Algorithms for Detecting Cheaters in
Threshold Schemes

Douglas R. Stinson and Sheng Zhang
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo Ontario N2L 3G1
Canada

Abstract

In a (k, n)-threshold scheme, a secret key K is split into n shares in
such a way that the K can be recovered from k or more shares, but no
information about K can be obtained from any k—1 or fewer shares.
We are interested in the situation where there are some number of
incorrect (i.e., faulty) shares. When there are faulty shares, we might
need to examine more than k shares in order to reconstruct the secret
correctly. Given an upper bound, namely ¢, on the number of faulty
shares, we focus on finding efficient algorithms for reconstructing the
secret in a (k, n)-threshold scheme. We call this the threshold scheme
with cheaters problem.

We first review known combinatorial algorithms that use cov-
ering designs, as presented in Rees et al [11] and Tso et al [13].
Then we extend the ideas of their algorithms to a more general one.
We also link the threshold scheme with cheaters problem to decod-
ing generalized Reed-Solomon codes. Then we adapt two decoding
algorithms, namely, the Peterson-Gorenstein-Zierler Algorithm and
Gao’s Algorithm, to solve our problem. Finally, we contribute a gen-
eral algorithm that combines both the combinatorial and decoding
approaches, followed by an experimental analysis of all the algorithms
we describe.

1 Imntroduction

Efficient threshold schemes are very helpful in the management of crypto-
graphic keys. Informally, a (k,n)-threshold scheme is a method of sharing

JCMCC 61 (2007), pp. 169-191

a secret key K among a finite set S of n participants, such that

o with the knowledge of any k or more shares (k < n), the secret K
can be computed; and

e with the knowledge of any k — 1 or fewer shares, it is impossible to
derive any information about the secret K.

The problem of constructing threshold schemes was independently intro-
duced and solved by Blakley [3] and Shamir [12] in 1979. Blakley’s solution
uses finite geometries, while Shamir’s is based on polynomial interpolation
and it is a bit more efficient.

1.1 Shamir’s Threshold Scheme

Suppose ¢ is a prime or prime power. In a (k,n) Shamir threshold scheme,
we let
S={(zs,;u) : 1 <i < n} C (F\{0}) x Fy

be the set of n shares. Let K € F; be the secret key.

In the scheme setup stage, the share distributor, who is denoted by D,
secretly chooses k — 1 not necessarily distinct numbers from F,, namely,
aj,az,...,ak_1, to generate a (secret) polynomial

k-1
Py(z)=K + Za.j:cj,
Jj=1

where K is the secret key. D also chooses n distinct elements of Fy, namely,
Z1,%2,-..,ZTn. Then, for 1 < i < n, D computes y; = Py(z;), and he gives
the share (z;,¥;) to participant P;.!

Notice that K = Py(0) is the secret. In order to compute the secret, it
suffices to reconstruct the secret polynomial. Suppose we collect a subset
of k shares, say T = {(zi,,1:,) : 1 < j < k}. We know that ¥i; = Po(xy;)
for 1 < j < k. Hence, we can construct a system of k linear equations to
solve for the coefficients of Py. Once the system is solved, Py(0) = K is the
desired secret key.

Alternatively, one can use Lagrange interpolation over F, to find the
unique polynomial Pr passing through the & points in . The Lagrange

INote that the z;’s can be public, while the y;’s must be secret. Thus we sometimes
refer to y; as the share, rather than the pair (z;, ¥;).

170

interpolation formula for Pr is given by

Priz)= Yy J] —2, (1)

1<i<k 1<k T T T

and then Pr(0) = Py(0) is the desired key.

1.2 Threshold Scheme with Cheaters

In practice, it often happens that some shares are faulty, due to miscommu-
nication or misconduct. In this case, even if k shares are pooled together,
we might not be able to compute the correct value of the secret.

In a (k,n) Shamir threshold scheme implemented in F,, let’s assume
that at most ¢ shares are faulty. For any k-subset T C N, there is a unique
polynomial Pr of degree at most k—1 such that, for each i € T, Pp(z;) = y;.
(This polynomial can be constructed using the formula (1).) Therefore, we
assume n > k + £, since we need k correct shares to construct the secret
polynomial.

We now define some notation used throughout this paper:

k-1
=1

o Denote N = {1,2,...,n} (the set of indices of all n shares);

¢ Denote Py(z) = K + a;z (the secret polynomial);

e Denote G = {i € N : y; = Po(x;)} (the set of indices of the good
shares)

e Denote B = N\G (the set of indices of the bad shares);

e Denote Cr = {i € N : Pr(z;) = yi} (the set of indices of the shares
that lie on the polynomial Pr);

e Denote NCr = N\Cr (the compliment of Cr).
It is easy to prove (see [11]) that the following facts hold:

(1) ¥ T C G, then Pr(z) = Py(z) and |C7| = n - ¢;
(2) ¥TNB#0, then Pr(z) # Po(z) and |Cp| <k +t—1.

171

We will assume that n > k + 2t in the rest of the paper; this ensures that
cases (1) and (2) enumerated above can be distinguished by the value of
|Cr|.2

Now, it is obvious that (1) and (2) imply the following two additional
facts:
(3) If |Cr| > k +t, then Pr(z) = Py(z); and
(4) If INCy| > ¢t + 1, then Pr(z) # Po(x).

