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Abstract

Let G be a simple graph, and let p be a positive integer. A
subset D C V(G) is a p-dominating set of the graph G, if every
vertex v € V(G) — D is adjacent with at least p vertices of D. The
p-domination number +,(G) is the minimum cardinality among the
p-dominating sets of G. Note that the 1-domination number v, (G) is
the usual domination number ¥(G). The covering number of a graph
G is denoted by B(G). If T is a tree of order n(T), then Fink and
Jacobson [1] proved in 1985 that

vo(T) > (?;—L:(T)_+1

The special case p = 2 of this inequality easily leads to

¥2(T) 2 B(T) +1 2 ¥(T) +1

for every non-trivial tree T'. Inspired by the article of Fink and Ja-
cobson [1], we characterize in this paper the family of trees T with
¥ (T) = [{(p — 1)n(T) + 1)/p] as well as all non-trivial trees T with
¥2(T) = 4(T) +1 and vo(T) = B(T) + 1.
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1. Terminology

We consider finite, undirected, and simple graphs G with vertex set
V(G) and edge set E(G). The number of vertices |[V(G)| of a graph G is
called the order of G and is denoted by n = n(G).

The open neighborhood N(v) = Ng(v) of a vertex v consists of the
vertices adjacent to v and d(v) = dg(v) = |N(v)| is the degree of v. The
closed neighborhood of a vertex v is defined by N{v] = Ng[v] = N(v) U {v}.
By & = 6(G) and A = A(G), we denote the minimum degree and the
mazimum degree of the graph G, respectively. A vertex of degree one is
called a leaf and its neighbor is called a support vertez. An edge incident
with a leaf is called a pendant edge. Let L(G) be the set of leaves of a
graph G. For a subset S C V(G), we define N(S) = Ng(S) = {J,cs N(v),
N|[S] = N¢[S] = N(S)U S, and G[S] is the subgraph induced by S.

We write K, for the complete graph of order n, and K, ,q for the the
complete bipartite graph with bipartition X, Y such that |[X| =pand |Y| =
q. Abipartite graph is called p-semiregular, if its vertex set can be partioned
in such a way that every vertex in one partite set has degree p.

The subdivision graph S(G) of a graph G is that graph obtained from
G by replacing each edge uv of G by a vertex w and edges ww and vw.
In the case that G is the trivial graph, we define S(G) = G. Let SS,
be the subdivision graph of the star K 1,.- A tree is a double star if it
contains exactly two vertices of degree at least two. A double star with
respectively s and ¢ leaves attached at each support vertex is denoted by
Ss,t- A subdivided double star S8, is obtained from a double star Ss,¢ by
subdividing each edge by exactly one vertex. The corona graph Go K, of a
graph G is the graph constructed from a copy of G, where for each vertex
v € V(G), a new vertex v’ and a pendant edge vv’ are added.

A vertex and an edge are said to cover each other if they are incident.
A wvertex cover in a graph G is a set of vertices that covers all edges of
G. The minimum cardinality of a vertex cover in a graph G is called the
covering number of G and is denoted by B(G) = 8.

Let p be a positive integer. A subset D C V(G) is a p-dominating set of
the graph G, if |Ng(v)ND| > p for every v € V(G) — D. The p-domination
number v,(G) is the minimum cardinality among the p-dominating sets
of G. Note that the 1-domination number v, (G) is the usual domination
number v(G). A p-dominating set of minimum cardinality of a graph G is
called a v,(G)-set.

In 1], [2], Fink and Jacobson introduced the concept of p-domination.
For a comprehensive treatment of domination in graphs, see the mono-
graphs by Haynes, Hedetniemi, and Slater (4], [5).

160



2. Preliminary results

The following well-known results play an important role in our investi-
gations.

Theorem 2.1 (Ore [6] 1962) If G is a graph without isolated vertices,

then

n(G)
7G) < —5

Theorem 2.2 (Fink, Jacobson [1] 1985) Let p > 1 be an integer. If T

is a tree, then
vo(T) > .(L)’;(T)_tl 1)

and v,(T) = ((p — 1)n(T) + 1)/p if and only if T is a p-semiregular tree or
n(T) = 1.

Corollary 2.3 (Fink, Jacobson [1] 1985) If T is a tree, then

n(T)+1
2

and y2(T) = (n(T) + 1)/2 if and only if T is the subdivision graph of an-
other tree.

¥2(T) 2

Theorem 2.4 (Payan, Xuong [7] 1982, Fink Jacobson, Kinch,
Roberts [3] 1985) For a graph G with even order n and no isolated
vertices, v(G) = n/2 if and only if the components of G consist of the cycle
C}4 or the corona graph H o K; for any connected graph H.

