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Abstract

In this paper we determine a class of critical sets in the abelian
2-group that may be obtained from a greedy algorithm. These new
critical sets are all 2~critical (each entry intersects an an intercalate,
a trade of size 4) and completes in a top down manner.

1 Introduction

Critical sets are minimal defining sets in latin squares [4]. Some recent work
has investigated the structure and size of critical sets in the latin square
L, derived from the abelian 2-group of order 2¢ ([6], [5]). In this paper we
present a new family of critical sets derived from isotopisms of L,.

Section 2 presents background definitions. Section 3 has basic properties
of greedy critical sets. Then Section 4 develops some properties of greedy
critical sets in L, and Section 5 completes the proof of the main result,
which is Theorem 5.1. The Appendices provide extra examples to aid in the
understanding of the Theorem and also have more detail for the inductive
hypotheses.

2 Definitions

We begin with some definitions. Let N*¥ = {nk,nk +1,...,nk +n — 1}
for integers k > 0and n > 0. A latm square L of order nisann xn
array with Tows indexed by N¥, columns by Ny k' and with entries from
the set N} K Further, each e € N appears exactly once in each row and
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exactly once in each column. This is equivalent to the usual definition where
k = k' = k" = 0 but allows more flexibility when discussing subsquares.
A partial latin square is an n x n array where each entry of N,'f" occurs at
most once in each row and at most once in each column.

A latin square L may also be represented as a set of ordered triples,
where (7,c; e) € L denotes the fact that symbol e appears in the cell at row
T, column ¢, of L. The size of a partial latin square P is the number of
filled cells, denoted by |P| = |{(,c;€) | (,¢;€) € P}].

A partial latin square L of order n is isotopic to L’ (also of order n)
if the rows, columns, and entries of L can be rearranged to obtain L.
Specifically, we say that L is isotopic to L’ if there exist permutations o,
B, v on the row labels, column labels, and symbols (respectively) such that
L' = {(ar, Bc;ve) | (r,¢;e) € L}. We say that (a, 8,7) is an isotopism from
L onto L', and we write this as L' = (&, 8;v)L. We write « instead of
(a,t,t) when it is clear from the context that the columns and entries are
left fixed.

Given a partial latin square P of order n, we define the partial latin
square P™ = {(¢,j;k + nr) | (i,5;k) € P}. Note that if P has symbols
selected from N, then P” has symbols from N?+". We use this exponent
notation when recursively constructing larger partial latin squares. For
example, suppose that A, B, C, and D are partial latin squares of order n.
Then by

A|B

P=r&1D

we mean the partial latin square P of order 2n where

P={(,5k) | (i,5;k) € A}U{(i,5 + n; k) | (i,5;k) € B}
U{(i+n,5;k) | (i,5; k) € CYU{(i +n,j +n;k) | (3,5;k) € D}

Let P and Q be partial latin squares of order n. Suppose that a, 3, v are
bijections between the row, column, and symbol sets (respectively) of P
and @ such that

1. P=(a,,7)Q-

2. a and 8 are monotone.

Then P and Q are said to be similar, written P =~ Q. Informally, P and Q
are similar when the rows and columns of Q can be relabelled (preserving
order) to give Q' such that P = (¢,¢,7)Q’".

Given a partial latin square P we can define a binary relation (P, <)
on the elements of P as follows (see also [1}). For all (z,y; z), (r, s;t) € P,
(z,y; 2) < (r, s;t) if and only if
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l.z<r, or
2.z=randy<s.

We can verify that (z,y;2) < (z,¥;2) so < is reflexive. If (z,3;2) <
(r, s;t) and (7, s;t) < (z,y; 2z) then z = r and y = s, so K is antisymmetric.
Finally, suppose that (z,y;z) < (r,s;t) and (7, 5;t) < (v,v;w). Ifz <7
then z < u, so (z,¥; z) < (u,v;w). On the other hand, if r =r and r < u
then r < u, so (x,v; z) < (u,v;w) again. Finally, if z = r and r = u, then
y < s and s < v so y < v, which implies that (z,y;2) < (u,v;w). Hence
< is transitive, and (P, <) is a weak partial order.

In fact, (P, <) is a total order since for any distinct (z, y; 2), (7, s;t) € P,
eitherz <r,orr <z,orr=zand y < sor s <y. Given a partial latin
square P we denote the least element of (P, <) by (rlp,clp;elp) and the
greatest element by (rgp,cgp;egp). Since < is the only partial order used
in this paper we simply say that (i, j; k) € P is the least (greatest) element
of P.

It is convenient to refer to the set of entries occurring in a particular
row or column of a partial latin square P. For each row i of P, define

= {k | there exists j such that (i, j;k) € P}. Also, for each column j
of P, we define Cf, = {k | there exists i such that (i, j; k) € P}. The shape
of a partial latin square P is the set of filled cells, defined by Sp = {(3, 7) |
(1,5;k) € P}.

For some partial latin square P we use the following notation to specify
a subsquare:

QﬁJ,-(P):{(:c,y;z)eP|in<i+k,ij<j+k}

We also use this notation for defining subsquares in a partial latin square.
For example, Q" j(P) = L places the order k latin square L into P starting
with the top—left corner at cell (2, 7).