If we can somehow find a k-subset T containing no indices of bad shares,
then the above facts tell us how to solve the threshold scheme with cheaters

problem.? In the next section, we use a combinatorial structure, called a
covering, to accomplish this goal.

1.3 Coverings

Definition 1.1. A collection T of k-subsets of {1,2,...,n} (called blocks)
is an (n, k,t)-covering if every t-subset of {1,2,...,n} is contained in at
least one block.

For example,
T ={{1,2,3,4},{1,4,5,6},{1,5,6,7},{2,3,4,7},{2,3,5,6}}
forms a (7,4, 2)-covering.

The following elementary lemma is the underlying idea of Rees et al’s
deterministic algorithm ([11]).

Lemma 1.1. Suppose that T' is the set of blocks in an (n,n—k, t)-covering.
Define
T={1,2,...,n}\T:TeT}.

Then, for any t-subset of {1,2,...,n}, there ezists a block (of size k) in T
that is disjoint from the given t-subset.

2If n < k + 2t, then it is in fact easy to see that the threshold scheme with cheaters
problem cannot be solved.

3By “solving” the threshold with cheaters problem, we mean reconstructing the cor-
rect secret, even if there are t or fewer faulty shares. We are not required to identify all
the incorrect shares.

172

Remark: The converse assertion also holds.

In the next section of this paper, we review three existing algorithms for
solving the threshold scheme with cheaters problem. In later sections, we
present several new approaches. Qur new contributions are summarized as
follows. We show the relation between generalized Reed-Solomon codes and
the threshold schemes with cheaters problem. This allows us to apply two
decoding algorithms, the Peterson-Gorenstein-Zierler Decoding Algorithm
(PGZ) and Gao’s Decoding Algorithm, to solve our problem. As well, we
combine both the decoding approach and the covering approach to yield
a generalized combined algorithm for solving the threshold schemes with
cheaters problem.

2 Previous Algorithms

In this section, we review three existing algorithms for solving the threshold
scheme with cheaters problem. Two of these algorithms are contributed by
Rees et al in [11]: Algorithm 1 is a deterministic algorithm which is based
on coverings and Algorithm 2 is a randomized algorithm. Algorithm 3
was given by Tso et al in [13]; it is a modified version of Algorithm 1 that
introduces a break-point variable to decrease the number of iterations of
the algorithm. We then present a new algorithm, Algorithm 4, by further
generalizing the break-point technique used in Algorithm 3.

2.1 Rees et al.’s Deterministic Algorithm

Let S = {(z, %) : 1 < i < n} be a set of shares; and let 7 be a collection of
k-subsets of N = {1,2,...,n}, where {N\T : T € T} forms a (n,n — k, t)-
covering. By Lemma 1.1, it follows that, for every t-subset Y C N, there
exists a block T € 7 such that NNY = 0.

Here is the algorithm from [11]:

Algorithm 1.
Input: 7,5,n,k,t
1. FOREACHT e T DO
2. compute Pr(x)
3. compute Cr
4. IF |Cr| > n —t THEN Py(z) < Pr(z) and QUIT

173

It is easy to see that Algorithm 1 will solve the threshold scheme
with cheaters problem. There exists at least one block T' € T such that
TN B = . For any such block T, we have that |Cr| > n — ¢t by fact (1).
On the other hand, if TN B # 0, then |Cr| < k+t—1 < n—t¢ by fact (2).
Therefore the algorithm will compute the correct polynomial Py(z).

The number of iterations of the FOR loop in Algorithm 1 is bounded
above by the number of blocks in 7. Let C(n,k,t) denote the minimum
number of blocks in an (n, k, t)-covering; then the number of iterations is
at most C(n,n — k,t).

If n is sufficiently large compared to k and ¢, then it is easy to construct
an (n,n — k,t)-covering having C(n,n — k,t) blocks. Below we recall two
theorems from Mills [9].

Theorem 2.1. Ifn > k(t + 1), then C(n,n— k,t) =t +1.

For n > k(t+ 1), we can take T to consist of ¢ + 1 disjoint blocks of size
k.

Theorem 2.2. Ifk(t+1/2) <n <k(t+1), then C(n,n—k,t) =t +2.
For k(t +1/2) < n < k(t + 1), we can take 7 to consist of ¢ — 1
disjoint blocks of size k, together with three additional blocks such that

3k/2 additional points are each contained in two of these three blocks. For
example, if n = 14, k = 4 and ¢ = 3, then we can take

T ={{1,2,3,4},{5,6,7,8},{9,10,11,12}, {9, 10,13, 14}, {11, 12, 13, 14}}.

From the above theorems, we see that the number of iterations can be
bounded above by ¢ + 2 provided that n > k(t + 1/2). On the other hand,
if n is “close to” k + 2t, then an (n,n - k, t)-covering becomes difficult to
construct and the required number of blocks is increased.

2.2 Rees et al.’s Randomized Algorithm

Let S = {(zi,%:) : 1 < i < n} be a set of shares. We proceed to describe
the second algorithm.

174

Algorithm 2.
Input: S,n,k,t
1. REPEAT the following steps:
2 Let T be a random k-subset of {1,2,...,n}
3. Compute Pr(z)
4, Compute Cr
5 IF |C7| > n —t, THEN Py(z) + Pr(z) and QUIT

Algorithm 2 is a Las Vegas [1] type algorithm; it terminates when
we eventually choose a set T that contains no indices of bad shares. An
analysis of the average-case complexity of the algorithm is given in (11].