Proofs of Theorem 2.1 as well as of Theorem 2.4 can also be found in
the book of Volkmann [9], pp. 223-224. In 1998, Randerath and Volkmann
[8] and independently, in 2000, Xu, Cockayne, Haynes, Hedetniemi and
Zhou [10] (cf. also [4], pp. 42-48) characterized the odd order graphs G
for which v(G) = |n/2]. In the next theorem we only note the part of this
characterization which we will use in the next section

Theorem 2.5 (Randerath, Volkmann [8] 1998, Xu, Cockayne,
Haynes, Hedetniemi, Zhou [10] 2000) Let T be a non-trivial tree
of odd order with (T") = |n/2]. Then the following cases are possible:
(1) |INp(L(T))| = |L(T)| — 1 and T — Nr[L(T)] = 0.

(2) IN?(L(T))| = |L(T)| and T — N7[L(T)) is an isolated vertex.

(3) INp(L(T))| = |L(T)| and T — N[L(T)] is a star of order three such
that the center of the star has degree two in T'.
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3. Main results

Inspired by Theorem 2.2, we will characterize the family of trees T
which satisfies the identity ¥,(T) = [((p — 1)n(T) + 1)/p].

Theorem 8.1 If T is a tree of order n = n(T), then

(p—l)n+l"

1) = [2=1

(2)
if and only if

(i) n = pt + 1 for an integer ¢ > 0 and T is a p-semiregular tree or
n(T)=1or

(i) n = pt+r for integers t > 0 and 2 < r < p and T consists of r trees
1,T3,...,T, which satisfy the conditions in (i) and r — 1 further edges
such that the trees T, T, ..., T, together with these » — 1 edges result in
a tree.

Proof. Condition (i) is a part of Theorem 2.2, and the identity v,(T) =
((p - 1)n(T) + 1)/p yields n = pt + 1 for an integer ¢t > 0.

Therefore we assume next that n = pt + r for any integers ¢ > 0 and
2<r<p.

Assume that T satisfies the conditions given in (ii). It follows from
inequality (1) and Condition (i) that

pP-1n+1
S R
< (M) + Yo (T2) + ... %(Tr)
_ G-DaM)+1, p-Da) 41
p p
+(p—1)r;.)(T,-)+l
_ (p—l)n+r_[@—1)n+1]
- P a P

and hence (2) is proved.

Conversely, assume that the identity (2) is valid. This implies that
Yo(T) = (p—1)t +r. If D is a v,(T)-set and S = V(T) — D, then |D| =
(p - 1)t +r and |S] = ¢t. In view of the definition of D, each vertex in S is
adjacent with p or more vertices of D. Now let E, be an edge set of E(T)
consisting of p|S| = pt edges such that each vertex of S is incident with
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exactly p edges leading from S to D. Then the subgraph induced by the
edges of E, is a p-semiregular forest T’. Because of |E(T)| = pt +r -1
and |E(T")| = pt, there are r — 1 further edges in T. If we delete in T all
edges of the edge set E(T) — E,, then we obtain a spanning forest 7" of
T, consisting of r trees T}, T3, ...,Tr, which are p-semiregular or isolated
vertices. Since D is a +,(T')-set, we deduce that DN V(T;) is a minimum
p-dominating set of T; for ¢ = 1,2,...,7. Let now n(T;) = pt; + ki with
integers t; > 0and 1 < k; <pfori=12,...,r. Next we will show that
n(T;) =pt;+1 fori=1,2,...,r. Ifnot, then ky + ko +... + kr 27+ 1.
Since
n=pt+r=p(ti+ta+... +t,)+ (ki + k2 + ... k),

it follows that ¢; + 5 +...+ ¢, <t —1. Applying inequality (1), we arrive
at the following contradiction:

(T) = (P—-1t+r="7T)+7%T2)+...7%T)

> [(p—l)n(T1)+1]+|'(p—1)n(T2)+1]+
p p
+[(p—1)n(T,-)+1'|
p

(p=Dt1+ k) + ((p—Dia+k2) + ...+ ((p = 1)tr + kr)
= (pt1+ki)+(pta+ k) +...+ @ir+ k) =G +t2+ ...+ )
= n—(t1+ta+...+¢)
> pt+r—(t—1)
= (p—-Dt+r+1
> |D|

However, if n(T}) =pt; +1 for i =1,2,...,r, then (1) leads to

W(T) = (-Di+r=2nT)+7%T2)+...%T)

> (P-l)n(Tl)-H+(P—1)n(T2)+1+_“+(P-l)n(Tr)+1

P P P
_ (p-Dn+r

p
_ -1pt+r)+r

P

= (p-1t+r.

This implies v,(T;) = ((p—1)n(Ti)+1)/pfor i = 1,2,...,r. Hence, accord-
ing to (i), we deduce that the trees T}, T3, ..., T; are p-semiregular trees or
isolated vertices and the proof is complete. O.
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According to Theorem 3.1 and Corollary 2.3, we obtain the next result.

