if £ = 1 or 2 Ax(D), equals
the size of the largest connected component of D.

If D is 3-regular, (3 —1)/2 = 1 so any cycle is a defensive alliance.
Consequently a(D) is the size of the smallest cycle and A(D) is the size of
the largest chordless cycle in D.

2. Offensive Alliances

Many of the properties of offensive alliances in directed graphs either
parallel propertics of defensive alliances or those of offensive alliances in
undirected graphs as shown by Favaron, Fricke, Goddard, Hedetniemi,
Hedetniemi, Kristiansen, Laskar, Skaggs, [3].

Observation 2.1. Any vertex of out-degree zero is a k-offensive alliance.
If O(S) — S is empty then S is a k-offensive alliance.

This is a trivial consequence of the definition of offensive alliances. Un-
like the corresponding property of defensive alliances, an offensive alliance
contained within such a set isn’t necessarily an offensive alliance for D.

Observation 2.2. Let S be a k-offensive alliance of D. If y € o(S) - S,
and |I(y)| = t, then there are at least (¢ + k)/2 vertices in S.

The previous two observations may be combined to provide bounds on
the size of offensive alliances in directed graphs. Let U be the smallest set
of vertices with O(U) = 0.

Observation 2.3. For any strongly connected directed graph D, a2(D) 2
min{|U]|, [(6~(D) + k)/21}.
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Favaron et al.[3] observe that bounds on 4°(G) are asymptotic to 1/2
over classes of graphs of increasing minimum degree. This is a direct con-
sequence of a theroem in Fiiredi and Mubayi [6]. Although this theorem
refers to undirected graphs, the probabilistic argument contained within
the proof applies equally well to directed graphs.

Theorem 2.4. For directed graphs with order n and minimum in-degree
d-, a°(D) < a°(D) < n(1/2 + 0(4-)).

Also Favaron et al.[3] find bounds for the size of offensive alliances in
undirected graphs. They observe that if n > 2, a°(G) < 2n/3, and ifn > 3,
@° < 5n/6. For graphs of minimum degree 2, 4° < 3n/4. Like the bounds
on defensive alliances, these bounds also do not suffice for directed graphs
in general.

To examine these bounds, we begin with a specific construction. Create
a regular directed graph D, on n > r + 1 vertices as follows: Label the
vertices zo,...,Zn—1. Place an arc from z; t0 Ziy1 (mod n)s Ti+2 (mod n)»
<+ sy Zitr (mod n)-

Figure 2: Construction of D3 and D, on 7 vertices

Theorem 2.5. Let r be an integer greater than 1.

1. If r is even, then a°(D,) = &°(D,) = [n-z(%'%)-l

2. If 7 is odd, then a°(D,) = [2].

3. If r is odd, then a°(D;) = [n5£t4s]-

Proof. First we show any offensive or strong offensive alliance in D, is
universal. If z; is a vertex in the boundary of S, then there must be
at least [ﬁzi] > 2 vertices of I(z;) in S if S is an offensive alliance and
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[z + 1] > 2 vertices of I(z;) in Sif Sisa strong offensive alliance. Suppose
z; is neither in S nor in 8,(S). Then, since Z;i—1(mod n) 15 Not in S, and
[In(z:) N In(Zi_1(mod )| = 1, Ti—y (mod n) cannot be in the out-boundary
of S either. It follows that S must be empty, which is a contradiction.
Therefore, every vertex in D is either in S or in the boundary of S.

Consider a set of 7+1 consecutive vertices, z;, T;;, (mod n)» Zi+2 (mod n)»
-3 Zitr (mod n), N Order. Let Tipr_k (mod n)»0 < k < 1 be the last vertex
in the list which is not in S. If no such vertex exists, then all » + 1 vertices
are in §. If S is an offensive alliance, at least [Z}!] — k predecessors of
Titr—k (mod n) iN the set are in S, and the k successors of T, _y (mod n)
are in S, so if S is an offensive alliance, in any r + 1 consecutive vertices at
least =] vertices are in S. Similar arguments show that at least [5+1]
vertices out of any consecutive 7 + 1 are in S if S is a strong offensive
alliance.