2.3 Tso et al’s Algorithm

Tso et al's algorithm from [13], which we present as Algorithm 3, is a
modified version of Algorithm 1. One contribution of [13] is to modify
the algorithm so that we require the input of only k + 2¢ shares (instead of
all n shares, as was the case in Algorithm 1). Another feature of this algo-
rithm is to keep track of the number of shares that lie on the interpolation
polynomial Pr(z), as well as the shares that do not, for each interpolation
polynomial Pr(z) determined by a block T'. This allows Algorithm 3 to
potentially accept or reject a block T in the set system more quickly than
Algorithm 1 does.

In Algorithm 3, R is a (k+2t)-subset of N, S = {(z;,4:): 1€ R} C S
is a subset of k + 2t shares, and 7 is a set of k-subsets of R such that
{R\T : T € T} forms a (k + 2t, 2t,t)-covering.

Algorithm 3.
Input: R,7T,S%,k,t
FOR EACHT € T DO
Compute Pr(z)
NCr]
Cr+T
FOR j FROM 1 TO 2t DO
IF y;; = Pp(zi;) THEN Cr = Cr U {z;,}
ELSE NCt < NCr U {z;;}
IF |Cr| = k+t THEN Py(z) + Pr(z) and QUIT
ELSE IF [NC7| > t + 1 THEN BREAK

PPN W

By keeping track of |[NCr| and |Cr| as we go along, Algorithm 3
makes it possible to accept or to discard a given block T" more quickly than

175

was the case in Algorithm 1. In step 9, if [NCr| > ¢ + 1, then we are
able to terminate the inner FOR loop early and proceed to the next block
T in the outer FOR loop. In step 8, if [Cr| > k + ¢, then we are able to
terminate the entire algorithm because we know that we have the correct
polynomial Py(X).

A major drawback of Algorithm 3 is that the construction of the
necessary covering can be quite difficult. That is, there is no efficient sys-
tematic way known to construct (k + 2t, 2¢, t)-coverings. However, we note
that the use of |[NCr| could also be applied to Algorithm 1. Therefore,
we present an algorithm that combines Algorithms 1 and 8 by relaxing
the restriction on 7, to achieve a faster running time and cheaper covering
computation overhead. In this algorithm, we assume that we have at least
k(t + 1/2) shares, so we can use one of the efficient covering constructions
given in Theorems 2.1 and 2.2.

2.4 An Improved Algorithm

In the next algorithm, we assume that R is a v-subset of N, where v >
min{k(t + 1/2),k + 2t}, Sr = {(zi,4:) : i € R} C S is a subset of v
shares, and 7 is a set of k-subsets of R such that {R\T : T € T} forms a
(v,v — k, t)-covering.

Algorithm 4.
Input: R, T,Sr, k,t
1. FOR EACHT € T, perform the following steps:

2 compute Pr(z)

3 St {(zi,4:) : 1 € T}

4. NCr 9

5. Cr«T

6 FOR EACH (z;,¥;:) in (Sg \ St) DO

7 IF y; = PT(:B,') THEN Cr=Cr U {x,-,}

8 ELSE NCr + NCrU{z;;}

9. IF |C7| 2 k + t THEN Py(z) + Pr(zx) and QUIT

10. ELSE IF |[NCr| > t+ 1 THEN BREAK

3 Decoding Algorithms

In this section, we will show a close relation between threshold schemes
and generalized Reed-Solomon codes. It turns out that that solving the
threshold scheme with cheaters problem is equivalent to decoding a certain

176

generalized Reed-Solomon code. Then we present and discuss two suitable
decoding algorithms: the Peterson-Gorenstein-Zierler Algorithm and Gao’s
Algorithm.

Remark 3.1. It was observed by McEliece and Sarwate [8] that Shamir’s
threshold scheme {12] is closely related to Reed-Solomon codes [10, 2]. Reed-
Solomon codes are widely used in many applications (e.g., CD and DVD
players) due to their burst error-correction capabilities, and there are vari-
ous (fast) decoding algorithms for Reed-Solomon codes.

3.1 Generalized Reed-Solomon Codes and Threshold
Scheme

We now review some standard concepts from coding theory; we mainly
follow the presentation in Huffman and Pless [6].

Definition 3.1. Suppose q is a prime power and C is a k-dimensional
subspace of (Fy)™ such that any two vectors in C have hamming distance at
least d. Then C is called an (n,k,d)-code over F,.

Definition 3.2. [6] Let 8 be a primitive element of Fy;. For0<k<n=
q — 1, let Py denote the set of polynomials whose degree does not exceed
k — 1 (including the zero polynomial). Define

C={(fQ), £B), £(B?), ..., FB)) : fePi}

Then C is an (n, k,n— k+ 1)-code over F,, which is known as an (n,k,n—
k + 1)-Reed-Solomon code (or, RS code).

Definition 3.3. [6/ Let n be an arbitrary integer with 1 <n < g—1. Let
¥ = (Y, T, -++s» Yn-1) be an n-tuple of distinct elements over Fy, and
let v = (vo, v1, ..., Un—_1) be an n-tuple of nonzero elements over Fy, not
necessarily distinct. Finally, let k be an integer such that 1 < k < n. Define

C= {(UOf(70)7 Ulf('?'l)» ceey 'Un—lf('Yn—l)) : fe pk} (2)

Then C is an (n,k,n — k + 1)-code over Fy, which is known as a (n,k,n —
k + 1)-generalized-Reed-Solomon code (or, GRS code). We refer to this
code as GRS(v,v).