Let P be a partial latin square of order n contained in the latin square L.
Without loss of generality, suppose that the rows and columns are indexed
by N, = N2, and that each entry is from N,,. Let R C N,, C C Ny,, and
S = R x C. For each (r,c) € S, define

S = 0, if (r,c;e) € P for some e € N,
"¢ IN\(RHUCE), otherwise.

Then the array of alternatives of S with respect to P and L is given by
A(P,S,L) = {(r,¢; Sy.c) | (r,c) € S}. For clarity we write A(P, S, L), for
Sr.c.

We say that A(P,S,L) is similar to A(P’,S’,L’) if there are rela-
bellings of the row names, column names and symbols so that the table
for A(P, S, L) is equal to the relabelled table for A(P’,S’,L").
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A partial latin square T forms a latin trade in a latin square of order n
if there exists a partial latin square T”, the disjoint mate, such that:

1. T and T’ are of the same order.

2. {(4,5) | (4,5;k) € T for some symbol k}
= {(3,7) | (,4;k") € T’ for some symbol k'}

3. For each (i,5;k) € T and (3,5; k') €e T', k # k.
4. For each i € N, R}, = R, and Ci = Ci.,.

Informally, Condition 2 says that T and T have the same shape, Con-
dition 3 says that they are disjoint, and Condition 4 says that T and 7" are
row balanced and column balanced.

Let L and L’ be two disjoint latin square of the same order. Let T =
L\L and T' = L'\ L. Then T and T’ form a latin trade. We assume
that all latin trades are nonempty. A partial latin square P is uniquely
completable if there is just one latin square L of the same order as P such
that P C L.

A partial latin square P of order n is strongly completable if it is uniquely
completable to L, there is a sequence of partial latin squares Py = P C P, C
P, C...C Py =L where m = n? — |P|, and for each P there exists T, e
such that |A(N, x Ny, Pl = 1.

A partial latin square C C L is a critical set if

1. C has unique completion to L, and
2. no proper subset of C satisfies 1.

A strong critical set is a critical set that has strong completion. We
say that a (uniquely completable) partial latin square ertends top down
if, given that rows 0,1,...,7 are filled in, then row i + 1 can be shown to
have unique extension. If all rows can be extended in this manner then the
critical set has unique completion top doumn.

Lemma 2.1. Let P be a critical set in the latin square L and T a latin
trade in L. Then PNT # 0.

Lemma 2.2. Let L be a latin square and C C L a critical set. For each
z € C there exists a latin trade T C L such that CNT = {z}.

The latin trade containing the least number of entries is a 2 x 2 sub-
square, known as an intercalate. Let C be a critical set in L, c € C, and
I C L an intercalate such that CNI = {c}. Then cis said to be 2-essential.
If all ¢ € C are 2-essential then C is 2-critical.
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Algorithm A
Input: Partial latin square P of order n with unique completion, and
bijection f: {1,...,|P|} — Sp.

P(] — P
fori=1,...,|P|
let x,7,2z be integers such that (z,y;2) € P, and f(i) = (z,y)
if P,_, \ {(z,y; z)} has unique completion then
P — P\ {(z,y;2)}
clse
P, — P,
return Pp,

3 Greedy Critical Sets

Algorithm A was first presented in [1]. Given a partial latin square P with
unique completion, and a bijection on its cells, the algorithm produces a
critical set.

Lemma 3.1 (Lemma 2.1, [1]). Let P be a partial latin square that
uniquely completes to L. Then for every bijection f over {1,...,|P|}, Al-
gorithm A returns a critical set.

Proof. Algorithm A works on a sequence of partial latin squares, Pp = P 2
P, D...2 P, where m = |P|. The initial partial latin square Fy = P has
unique completion, and the if statement ensures that each P;, for ¢ > 0,
has unique completion. Hence Py, has unique completion.

To see that P,, is minimal, suppose otherwise. Then there is an z € Py,
such that P, \ {z} has unique completion. Also, let k be the integer such
that f(k) = x. Then P, is the partial latin square where x is inspected (and
not removed) by Algorithm A. Since P, \ {z} has unique completion, we
can add entries to P, \ {z} until we have precisely P;\{z}. This has unique
completion, yet Algorithm A apparently did not remove z, a contradiction.
Hence P,, is minimal and so P,, is a critical set. O

Since a latin square trivially has unique completion, we get:

Corollary 3.2. If the input to Algorithm A is a latin square of order n
then the output is a critical set for any bijective function f.

We refer to Algorithm A as the generalised greedy critical set algorithm,
and abbreviate this to gges(L, f) for given latin square L and map f.
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Lemma 3.3. These two sets are equal:

{9g9¢es(L, f) | f is a bijection on {1,...,n%} }
and

{C|C C L andC is a critical set of L}
for some latin square L of order n.

Let fo: {1,...,n%} — S, be the bijection defined by
fold) = ([’;IJ ,n—i (mod n))

for 1 <i < n?and L of order n. Then fo orders the cells of L from right to
left along each row and from the bottom row to the top row. We abbreviate
gees(L, fo) to ges(L) and call this the greedy critical set of L.

We now characterise greedy critical sets in terms of the partial order <.
Let L be a latin square, and Z = {I | I C L and I is a latin trade}. Each
I € T is a partial latin square implying I has a least element and a greatest
element.