Corollary 3.2 If T is a tree of order n = n(T), then
n+1
)= [253]

if and only if

(i) n is odd and T is a the subdivision graph of another tree or

(ii) n is even and T consists of two subdivision trees S(T}) and S(T3)
and a further edge, connecting S(7) with S(73).

Theorem 3.3 (Fink, Jacobson [1] 1985) If p > 2 is an integer and
G is a graph with p < A(G), then

1(G) 2 7(G)+p-2.

If p > 3, then Theorem 3.3 shows that v,(G) > ¥(G) + 1. This is not
true in general for p = 2, as for example the complete bipartite Kj, 4 with
q > 2 demonstrate. However, for non-trivial trees, we will show in the
following proposition that this bound is true.

Proposition 3.4 If T is a non-trivial tree, then
72(T) 2 B(T)+12%T)+1.

Proof. Since T is a bipartite graph, we observe that 8(T) < n(T)/2.
Hence it follows from Corollary 2.3 that

n(T)+1
2

()2 > HT) + 5.

Because of the well-known fact that 3(T) > 4(T), this yields the desired
inequality chain. O

Next we will characterize the family of trees T with v (T) = y(T) + 1
as well as all trees T" with »(T") = 8(T) + 1.

Theorem 3.5 A non-trivial tree T satisfies

YA(T) =v(T) +1 (3)

if and only if T is a subdivided star S5, or a subdivided star S5, minus a
leaf or a subdivided double star SS; .

164



Proof. It is a simple matter to verify that (3) is valid for a subdivided
star SS;, a subdivided star SS; minus a leaf, and a subdivided double star
SSa|t.
Conversely, assume that v2(T) = ¥(T) + 1 for a non-trivial tree T. It
follows from Theorem 2.1 that ¥(T") € n(T')/2.
Case 1. Assume that n = n(T) is even. If v(T) < n(T)/2, then
Corollary 2.3 yields
2 -2
w2 = =222 y(T) +2.
In the remaining case that 4(T") = n/2, we deduce from Theorem 2.4 that
T = T' o K, for any tree T’. It is straightforward to verify that T is a
subdivided star SS; minus a leaf.
Case 2. Assume that n = n(T)isodd. If ¥y(T') < n(T)/2, then Corollary
2.3 leads to
n+l n-3

W) 2 2 =T 2> (D) 42

Therefore let now v(T) = (n — 1)/2. In view of Theorem 2.5, we have to
investigate three cases.

Subcase 2.1. Assume that |[N7(L(T))] = |L{T)| — 1 and furthermore
that T — Nr[L(T)] = 0. This leads to T = SS,, because otherwise, we
arrive at the contradiction v2(G) > (n+ 3)/2 = v(T) + 2.

Subcase 2.2. Assume that |Np(L(T))| = |L(T)| and T — N7[L(T)] is an
isolated vertex. This easily shows that T = SS,.

Subcase 2.8. Assume that |N7(L(T))| = |L(T)| and T — Nr[L(T)] is a
star of order three such that the center of the star has degree two in T. It
is a simple matter to obtain T'= SS;,. O

Theorem 3.6 A non-trivial tree T of order n = n(T) satisfies

7(T) = B(T) +1 (4)

if and only if

a) n is odd and T is the subdivision graph of another non-trivial tree
or

b) n is even and T consists of two subdivision trees S(T}) and S(T3)
and an edge e between S(T}) and S(T3) such that e is incident with one
vertex of T3 and one of T5.

Proof. It is an easy exercise to verify that (4) is valid for the collection of
trees given in a) and b).

Conversely, assume that v5(T) = B(T) + 1 for a non-trivial tree T. It
follows from Corollary 2.3 that y(T) > (n+1)/2.
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Case 1. Assume that n > 3 is odd. If y2(T') > (n + 3)/2, then
n 3 3
7(T) 2 3%3 Zﬁ(T)+§

and thus ¥(T) > B(T) + 2. This is a contradiction to the hypothesis
72(T) = B(T)+ 1. In the remaining case that y(T") = (n+1)/2, we deduce
from Corollary 3.2 that T is the subdivision graph of another non-trivial
tree.

Case 2. Assume that n > 2 is even. If v(T) > (n + 4)/2, then we
arrive at the contradiction

7(T) > ; +2 > B(T) +2.

In the remaining case that v(T") = (n+2)/2, we deduce from Corollary 3.2
that T consists of two subdivision trees S(T}) and S(T3) and a further edge
e, connecting S(T7) with S(T,). In the case that e is incident with a vertex
from V(S(T:)) — V(T;) for i = 1 or ¢ = 2, we observe that 3(T) = (n—2)/2
and 2(T) = (n + 2)/2 and hence v2(T) = B(T) + 2. Hence e is incident
with one vertex of T; and one of T,. O
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