Theorem 3.1. [6] A generator matriz for GRS (y,v) is

Yo m e VUn-1
vo’)’g vl')'é cen vn—1’72-1
G=| Y7 U171 cvr Un—1Yp-1] . (3)
k—1 k—1 k—1
Voo umn Un—1Vn—1

177

Now, suppose we define
v=(11,...,1) and = (z1,...,Zn).

Let (K, a1,0z,...,ak—1) be the vector of coefficients of the polynomial Py(z)
in a (k,n) Shamir threshold scheme. Consider the codeword

(yl:” . 7yn) = (K)alaa%' . ')ak—l)G

in the code GRSk (7, v). It is easy to see that this codeword is just the vector
of n shares (y1,...,y») in the threshold scheme. That is, the process of
encoding using the above-described generating matrix G is the same thing
as computing shares in a (k,n) Shamir threshold scheme.

We can also interpret the faulty shares in a Shamir threshold scheme
in the context of of GRS codes. Suppose ¢ shares are faulty among the n
distributed shares. Then, correspondingly, a received vector in the GRS
code contains ¢ errors. Identifying the ¢ faulty shares is the same thing as
correcting the ¢ errors in the received vector.

An (n, k)-GRS code can correct up to |(n — k)/2] errors. In order to
correct ¢ errors, we require ¢t < (n — k)/2, i.e., n > k+ 2t. This is the same
assumption that we made in Section 1.2.

Before discussing decoding algorithms for GRS codes, we present the
parity check matrix of GRSk (v, v).

Theorem 3.2. [6] Let v = (0, M1, ---, Tn—1) be an n-tuple of distinct
elements over Fy, and let v = (vg, v1, ..., Un-1) be an n-tuple of nonzero
elements over F,, not necessarily distinct. Then there exists an n-tuple w =
(wo, w1, ..., Wa—_1) of nonzero elements over Fy, such that GRSk (y,v)* =
GRSn—k(v,w) for all 0 < k < n — 1. Furthermore, the n-tuple w is a
nonzero codeword in the 1-dimensional code GRS p,—1(v,v): and it satisfies

n—1
Y wivih(y) =0 4
i=0

forany h € P,_;.

Theorem 3.3. [6] The generator mairiz of GRSp—k(y,w), where w is
given in (4), is the parity check matriz H of GRSk (vy,v). The matriz H is

178

as follows:

Wo wy e Wn-1
wo’Yg wl')'; vee wn—l')’g—l
H= WoYo w171 cer Wne1Yp-1 |, (5)
k-1 —k-1 —k-1
WoYo w1y cvr Wno1Vnop

3.2 Peterson-Gorenstein-Zierler Decoding Algorithm

The Peterson-Gorenstein-Zierler (or PGZ) Algorithm, is designed for BCH
codes and it can correct up to ¢t = |45%] errors. where d is the distance
of the code. In this section, we will adapt the PGZ Algorithm to decoding
GRS codes. The description of the next algorithm is modified from [6].

Algorithm 5 (PGZ Decoding Algorithm).

Input: A generating matrix G for GRS(7,v), and a received vector y =
(yl, Y2y 00y yn) € Fg~

Step 1: Find the vector w using the method described in Theorem 3.2
and then construct a parity check matrix H using the method described in
Theorem 3.3.

Step 2: Compute the syndrome S = (S1, Sz, ..., Sn—x) = yHT, where y
is the received vector.

Step 3: FOR p FROM ¢t DOWNTO 1, construct the matrix

Sl S2 Sa o Sp—]_ SP
Sz S3 Si ... Syp Sun
M, = S3 Sy Ss oos Sp,+1 S#+2

Stop at the first value of p such that M, is nonsingular. Then set v = p.
Step 4: Solve the matrix equation

Sl 52 53 ‘e Sv_l Sv Oy —S.,.H,
Sa Sz S84 ... Su Sepr| |ov-1 —Svi2
S3 84 Ss ... Suyi1 Susz | |ov—2| = |—Sv+3
So Sot1 Sviz .. Saw—2 S2u—1 o1 —-S3y

for the o;’s (1 < i <). '
Step 5: Construct the polynomial o(z) =1+ 3}, 0:z'.

179

Step 6: Find the roots of o(z).
Step 7: If there are v distinct roots, say 41, é2 ..., &, then compute the
error locations 67, 851 ..., 87! and construct the codeword y' from the
co-ordinates in y that are not in error. If there do not exist v distinct roots,
then output “Decoding failure”.

3.3 Gao’s Decoding Algorithm

Gao’s Algorithm is based on the extended Euclidean algorithm. In this
section, we only consider GRS(7,1) codes (i.e., all ;’s are ones), in order
to simplify the notation.

We use polynomial notation: To encode a tuple of k message symbols,
m = (my, mg, ..., mg), we define the message polynomial

f@)=mi+moz+...+mpzt! € P;. (6)

The corresponding codeword is

(61, €25 +vvy cn) = (f(7l)) f('YZ), veey f('Yn))v (7)

which we write in polynomial form as

cz)y=c1+cex+...+cpz™ L.