Lemma 3.4 (Lemma 2.4, [1]). Let C be a critical set in L. Then C =
ges(L) if and only if for all (z,y;z) € C there exists an I € T such that
INC ={(z,y;2)} and (z,y;2) = (rly, cly;ely).

Proof. (if) Algorithm A with input L and map f computes on a sequence
of partial latin squares P, = L D P, D ... 2 P, = C. Suppose that
fo(k) = (z,y) and that Px_; \ {(z,y;2)} completes to Lo = L,L,,...,L,
for some s > 1. Then there is an L;, i > 1, such that P,_; N (L\ L) =
{(z,v; 2)}. In other words, T = L\ L; is a latin trade in L. The definition
of fo implies that for any (r,c;e) € T then either r > z, or, if r = z then
¢ > y. Hence (z,y; 2) is the least element of T.

(only if) Assume that for all (z,y;z) € C there exists an I € T such
that INC = {(z,y;2)} and (z,y; 2) = (Ir1,lcr;ler), but C is not the greedy
critical set gcs(L). Let D = LN ((C \ ges(L)) U (ges(L) \ C)), that is, the
intersection with the symmetric difference.

The set D is a partial latin square and has a greatest element (grp, gcp; gep)
since D # . Thus for all (a,b;¢) € L such that e > grp, or a = grp and
b > gep, (a,b;c) € C if and only if (a,b;¢c) € ges(L). The reason is that
(a,b;¢) is not in D, so (a,b;¢c) ¢ ((C \ ges(L)) U (ges(L) \ C)).

By the definition of D there are two possibilities:

L. (g7p,gcp;gep) € C, and (grp, gcp; gep) ¢ ges(L). Since (g7p, gep; gep)
is in C, there exists an I € Z such that I N C = {(grp,gcp;gep)}
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and (grp,gcp;gep) = (Irr,ler;ler). But for all (a,b;¢) € L such
that @ > grp, or a = grp and b > gcp, (a,b;c) € C if and only if
(a,b;c) € ges(L), so I N ges(L) =0, which is a contradiction.

2. (97D, g9cp;gep) € ges(L), and (g7p,gcp;gep) ¢ C. Let k be the
integer such that fo(k) = (grp,gcp). Then at step k Algorithm A
removes (g7 p, gcp; gep) and Pi—1\{(g7p, g9cp; gep)} is found to have
at least two completions, say L and L’. So T = L\ L' is a latin trade
and the least element of T is (97 p, 9cp; gep). Once again, this implies
that T N C = @, which is a contradiction.

Hence D = 0, which contradicts our original assumption that C was
different to the greedy critical set. O

Corollary 3.5. Let L be a latin square of order n and G = ges(L). If
(4,5;k) G theni#n—-1andj#n—1.

4 Greedy Critical Sets in the Abelian 2—Group

We define L, to be the latin square corresponding to the abelian 2-group
of order n = 2% and the partial latin square P; C L, as in [2]. That is,

0 01
P = Li= 15

and for s > 2,

Ly =Ly x Ly_1={(=,y; z),(z,y + n/2;z +n/2), (z + n/2,y;2 + n/2),
(x +n/2,y +n/22) | (z,y;2) € Ly—1}, and
P, = P, ® P,y ={(x,¥; 2), (v, v + n/2;w + n/2), (u + n/2,v; w + n/2),
(v +n/2,v+n/2;w) | (u,v;w) € Ps—; and
(z,v;2) € Ls—1}.

For example, L3 and P; are:

0|1|2[3|4]|516]|7 0|1(2(3)4[5]|6
1({0]3]|2|5[4]7]6 11013[|2(5]4
2(3[0f1]6]|7]|4]5 21310]1}6 4
3211|100 716]|5]4 312110
4|5(6|7)0]1]2]3 4|56 ([7]j0]|1]2
5|4 |7|6|1]0]3]2 514 10
6(7[4f52]3]0]1 [6] |4 2 0
7161514 3|2|1[0
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In general, we may take a latin square L of order n/2 and form the
order 7 latin square L; x L by defining:

L1 x L ={(z,y;2), (z,y + n/2; 2 + n/2), (x + n/2,y; 2 + n/2),
(z+n/2,y+n/2;2) | (z,y;2) € L}

The next Lemma is similar to the doubling construction of [3] which gives
2—critical sets.

Lemma 4.1. Let M be o latin square of order n such that ges(M) is 2-
critical. Then ges(Ly x M) is 2-critical.

Proof. Define P, a partial latin square of order 2n, by

M ges' (M)
ges (M) | ges(M)

Note that P C Ly x M. Choose some (i, j; k) € QF o(P). Then (i, j; k) will
be 2—essential in one of two ways:

L. If (3,5 + n; k') ¢ P then the set of cells
I= {(zajak)a (3,5 +m; k’)v (i +mn,75; kl)i (i+nj+mn k)}
is an intercalate in L; x M such that PN 1T = {(4, j; k)}.

P =

2. Otherwise, (i,7 +n; k') € P. Since (i, + n;k’) € ges!(M) which is
2-critical, for some integers 0 < |a|, |b| < n there exists an intercalate

I={(i,j+n; k), (i+a,5+n;1), (i, +n+b1), (i+a,j +n+bk")}
for which I nges!(M) = {(i,j +n; k')}. Hence there is an intercalate

I'={(4,3:k), i, j+n+b;1), i+ n+a,j;l), (i+n+a,j+n+b; k)}
such that I’ N P = {(i, j; k)} implying that (4, j; k) is 2-essential.