Case 1: Since r is even, [%i] = |-§ + 1] = '—'2'2 If we look at the
collection of sets of r 4 1 consecutive vertices, each vertex appears in r + 1
sets. Averaging the number of vertices in S over the n sets, we have at

r+2

least A~ = oy vertices in S.
r41
Case 2: Since 7 is odd, then [Z}!] = 7, s0 il ol 2.

T+1
. . . R n|5+1 . .
Case 3: Since S is a strong offensive alliance,|S| > —l-%_l—l Since r is
n[§+1] _  (r+3)
odd, -5 = nor+1)"

Construct S to meet the bounds as follows:

Case 1: Place z; into S if i = 2j + 1 (mod r + 1), for j = 0,...,7/2.
That is, vertices with indices 0,1,3,5,...,7—1 (mod r+1). This will create
a minimum size offensive or strong offensive alliance.

Case 2: Place z; into S if and only if i is even.

Case 3: The construction depends upon whether (r + 1)/2 is even or
odd. If (r +1)/2 is odd, then place z; into S if i = 25 + 1 (mod (r +1)/2),
for j = 0,...,(r — 1)/4. That is, vertices with indices 0,1, 3, 5...,(r+
1)/2=2,(r+1)/2,(r +1)/2+1,(r +1)/243,...,7 =1 (mod v + 1). If
(r +1)/2 is even, then place z; into S if i = (r — 1)j/2 (mod r + 1), for
3=0,...,(r+1)/2. That is, vertices with indices 0,1,3,5,...,(r —1)/2 -
2,(r—1)/2,(r -1)/2+1,(r - 1)/2+3,...,r =1 (mod r + 1).

O

Conjecture 3. If D is a directed graph, a°(D) < [2n].

This bound is met by the graphs constructed above when r = 2 and
n 2> 3. If n =5, then a°(D) = 4 = (4/5)n which is the worst case.

Conjecture 4. If D is a directed graph with §_(D) > 2, 4°(D) < [n].

This bound is met exactly by the graphs constructed above when r = 3,
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n > 4. If n =7, then a°(D) = 6 = (6/7)n. As we will see now, for digraphs
of low in-degree, @°(D) may equal n.

We finish this section with some observations regarding m-regular di-
rected graphs. Let D be an m-regular directed graph.

Theorem 2.6. If k < —m + 2, a(D) = A}(D) = 1.

Proof. Note that for any v € 8,(S), [I(v)NS| =1 and |[I(v)N(V - 8)| <
m—-1 So |[Iw)N(V-8)|+k<(m-1)-m+2=1<|I(v)NnS|
Consequently any non-empty set of vertices S is a k-offensive alliance, so
the only critical alliances consist of a single vertex. d

Theorem 2.7. If k > m then a(D) is the size of the smallest component
in D and A(D) is the size of the largest component in D.

Proof. This is an obvious consequence of the definition of alliances. Since
D is regular of degree m, no vertex may have m + 1 in-neighbors in any
set S. In order for a set S to be a k-offensive alliance its outset must be
empty. d

Corollary 2.8. For all directed cycles D on 2 or more vertices, a°(D) = n.

As with defensive alliances, in a directed cycle any single vertex is an
offensive alliance so the bound between offensive alliances and strong offen-
sive alliances may be made arbitrarily large.

3. Alternative Offensive Alliances

One consideration for a successful offensive alliance is whether it can
conquer all of its neighbors, whichever the direction of influence. Such a
construction would add the requirement that any offensive alliance have at
least one arc toward all of its in-neighbors.

Define a complete k-offensive alliance as a set S which is a k-offensive
alliance with the property that 8;(S) C 0,(S).

Any global offensive alliance is complete. Any offensive alliance in an
undirected graph is also a complete offensive alliance so this definition pro-
vides an alternative generalization to the work of [4, 3, 8]. Let af (D) be the
size of the smallest critical complete k-offensive alliance of D and A§(D)
be the size of the largest critical complete k-offensive alliance of D. Clearly
af(D) < af(D) and AY(D) < Af(D). As with earlier definitions, when
k = 1, write a®(D) and when k = 2, write &¢ or A€ and omit the subscript.

Theorems 2.4, 2.5, 2.7 apply to complete offensive alliances.

Observation 3.1. In the directed cycle a®(D) = A°(D) =n — 1.
Observation 3.2. For any directed graph D, af(D) > [(6~ (D) + k)/2].
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