Further, let y = (y1, 2, -.-, yn) € Fy be a received vector. The corre-
sponding received polynomial is denoted y(z). Gao’s Algorithm will com-
pute the message polynomial f(x) in (6) that defines a codeword c(x) whose
distance from y(z) is at most ¢ (provided that such a codeword exists).
Algorithm 6 (Gao’s Algorithm).

Input: A vector v = (71, 72, ..., Tn) and a received vector

v=@1 ¥z ..., yn) €Fy.

Output: The message polynomial f = m; + mazx + ... + mez*1, or
“Decoding failure”.
Step 0: (Pre-computation) Compute the polynomial

g0 =[[@-% eF,l (®)

i=1

Step 1: (Interpolation) Find the unique polynomial g, (z) € Fy[z] of degree
<n—1suchthat g;(y;)=y; foralli, 1 <i < m.

180

Step 2: (Partial gcd) Apply the extended Euclidean algorithm to go(z)
and g;(x). Stop when the remainder, namely, g(x), has degree less than
(n + k)/2. Upon termination, we have

u(z)go(x) + v(2)91(z) = 9(2)- (9)

(The polynomial v(z) is the error locator polynomial, whose roots indicate
the error coordinates.)
Step 3: (Long division) Divide g(z) by v(z) obtained in step 2, obtaining

g(z) = fi(z)v(z) + r(z), (10)

where deg(r(z)) < deg(v(z)). If r(z) = 0 and fy(z) has degree < k, then
output f1(z); otherwise output “Decoding failure” (which implies that more
than ¢ errors occurred).

4 Combined Algorithms

Both decoding algorithms introduced in last section require solving a system
of n equations. In particular, we need to construct the kernal space of an
(n—1) xn matrix in the PGZ Algorithm, and we construct an interpolation
polynomial for the n pairs (i, ;) in Gao’s Algorithm. These are expensive
computations, which make the entire algorithms slow and impractical if n
is large.

Recall that, in each step of the combinatorial approach to the problem,
we consider a block of shares that contains fewer than n shares. We use
additional shares (up to n or k + 2t, depending on the algorithm) only to
verify the correctness of the solution. In this section, we combine this cover
design methodology with the error-correcting code approach, in order to
improve the overall running time.

We first illustrate the approach by reducing the problem of correcting
t errors to a sequence of smaller subproblems, each of which involves cor-
recting one error. Then we present a generalized version of the algorithm
that combines both the error-correcting codes approach and the block con-
struction technique.

4.1 A Combined Algorithm with Block-Size k + 2

Suppose we have a (k,n)-threshold scheme with at most ¢ faulty shares.
We partition all n shares into disjoint blocks of k + 2 shares (see Figure 1).

181

n shares in total

/ \

k+2 k+2 k+2 k+2

L1 e

Figure 1: A partition of v blocks with block size & + 2.

Let v denote the number of blocks. Assume that v > [—'1'—] , OT equivalently,
n > (k+2)[41]. Under this assumption, there exists a block that contains
at most one faulty share. (Otherwise, if all blocks contain at least two faulty
shares, then the total number of faulty shares is at least

% _2[“2’1] >t+1>t,

which exceeds the actual number of faulty shares.)

Suppose that the block b contains at most one faulty share. Denote
the share indices for block b by (b1, be, ..., bkt2), and the corresponding
share values by (¥s,, Ubgs ---» Ubeys)- We can regard the shares in block b
as shares in a (k, k+2)-threshold scheme, at most one of which is faulty, and
apply any GRS decoding algorithm (e.g., either PGZ or Gao’s Algorithm)
to this block of shares to retrieve the secret polynomial. Then the resulting
polynomial is the secret polynomial for the block b, as well as for the entire
(k,n)-threshold scheme.

The following example illustrates the (k + 2)-block construction.

Example 4.1. Suppose we have a (5,22)-threshold scheme over Fyg in
which at most four shares are faulty. First, we check that

n= 22>21_(5+2)[4+1] (k + 2)[t+1]. (11)

Hence we can apply the (k + 2)-block construction with disjoint blocks of
size 7.

Suppose the secret polynomial is Po(z) = 142z +4z2% +8z% +162%. The
22 shares ar:e
(1,2), (2,22), (3,18), (4,12), (5,4), (6,1), (7,17),
(8,15), (9,23), (10,18), (11,13), (12,28), (13,3), (14,1),
(15,5), (16,5), (17,27), (18,17), (19,15), (20,10), (2L,27),
(22,11).

182

Assume that four of them are changed, as follows:
(2,28), (9,14), (12,27), (21,22).
Observe that the 2™, 9th | 12th and 21 shares are faulty.

To solve the threshold scheme with cheaters problem, we first construct
four blocks of shares with block size 7. (The fourth block has fewer than 7
shares, but the problem will be solved before hitting the last block.)

Block 1: (1,2), (2,28), (3,18), (4,12), (5,4), (6,1), (7,17),

Block 2 : (8,15), (9,14), (10,18), (11,13), (12,27), (13,3), (14,1),
Block 3 (15,5), (16,5), (17,27), (18,17), (19,15), (20,10), (21,22),
Block 4 : (22,11).

We scan the shares block by block. For the first block, the share indices
are (1,2,3,4,5,6,7), and the corresponding shares are (2,28,18,12,4,1,17).
We can use Gao’s Algorithm, for example, to decode this particular block,
which yields

fi(@) =1 + 2z + 42 + 8% + 162* = Py(z).