Hence each (i,j;k) € P is the least element of an intercalate so P is 2—
critical by Lemma 3.4. o

Corollary 4.2. For all s > 1, ges(L,;) = P, and P, is 2-critical.
Lemma 4.3. Let a be a row isotopism of L, defined below:

(4ky +1, i=4dk; +2
dky + 2, i=4k +1

dkp +1, i=4kp,+2
4kp+2, i=4kp+1
1, otherwise

\
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where
0<p<22 ki#kj fori#j, and 0 < 4k; < 2° (1)
Then ges(aL;) is 2-critical.

Proof. We proceed by induction. There are two base cases to check. First,
define H, by the bracketed entries in the following square and H, to be the
completion (as shown) of Hj.

(ORIOIIORE
@] 3 [(0]1
O] 3 [2
3] 2]1]0

We note that H, is isotopic to P2 and so Hj is a critical set. Further each
entry of H, is the least element of some intercalate contained in H2 For the
second base case we need to check a square of order 8. First we construct
a general critical set G, of order n = 2° for s > 3 which will be shown to
be equivalent to ges(aL,) for a satisfying (1).

Let 7, j be integers such that i,5 = 0 (mod 4) and 0 < 1,5 < 2°. We
define each subsquare Q J(G ) as follows:

o If o(i + 1) =i+ 1 then set Qf ;(G;) = QF ;(Ps).

o Otherwise, a(i+1) =i+2, a(i+2) =i+ 1. Let ! be the integer such
that Qf (L) = L}. If QF;(P,) is similar to L, then set Q7 ;(Gs) =
H} otherwise set Q¢ ;(G,) = H}

Since Hj is isotopic to P; it follows that G, is isotopic to P, so G is
a critical set. To finish the second base case, we observe that each entry of
G3 is the least element of some intercalate contained in aL3.

Next, fix the integer s > 3. We can partition G, into 4 x 4 subsquares
o? ';(Gs) where 4,j = 0 (mod 4). See Figure 1 for a diagram of the situa-
tion. There are two cases for each subsquare:

1. If 9} /(G,) is similar to P; or Hy then each (z,y;2) € Q;{j((}'s) is the
least element of an intercalate.

2. Otherwise, Q7 ;(G;) is isotopic to Q? ;(Ps) = L. Since G, is isotopic
to Ps, the deﬁmtlon of P, implies that (i/4,4/4; k) € P;_q for some
k € Ny/5. Then we know that there is an intercalate

I={(i/4,3/4: k), (i/4 +a,i/4 k),
(i/4,5/4 + b k), (i/4 + 0, 5/4 + b; k) }
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QL,(Gs) 9 ;44(Gs)

Qg-!»a.‘i (GS Q;’1+a.j+b(GJ) :

Figure 1: Inner swap. Shows four subsquares of G, which form an 8 x 8
subsquare isomorphic to P;. An entry (z,y;2) € Q;-‘,J-(Gs) is 2—essential due
to the intercalate that sits in the square (indicated by z and z’), regardless
of possible row swaps (indicated by arrows).

in Ls_p such that I N P,_y = {(i/4,7/4;k)} and a,b > 4. Due to
this intercalate I and the the definition of P, we now see that the
subsquare

R =0} (GIUQ: ;1 41na(Gs)UQY, 4 na;(Gs)U Qtatn/ajtbin/a(Gs)

is similar to Py. We verified earlier that each (z,y;2) € Q},(Gs) is
the least element of an intercalate and is 2-essential.

By Lemma 3.4 we have G, = ges(aL,) and that ges(aL,) is 2—critical. O

5 The Main Result

Theorem 5.1. Let op i be a row isotopism on a latin square of order
n = 2% defined by

K, i=k
o () =qk, i=k
i, otherwise.
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where
k—K|<3andj<k<k'<j+4forsomej=0 (mod4) 2
Then gcs(o ke Ls) is 2-critical, strong, and completes top down to ay kL.
The proof of Theorem 5.1 is based on induction. The case s = 2 is

treated separately in Section 5.1. The remaining sections contain the in-
ductive proof, beginning with the base case of s = 3.

5.1 Cases=2

The six possible ges(ax, i L2) are shown below. Each critical set is 2-critical,
strong, and completes top down.

TTO G2 @13 [0 1
ges(ao,1 L2) = Eg; (;) (g) :1)’ ges(an,2La) = ((1)) 2(3 (g) g
3 2 1|0 3 2 110
3) (2] 1) g 0 (1)](2)]3
seslonaln) = G 0 T1] E(als) = ORORREHE
0 1 2 13 3 2 110
OIRRIOIE HIONICRE
seslenala) =y g 0T T] &easta) = CARREORE
1 0 3 |2 2 3 01

5.2 Base Cases for s =3

Let s = 3 and k, k' € Ng such that (2) is satisfied. The base case for
s = 3 and oy is divided into two parts: k,k’ > 4 and k,k’ < 4. For
each (k,k’) we see that the associated greedy critical set gcs(a,xL3) is
2—critical, strong, and completes top down.

Let T be the set of (k,k’) € Ng x Ng satisfying (2) where k, &’ > 4:

I'= {(4’5)s(4’6)’(51 6),(5,7),(6, 7)} (3)

Suppose (k,k') = (4,5). The partial latin square gcs(aasL3) is shown
below as the entries in brackets. Also, we take this opportunity to define
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the partial latin square E(4,5),.

OlM{2[E[@][E)]E6
WO @G [@] 7
ORIONEORION KON AT
IO 7[6]5

ges(agsL3) =

Ol | W]

S [@WIM] 611 1(0)]O)
(@WlE) ] 6]7h0O[Q)] 2
OISO IO ERIQ)
7654321
_[E@4,5)2 [ o]
[ ]

The other ges(a iL3) and E(k, k'), for (k,k') € T are shown in Ap-
pendix B.

Otherwise, k,k' < 4. Let A = {(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)}.
Each case defines a partial latin square A(k, k’);. For example,

T O (@O [@TOTe
OISO ICINO I
el
esloor L) = F O T (O 1 7 TOTO T3
B T@OT 7 61O 3 2
® 17 @5 1@ 301
7 6 5 4 3 2 1 0

_[A0.7)2 [ »]

[ T

The other A(k,k’), are shown in Appendix C.

5.3 The Final Construction

In this subsection we will define partial latin squares E(k, k'),, A(k, k')s,
and G(k,k’,s). The squares E(k,k'), and A(k,k’), are used in recur-
sively defining G(k,k’,s). In Section 5.4 we will show that G(k,k’,s) =
gcs(ak,k,Ls).

Recall that A(k, k'), and E(k, k')2 were defined in Section 5.2. For s > 4

204



and § = 2572 if k, k' < s°~! we define

N0 A}
Ak, k)3, A(k’: )s—2 if k, k' € N?
L;-z Ls—s
Ak, K)oy =
Lg 2 L}-—z
- if k, k' € N}
A=K — )1, | A—6K -8, | ‘
(4)
LY | E(k—6,K —4), if k, k' € N2
Ly, LY ’ ’
E(k, k')omr =
E(k — 26, k' — 26)°_, L s £k K e N?
E(k— 28,k —20)!_, | E(k— 26,k - 20)0_, B
(5)

The previous section, Appendix B, and Appendix C give G(k,k',s) =
ges(ag, kv L3). For s > 4, define

Ak, k)°_, | G(k,k',s = 1)
Py, Py

G(k, k', s) =

E(k7k’)g—l Psl-l
Gk —26,k' — 26,5 —1)! | G(k — 20, k' — 23,5 — 1)°

(6)

for k, k' < n/2 and k,k’ > n/2, respectively.

The following Lemma is immediate from the definition of E(k, &')2 and
(5)-
Lemma 5.2. Leti,j =0 (mod 4) and W = Q} ;(E(k,k');). ThenW ~ Lo
or W= E(l,l'); for some (I,l') €T.

For each (k, k') € T, define
B[ 7] -
E(k, k)3 | P;

Lemma 5.3. Let r,c € Ny. Then for each (k,k') € T,
A(U(k, k'), Ng x Ng,L3)rc NN} =0

Uk, k') =
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Proof. There are four cases to inspect. First, let U = U(4,5) = U(4, 6).

1M 2 [ M@]E]E)
WO [@[G) @] 7
@1 R1O[M[®] 7 [@4
@lAIM{O] 7[6]5
W16 [ (M]O[D]E
G)|E@[M[E]Q)]@O]3
@1 M]@[G) @] 3 [0
MIeJG @] 3[2]1

In the first row there are empty cells (0,2) and (0, 7) which could be filled
with a 2 or 7. However 7 ¢ A(U, Ng x Ng, L3)o.2 since (5,2;7) € U. So
A(U Ng x Ng,L3)o 2 = {2} C N4 Fmally, A(U Ng x Ng,Ls)rc = @ for
r,c € NP and (r,c) # (0,2). This completes the proof of this case. The
other three U(k, k') are displayed in Appendix D. O

For each (k,k’) € T, define

EGFS] P
PI [ B.F) ®

O =] Wl || | 3

Vik k') =

Lemma 5.4. Letr € Ny, c € N}. Then for each (k,k') € T
A(V (k,k'),Ng x Ng,L3)sc AN =0

As with the previous lemma there are four cases to check with very
similar reasoning (see Appendix E).

5.4 Completing the Proof of Theorem 5.1

The proof of Theorem 5.1 will require a few technical Lemmas. First,
Lemma 5.5 follows directly from the definition of L,.