The correctness of this polynomial can be verified by checking that it passes
through all but three of the remaining shares. Therefore, we’ve found the
secret polynomial, f1(z) = Po(z), by “solving” only one block of shares.

If, on the other hand, we started with the second block, we would obtain
a decoding failure because this block contains two faulty shares. However,
as long as there is at least one block containing at most one faulty share,
the algorithm succeeds. We ensure that this is the case by verifyting that
(11) holds.

In the above example, we see that the original (5,22)-threshold scheme
is reduced to disjoint blocks of (5, 7)-threshold schemes, i.e., the problem
size shrinks from size 22 to subproblems of size 7.

We summarize this (k+2)-block construction as the following algorithm.

Algorithm 7 (A Combined Algorithm with Block-size k + 2).
Input: A (k,n)-threshold scheme over F, with at most ¢ faulty shares
(wheren > (k + 2)[52]), with § = {(zs,3:): 1< i< n}.

Output: The secret polynomial Py(z) € Fy[z].

Step 1: Let v = (k+2)[%£1] denote the number of (k-+2)-blocks. Construct
a block system

T={T1, Tz, ..., Tu}, (12)

183

where T; = {(z,3;): (i—-1)(k+2)+1<j<i(k+2)}CS.
Step 2:
1. FOR:{FROM1TO vDO
2. Retrieve block T;
3. Try to solve the (k, k + 2)-threshold scheme T;,
assuming at most one share is faulty
4 IF the decoding algorithm returns a polynomial f(z) THEN
5 IF [{i : f(z:) =y} >n—t, THEN
6. RETURN f and QUIT
7. RETURN “Decoding Failure”

By our early analysis, it is guaranteed that there exists at least one
block, namely, T}, (1 < b < v), containing at most one faulty share. Hence
the algorithm will terminate after processing the block T}, and it finds the
desired secret polynomial.

4.2 Generalized Combined Algorithm

In Algorithm 7, we construct v blocks, where each block contains k +
2 shares, and search for a block that contains at most one faulty share.
Let’s define ¢ = 1, indicating the maximum number of faulty shares the
algorithm can correct within a block.

What if we instead choose ¢’ = 2? Then we need to find a block of
shares that can contains at most two faulty shares. In order to correct up
to two faulty shares in a block, we require the block size to be at least
k+2 x 2 = k + 4. Therefore, we construct disjoint blocks of size k + 4.
In order to ensure that there exists at least one block of size k + 4 that
contains at most two faulty shares, we require v, the number of blocks, to
be at least [%£1]. Under this block construction, we partition the original
problem into v smaller schemes, at least one of which is a (k, k+4)-threshold
scheme having at most two faulty shares.

This methodology can be generalized to arbitrary ¢’ < ¢. In general,
the block size needs to be k+2t'. Solving the (k, n)-threshold scheme with
at most ¢ faulty shares reduces to solving a series of (k, k -+ 2¢')-threshold
schemes, at least one of which has at most ¢’ faulty shares. The following
easy lemma gives a sufficient condition for this method to succeed if we
partition the shares into v disjoint blocks of size k + 2¢'.

Lemma 4.1. Suppose thatn > (k+2t')([55 +1] +1). Suppose we partition
the shares of a (k,n)-threshold scheme having at most t faulty shares into

& +1] + 1 disjoint blocks of size k+2t'. Then there exists at least one block

184

that contains at most t' faulty shares.

Proof. Let v be the minimum number of blocks required. In the worst case,
exactly one block contains # shares and all other blocks have ' + 1 faulty
shares. Therefore, all we need is to ensure the following:

(=1t +1)+t' >t

¢
v-l2a

t—t'
> ==+
”“[ﬂ+1]+1

This in turn implies the lower bound for n,

n>(k+2t)([t,+ti] +1) (13)

Now we present Algorithm 8, our general combined algorithm.

Algorithm 8 (Generalized Combined Algorithm).
Input: A (k,n)-threshold scheme S = {(z;,y;) : 1 <i < n} over F,, which
has at most ¢ faulty shares, and an integer ¢’ < ¢ such that (13) is satisfied.

Output: The secret polynomial Po(z) € Fy[x].
Step 1: Let v = (k +2t')([{55] + 1) indicate the number of blocks. Con-

struct a system of v disjoint blocks, with each block size [t, +1] +1. Namely,
let

T= {Tla T21 reey Tv}7
where T; = {(z;,5;): (i—1)(k+2t)+1<j<i(k+2t)}CS.

Step 2:
1. FOR:FROM1TOvDO
2. Retrieve block T;
3. Try to solve the (k, k + 2t')-threshold scheme T;,

assuming at most ¢’ shares are faulty
4 IF the decoding algorithm returns a polynomial f(z) THEN
5. IF [{i: f(z:) =w}| >n—t, THEN
6. RETURN f and QUIT
7. RETURN *“Decoding Failure”

185

Notice that when t' = ¢, we are solving the system of one block of k+ 2¢
shares to discover the secret polynomial. When ¢’ = 0, the combined al-
gorithm corresponds to the original covering design approach (Algorithm
1). Finally Algorithm 7 is the special case of Algorithm 8 with ¢ = 1.