Lemma 5.5. Let (i,5;k), (i,5';k') € L, where n =2° and

0<i<n/2
0<j<n/2<§ <n

Then there ezists an integer i with n/2 < i’ < n such that

{G, 35 k), (6,575 k), (¢, 3; %), (¢, 5 k) }

s an intercalate in L.
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Using ideas in the proof of Lemma 4.3, we also have:

Corollary 5.6. Let (i,5;k), (t,5';k') € Ls wheren = 2°, 4,5,7 = 0
(mod 4) and

0<i<n/2
0<j<n/2<j' <n

Then there exists an integer i’ = (mod 4) with n/2 <4’ < n such that

Q;",j(Ls) u Qf,,-'(La) U Q‘il’,j (Ls)U Q?',j' (Ls) = L3

Lemma 5.7. Let P be a partial latin square contained in the latin square
L of order n. Let Ry, Ry,C C N, and define S = (R U Ry) x C so that

|C| = |R1UR2|
Q = {(Z,J,k) | (7‘1.7) €S, (Zaj)k) € P}
L'={(i,5:k) | (5,7) € S, (i,5;k) € L}

where L' is a latin subsquare of L. If Q strongly completes (extends) to
Q=QuU{(,j:k)| (G,4;k)eL,i€ Ry, ceC}

and A(P,R; x C,L) = A(Q, Ry x C,L’) then P has a unique extension to
P=Pu{(i,j;k)| G,j;k) € L,i€ Ry, ce C}. 9)

Remark 5.8. The subsquare @ has strong completion through rows R; only.
This is useful if rows Ry of the arrays of alternatives are not equal. On the
other hand, if we set Ry = 0 then the lemma says that P extends to PUL'.

Proof of Lemma 5.7. Since @ has strong completion through rows R; in L'
there must be a sequence

(Q(l))rla cl)a (Q(z):r21 02)1 crey (Q(m)’ Tm, Cm)

such that Q) = Q, Qm+) = Q, and Q) ¢ QUHY, 7, € Ry, ¢; € C for
each i. Also, the pairs (r;,¢;) are distinct and IA(Q(i),S, r )r‘.,c‘.| =1 for
each 1.

Define the sequence (P®,r;,¢;) = (PUQ® ry,¢;) for 1 <i<m. It is
obvious that P() ¢ P(+1), To show that this is a strong completion we
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need |A(P®, S, L), .| =1 for each i. First, |A(PM), S, L), c,| = 1 by the
definition of Q. Now suppose that |A(P(®), S, L)r.c;| =1 and

A(P®, 8, L) = AQY,S,L') for each v € Ry, c€ C

where 1 > 1 is fixed. Fill the cell (r,¢;) in Q® with the (unique) symbol
ei € AQD, S, L"), ., to get QU+, Do the same in P). Now let

) O] i ) .
A(PEHD g, L)y = A(P ' v Sy L)rcy ifr# rv, and ¢ # ¢;
AP, S L), .\ {e}, otherwise
Since A(QU+Y), S, L), has the same definition (i.e. the symbol e; deleted
from the corresponding row and column) it follows that A(PC+)), S, L), . =
A(QU*V, S, L), . for each r, c. Hence P has strong completion to P. 0O

Lemma 5.9. G(k,k',s) has strong completion top down.

Proof. The case s = 2 and base case s = 3 are given earlier. So suppose
that the theorem is true for all L; where 3 < ¢ < s. Let § = 2°~2, There
are four cases depending on where the row swap occurs.

Casel: k,k' € N3. Writel = k—20,V = k'—26, h = k—36, b/ = k'—36.
Then

7 — E(ka k,)2~.l Rsl-l
Gk, k', ) = GOV, s— )T | GUT,s—1)
El)s_p L;_, L, Py
EQ1),_, EQU)s_5 Py, Pia
Bl U);_» Ps s BV o Py
G, W, s =23 [ Gh,},s =22 || G(h, I, s — )Y [ G(h, I, s — 2)0

(10)

First we show that the top 4 rows of G(k, k¥, s) have unique completion top
down. Since the cells NY x (N} U N?) are completely filled in, we need to
show that the cells N? x (N U N$) have unique completion. We will use
Lemma 5.7. Let

Ry=Nj, R;=N}, C=NJUN;, L=appL,, P=G(kK,s)
Then @Q and L' are defined to be

S TP s
Q= G, s—2)° | G(h, 1,5 — 2)0 =G, l,s-1)
L] L3
L = Lg_: L§ Z = al,l'Ls—l
S—= —
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By the inductive hypothesis @ has unique completion top down to L.
" From (10) we see that A(P, Ry xC, LYN(N}UNZ) = 0 and A(P, R1xC, L) =
A(Q,R; x C,L"). Now Lemma 5.7 gives the strong top down extension
G*(k,k',s) of G(k, K, s):

L(s]—z L:—z L?—Z L§—2
El)s_y EV)5_o Py, Py
E(1,12_, P, E(, 1), PL,

G, I, s— 2 | G(h, I, s —2)* || G(h,h',5—2)" [ G(h,},s — 2)?

We will now show that

A(G*(k, K, 5), Ny X Ny, Ls)rc © Nj UNG for r € N3, c€ N}
(11)
A(G*(k, k', 5), Ny X Ny, 0o Ls)rc © Nj UN} for r € Nj, c € Nj
(12)
Let 4, 4, u, v be integers such that i, j,u,v =0 (mod 4) and
v,v+3 € N}

i,i+3eN} j,j+3€N]

Then by Lemma 5.2, O} (G*(k,k',s)) 2 E(k,k")} for some (k, k') and
integer w. Also, @4 ,(G*(k,¥',s)) 2 Py for some integer z. So to restrict
the array of alternatives we apply Lemma 5.3 to the subsquare (which exists
due to Corollary 5.6 for some z € NZ)

Q! (GF(k, K, $))UQL,(G* (K, K, 8))UQs ;(G* (k. K, 5))UQs o (G (k. K, 5)

and Lemma 5.4 to the subsquare (which exists due to Corollary 5.6 for
some y € N7)

Q?,j+6(G+(ka klv s))UQ?,v—J(G.F (k’ k’, s))UQ;,j+6(G+(kv kl’ s))UQ;,v—J(GH-(k’ k’v S))
which gives

A(GH(k, k', 5), Nn X Np,ak g Ls)rc ANf =0 forr € Nj,ce N}
A(G*F(k, k'), Np X Npy ok Ls)re NN =0  forr € N, ce NE
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which imply (11) and (12). Now consider these two subsquares of G+ (k, k', s):

EQ, I P3
( )8—2 3—2 (13)
G(h,W, s — 2)d G(h,h,s — 2)1
. P
) -2 " s—2 (14)
G(h,W,s—2)* G(h,l,s—-2)0

We can now interleave the application of Lemma 5.7 with the induc-
tive hypothesis to show that the top halves of these subsquares completes
strongly top down. Suppose row r, for r € N} has been completed in (13).
Then the array of alternatives for subsquares identified in (14) is restricted
such that the inductive hypothesis applies. In other words,

A(G*(k, k', 5), N, x Np,apprLs)rc C NJUNZ forc e N}

A(GT(k,k',5), N X Ny, 0k Lg)r,c © N§ U N} for c € N}
Hence G*(k, k', 5) strongly extends top down to G+*(k, k', s):

L3, Ly, L7, Lg_z

L:-Z Lg—'l Lg-z Ls—2

EQ,DT?, Py o EQ, ), o P,
G(h, 1, s —2)° | G(h,H',5 —2) | Gk, R, s — 2)Y | G 1,5 —2)0

Finally, interleave the application of Lemma 5.7 with R, =  to the sub-
squares

Ry xC={26,20+1,...,46 -1} x {0,1,...,26 — 1}
and
Ry xC={26,26+1,...,46 -1} x {26,206 +1,...,46 — 1}

which finishes the completion of G(k, ¥/, ).
Case 2: k,k' € NZ. Writel = k-6, ' =k' -6, h=k—25, b’ = k' - 24.
Then

Ly, E@V),y || L, P;_,

G(k kl S) = L;—2 Lg—Z ” Pg—z Psz-z
Y A(h,h); 5 | G(h,W,s=2)° T A(h,R)7_, | G(h,h,s — 2)T |

P, Py, [P, Py,
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and the reasoning is simpler than Case 1.
Case 3: k,k' € N}. Write l=k - 4,1’ =k" 4.

(Lg-zl (Lil_)% E(k,k’)i_z) R 1".3-2 .
AL, | AQLY)s_o || GULY, s —2 G(,lI',s—-2)
k 7 - k] s—2 3 s (AN ] 3y
Gl ko) == = T P3, v, PL,
P, Psz—z Py, Py,
Case 4: k, k' € NJ.
Ak, K')S_o | AlK, K)e_o || Alk, k’)?_z G(k,k',s — 2)°
Ll LO Ps P2
k kl s) = s—2 s—2 s—2 s—=2
Gl kos) =—T —TPr, I, 7L,
Py o P o P, Py,
This completes the proof. a

Lemma 5.10. G(k,k',s) is a 2—critical greedy critical set.

Proof. The case s = 2 and base case s = 3 were given earlier. Suppose
that the result is true for all G(k,k’,t) where 3 <t < 5. Write § = 282,
There are four cases for k, k’. First, suppose that &k, k' € N, 9. Write down

G = G(k,K,s):
Ak, Y05 | Ak, k)3 | Ak, k)2, | Gk, K, s —2)°
oL, [ I, | P PL
L, Ply, || L P,y
Py, Pl, [ P, Py 5

Now identify the following subsquares:

L Qgg,o(c) = Pa—l

2. Q%g,za(G) ~ Ps_y

3. Q¥5(G) = G(k,K',s — 1)

4 Q§0(G)U Q4 45(G) U Q50(G) U Q35.35(G) = Gk, K, s — 1)
5. Q3 5(G)U Qf 55(G) U Q85 5(G) U Q35,35(C) = G(k, k', s — 1)
6. Q30(G) U Q325(C) U Q350(G) U Qs25(G) = Po—1
7. Q5 5(G) U Q5 35(G) U Q35,5(G) U Q3555(G) = Pan
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With these subsquares, the inductive hypothesis, and Corollary 4.2, we see
that each entry = € G(k, k', s) is 2-essential and that there exists a trade
Ty C ok Lg such that G(k,k',s) N T, = {z} and z is the least element of
T. Further, G(k, k', s) has strong completion by Lemma 5.9 so G(k,k',s)
is a critical set. Finally, Lemma 3.4 shows that G = ges(ag,x Ly). We omit
the remaining three cases where k, &’ are in N}, NZ, Ng since the reasoning
is very similar. a

Theorem 5.1. Let ayy be a row isotopism on a latin square of order
n = 2%, defined by

K, i=k
ak,k'(i) =<k, i=k
1, otherwise.

where
|k—k|<3andj<k<k <j+4 for somej=0 (mod4) (15)
Then ges(auir Ls) is 2-critical, strong, and completes top down to oy s L.