5 Experimental Analysis

In this section, we provide experimental results on the actual running times
of most of the algorithms discussed in previous seections. Some papers
([11} and [13]) have addressed the complexity of the combinatorial covering
approach, based on the number of iterations in the relevant algorithms. We
decided to develop an implementation of threshold schemes as well as the
algorithms used to solve the threshold scheme with cheaters problem, in
order to evaluate their actual performance in practice.

In our experiment, we constructed (k,n)-threshold schemes, which in-
cluded:

e construction of secret polynomial Py(z) € Fq[z);
e construction of n shares {(z;,4;) : 1 <i< n};

¢ random selection of ¢ shares which become faulty.

We ran each algorithm multiple times and we compared the average running
time of various algorithms. All the algorithms were implemented in Maple.

5.1 Results

All the experiments were done on a P4 2.2 Ghz windows-based machine.
To achieve better results, we compared each algorithm by using the same
“scheme setup”, and we ran the algorithm 20 times, computing the average
running time. Since the running time of the algorithms might be affected by
the “random” polynomial generated by the “scheme setup” file, we repeated
this process four times, i.e., we constructed four different threshold schemes,
in order to make the results more independent of the choice of schemes.

We are interested mostly in the relative difference between the running
time of the different algorithms. Throughout the experiments, k,¢t and n
correspond to the parameters of a (k,n)-threshold scheme having at most

186

t faulty shares, g refers to the field Fy, and the running time is recorded in
seconds.

In summary, here are the algorithms considered in this paper:

label algorithm section
Al (n,n — k, t)-covering §2.1
A2 randomized algorithm §2.2
A3 (k + 2t,2t,t)-covering (Tso et al) §2.3
A4 (v,v — k,t)-covering (v > min{k(t + 1/2),k +2t}) | §2.4
A5 PGZ decoding algorithm §3.2
A6 Gao’s decoding algorithm §3.3
A7/PGZ | combined algorithm with PGZ (< 1 error/block) §4.1
A7/Gao | combined algorithm with Gao (< 1 error/block) 84.1
A8/PGZ | combined algorithm with PGZ (< t' errors/block) §4.2
A8/Gao | combined algorithm with Gao (< ¢’ errors/block) §4.2

We did not run implement A3 or A4, but we tested all the other algo-
rithms. Or first results are recorded in Table 1.

From Table 1, we see that the running time of Al is very close to the
running time of A2. Especially when n becomes large, A2 achieves very
good performance because the probability of including a faulty share in &
selected shares is extremely small.

Another interesting point is that when n gets large, A5 and A6 are very
slow, due to the required computations of a system of linear equations in n
unknowns or interpolating a polynomial of degree n — 1. The performance
of A7 is much better, but it still is not competitive with Al and A2 for the
parameters considered in Table 1.

It seems that A6 usually is at least 4-5 times faster than A5. How-
ever, we suspect that this is probably due to the way certain operations

are implemented in Maple, rather than being an intrinsic propery of the
algorithms.

Notice that we tested the running times of the algorithms using different
values of q. The results show that the computation time is affected by the
value of g, but the relative difference between the running time of different
algorithms remains the same.

Next, we compared the running times of algorithms in the case when
n = k+2t. As mentioned earlier, when n is close to k+ 2t, the construction
of a covering design becomes extremely difficult in general. Therefore, only
A2, A5 and A6 are suitable (in general) when n = k+ 2t. These results are

187

881

n k ¢t q Al A2 A5 A7/PGZ A6 A7/Gao
10 3 2 331 0.00213 0.00409 0.05233 0.02578 0.01074 0.01211
11 3 2 331 0.00173 0.00156 0.05060 0.02049 0.01251 0.00939
50 3 2 331 0.00235 0.00235 1.78900 0.01715 0.49600 0.00630
100 3 2 331 0.00705 0.00545 24.06175 0.01795 9.59375 0.02270
10 3 2 1009 0.00234 0.00179 0.02713 0.01505 0.01013 0.00900
11 3 2 1009 0.00176 0.00195 0.03460 0.01523 0.00879 0.00469
50 3 2 1009 0.00470 0.00625 3.43775 0.03360 0.53500 0.01090
100 3 2 1009 0.01090 0.00935 24.78875 0.03360 9.29275 0.02035
12 4 2 17 0.00334 0.00585 0.04960 0.02266 0.01388 0.00975
15 5 2 17 0.00391 0.00548 0.05469 0.02518 0.01544 0.00878
16 5 2 17 0.00470 0.00449 0.07815 0.02616 0.02149 0.01056
12 4 2 331 0.00330 0.00430 0.05703 0.02694 0.01233 0.01229
15 5 2 331 0.00271 0.00646 0.07420 0.02734 0.01641 0.01331
16 5 2 331 0.00608 0.00546 0.09045 0.02764 0.02225 0.01154
12 4 2 1009 0.00176 0.01114 0.04688 0.02364 0.01153 0.00545
15 5 2 1009 0.00275 0.00430 0.20585 0.02111 0.01228 0.00763
16 &5 2 1009 0.00488 0.00588 0.09296 0.02850 0.02168 0.01151
12 4 2 100000007 0.00275 0.00701 0.06018 0.02306 0.01603 0.01035
15 5 2 100000007 0.00409 0.00918 0.08909 0.03146 0.02461 0.00781
16 5 2 100000007 0.00324 0.00371 0.09906 0.03123 0.02226 0.01406
100 4 2 331 0.00775 0.00470 27.71800 0.03985 8.64450 0.01175
100 6 4 331 0.01580 0.01020 25.27850 0.03520 9.06625 0.01325
100 6 4 1009 0.00855 0.01015 29.45600 0.02970 8.41400 0.01330
100 6 4 100000007 0.00945 0.01325 41.68725 0.04385 8.94900 0.01875
132 12 10 331 0.26010 0.11485 91.00825 0.11720 159.79625 0.20475
Table 1: Comparison of algorithms when n > k(¢ + 1)