Proof. The Theorem follows from Lemmas 5.9 and 5.10. a

6 Conclusion

We believe that a stronger version of the theorem is true, where (2) is
weakened.

Conjecture 6.1. Let oy be a row isotopism on a latin square of order
n = 2%, defined by

K, i=k
a(iy=Ck, i=FkK
i, otherwise.

where |k — k| < 3 Then ges(akxLs) is 2-critical, strong, and completes
top doun.

We have verified the conjecture by computer search for 2 < s < 5 and
all possible oy, 1.
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Appendix A

Suppose we wish to calculate ges(ago,62L6)-

e First, s = 6 son = 2° = 64, and § = 2°~2 = 2% = 16. Use (6) to
write down G(60, 62, 6):

G(60,62,6) =

e Now use (6) twice more:

G(28,30,5) =

G(12,14,4) =

E(60, 62)7 PI
G(60 — 32,62 — 32,5)" | G(60 — 32,62 — 32,5)0
E(60, 62)7 X
G(28,30,5)T | G(28,30,5)
E(28, 30)7 P]
G(12,14,4)T | G(12,14,4)
E(12,14)3 Pl
G(4,6,3)" | G(4,6,3)°

The subsquares P3 and G(4, 6, 3) are base cases and can be looked up
in the later appendices and the main part of the paper.

e Next, let s = 6, § = 26=2 = 16, and apply (5) to get

E(28,30)3 I

E(60,62)5 =

£(28,30)] | E(28,30)3

Next, let s =5,d =

252 = 93 = 8, Then

E(o,148 |  I1

E(28,30)4 =

E(12,14)] | E(12,14)]

Lastly, let s =4, § =252 =22 = 4. Then

E(12,14); =

E(4,6); | L3

E(4: 6)2 E(45 6)3

The subsquares Ly and E(4,6); are base cases and defined in the
main section of the paper.
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Here is ges(anz,14L4):

0TI T -T13 4567 89 0]11]12]13]14]-
1103254769 |8 |1t|w0]|13|12] - -
s 13 T o1 6|7 4|5 10]it]8 ]9 |1d]-]|12]-
3 T2 110716 5 4|L|0]9 8] -]-]-]1-
a5 - 1710l 1 -3 2314 - 8 ]9 ]10]-
5 4 7 6 1 0 3 2 13 1] 12 - - 9 8 - -
61 714521301 1@]|-]12]-]10]-18]-
TTe 15 141321100 -1-1-1-1-1-1-1-
8 9 - 11 1121|1314 { - 0 1 - 3 4 5 6 -
9 8 11 1013 ] 12 - - 1 0 3 2 5 4 -
10 | 11 8 9 14 - 12 | - 2 3 0 1 6 - 4
11 | 10 9 8 - - - - 3 2 1 0 - - -
14 - 12 - 10 - 8 - 6 - 4 - 2 - 0 -
- 12 | 15 - - 8 11| - - 4 7 - - 0 3 |-
12 | 13 - - 8 9 - - 4 5 - - 0 1 - -
Appendix B
OOz (B [@[E [0
MO e O [6 @] 716
D To T e T s T4 [Fag
3 2 1 6 5 4 4,6)2 .
gslenle) = T 7 T@ s (@[3 (@]t = I
5 T@IOT6 1 1o]6][2
IR EE IO R E
7 6 5 4 3 2 1 0
O [ @[ @B 67
OO @@ [ G @] 7
e
2 1 6 5 4 56)2 | @
geslossle) =T TEH TO ] 7 [O D[22 - I
® 17 @[5 @3 o]l
B 7 6 (1) | (0) 312
7 6 5 4 3 2 1 0
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g(‘s(05,7L3) =

ges(og7L3) =

Appendix C

gcs(ao‘ng) =

gcs(ao'gLs) =

(2)

3)

(4)

(5)

0)
1

(3)

(2)
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(6)
7
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B

(0)
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()

(2
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(9)
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5

E(5,7)2
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(2

(4)
7
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()
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@)

3)

(6)
5

| o

2)
1
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0
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ges(ay2La) =

ges(ay 3Ls) =

ges(az,aLs) =

OTOTOIE[@IE 67
QIO [Ml®e] 7 @]s

OO TG @] 716
@Ml O][ 7] 615 [4] [AQ,2):
DGl 7TIO[M[@[3] [ -
G |@ 716 [[W)]@] 312

® 7 1@[5 [@]3[0O]!

7 6 5 4 3 2 1 0
OTOIAO[E @] 5 [6) 17

B 21O 7664

2 3@ ®6lm] 415

o [@s4[7]6] [AL3)
WIE[e]7[OTO]E 3] -
GY@[716 [M[O]3]2

® 7 |1@[5 [@]3]0]!

7 6 5 4 3 2 1 0
OTO[O[ET 4G [6)]7
oG l®w] 7|6

3@y 1@ 6 5) [ 4
OO m 67 [415] [A23).
WIee7JOo[O]a[3] -
@[ 76 [M]O@]3 ]2

67 @[5 @[3 ]0]1

7 6 5 4 3 2 1 0
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Appendix D
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Appendix E

V(4,5) = V(4,6) =

V(56) =

V(5,7) =

V(6,7) =
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