n k t ¢ A2 A5 A6

7 3 2 331 0.00763 0.09669 0.01075

8 4 2 331 0.00859 0.03280 0.00881

9 5 2 331 0.01309 0.03456 0.01328
10 6 2 331 0.01074 0.02385 0.00605
12 6 3 331 0.03030 0.05019 0.01328
14 6 4 331 0.05160 0.06523 0.01366
16 6 5 331 0.03575 0.10724 0.01660
18 6 6 331 0.04548 0.10509 0.01796
20 6 7 331 0.06346 0.16579 0.03538

Table 2: Comparison of three algorithms when n = &k + 2¢

presented in Table 2.

From Table 2, we see that all three algorithms perform reasonably well.
However, as the number of faulty shares, ¢, becomes larger, A6 seems to
have the best performance.

Lastly, we compared the running times of A7 using different values of
t'; see Table 3.

In Table 3, we see that, for the same (n, k, t)-triples, a smaller value of
t' usually results in a faster performance. In general, it seems to be a good
strategy to choose ¢’ to be the smallest integer such that the inequality (13)
is satisfied. For example, when (n, k,t) = (84, 20, 10), then we cannot apply
the combined algorithm with ¢ < 4. So we only consider ¢’ = 4,5,... for
this parameter triple. Here, ¢’ = 4 gives the fastest running times.

Analogous to the results in our other comparisons, A7 seems to be
faster when used in conjunction with Gao’s Algorithm than it is with the
PG?Z algorithm. However, as mentioned above, we are hesitant to conclude
that means that Gao’s Algorithm is inherently faster, as the results depend
strongly on the efficiency of the underlying Maple computations.

6 Conclusion

In this paper, we studied several approaches to the threshold scheme with
cheaters problem. We provided three basic strategies to solve it:

¢ the combinatorial approach using covering designs;

189

b

n kot q

132 20 10 10007
132 20 10 10007
132 20 10 10007
132 20 10 10007
132 20 10 10007
132 20 10 10007
104 20 10 10007
104 20 10 10007
104 20 10 10007
104 20 10 10007
8 20 10 10007
8 20 10 10007
8 20 10 10007
76 20 10 10007

" A8/PGZ A8/Gao
0.19571 0.11128
0.24181 0.09666
0.26171 0.10839
0.37846 0.11603
0.39748 0.13536
0.80195 0.21191
0.25818 0.08290
0.37559 0.11600
0.41233 0.14863
0.86555 0.22539
0.41798 0.11180
0.50775 0.16095
1.09471 0.20076
0.84545 0.19380

O O U © T WO W

Table 3: Comparison of the Combined Algorithm using different #'

e the error-correcting code approach using generalized Reed-Solomon
code decoding; and

e methods that combine the presious two approaches.

The strengths and weaknesses of the various approaches were discussed
and analyzed.

Acknowledgements

The research of the first author is supported by NSERC discovery grant
NSERC-RGPIN #203114-02.

References

(1] Mikhail J. Atallah. Algorithms and Theory of Computation Handbook.
CRC Press LLC, 1999,
(2] E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, 1968.

(3] G. R. Blakley. Safeguarding cryptographic keys. In AFIPS Conference
Proceedings, vol. 48, pp. 313-317, 1979.

190

[4] Shuhong Gao. A new algorithm for decoding Reed-Solomon codes.
Communications, Information and Network Security 712 (2003), 55—
68.

[5] D. C. Gorenstein and N. Zierler. A class of error-correcting codes in p™
symbols. SIAM Journal on Applied Mathematics 9 (1961), 207-214.

(6] W. C. Huffman and V. Pless. Fundamentals of Error-Correcting Codes.
Cambridge University Press, 2003.

[7] C. D. Mayer. Matriz Analysis and Applied Linear Algebra. SIAM,
2000.

[8] R. J. McEliece and D. V. Sarwate. On sharing secrets and
Reed-Solomon codes. Communications of the ACM 24 (1981), 583-
584.

[9] W. H. Mills. Covering designs I: coverings by a small number of
subsets. Ars Combinatoria 8 (1979), 199-315.

[10] I S. Reed and G. Solomon. Polynomial codes over certain finite fields.
SIAM Journal on Applied Mathematics, 8 (1960), 300-304.

[11] R. S. Rees, D. R. Stinson, R. Wei, and G. H. J. van Rees. An applica-
tion of covering designs: determining the maximum consistent set of
shares in a threshold scheme. Ars Combin. 53 (1999), 225-237.

[12] A. Shamir. How to share a secret. Communications of the ACM 22
(1979), 612-613.

[13] R. Tso, Y. Miao, and E. Okamoto. A new algorithm for searching a
consistent set of shares in a threshold scheme with cheaters. Lecture
Notes in Computer Science, 2971 (2004), 377-385.

191

