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Abstract

In 1975, Leech introduced the problem of finding trees whose
edges can be labeled with positive integers in such a way that the
set of distances (sums of weights) between vertices is {1,2,---, (3)},
where n is the number of vertices. We refer to such trees as perfect
distance trees. More generally, we define a distinct distance tree
to be a weighted tree in which the distances between vertices are
distinct. In this article, we focus on identifying minimal distinct
distance trees. These are the distinct distance trees on n vertices that
minimize the maximum distance between vertices. We determine
M (n), the maximum distance in a minimal distinct distance tree on
n vertices, for n < 10, and give bounds on M(n) for n > 11. This
includes a determination of all perfect distance trees for n < 18.
We then consider trees according to their diameter and show that
there are no further perfect distance trees with diameter at most 3.
Finally, generalizations to graphs, forests and distinct distance sets
are considered.

1 Introduction

A weighted tree is a tree in which each edge is labeled with a positive
integer, called the weight of the edge. The distance between two vertices
in a weighted tree is the sum of the weights on the edges of the unique
path connecting the pair. Since each pair of vertices determines a distance,
there are a total of (3) distances in a tree (or any connected graph) with
n vertices. If all of these distances are distinct, we call the tree a distinct
distance tree. Define the function M(n) to be the smallest integer so that
there exists a distinct distance tree with n vertices and maximum distance
M (n). We refer to a distinct distance tree on n vertices as a perfect distance
tree if the set of distances {1,2,--- , (3)} can be achieved. To generalize this
notion further, we define a minimal distinct distance tree to be a distinct
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distance tree with maximal distance M(n).
A simple lower bound for M (n) follows immediately from the definitions.

Proposition 1.1. For alin > 1, M(n) > (3).

Equality holds in Proposition 1.1 if and only if there is a perfect distance
tree on n vertices. Perfect distance trees were introduced by Leech [7] as
a generalization of his previous work on the set of distances in a weighted
path [6]. The primary aim of this paper is to analyze the function M(n).
In particular, we calculate M(n) for n < 10 and provide some bounds on
M(n) for larger n. Moreover, all perfect distance trees for n < 18 are
determined.

A problem related to perfect distance trees and calculating M(n) was
popularized by Golomb [3] who sought the shortest ruler with n marks
at integer distances (including the ends) such that the distances between
marks are all distinct. Such a ruler is known as a Golomb ruler. Since a
Golomb ruler with n marks has ('2’) pairs of marks, its length cannot be
less than (3). A Golomb ruler with length (3) is called a perfect ruler and
corresponds to a weighted path that is a perfect distance tree. The marks
are taken as the vertices which are then connected sequentially by edges
to form a path. The weights are the distances between consecutive marks
on the Golomb ruler. For example, the Golomb ruler of length 6 with tick
marks at 0, 1, 4, and 6 corresponds to the weighted path with weights 1, 3
and 2 shown at the top right of Figure 1. As noted by Leech [7], the only
weighted paths that are perfect distance trees are the three shown in the
top row of Figure 1.

Proposition 1.2. For n > 4, the path on n vertices, P,, cannot be labeled
to form a perfect distance tree.

Moreover, Leech performed a hand search and found that the five perfect
distance trees shown in Figure 1 are the only ones on 6 or fewer vertices.
They remain the only known perfect distance trees.

Perfect distance trees and minimal distinct distance trees have applica-
tions in electrical networks, where the weights are interpreted as electrical
resistances [1]. When such a network forms a perfect distance tree, the net-
work might be used as an efficient multipurpose resistor, since only n — 1
resistors are needed to construct the network, and any of () different resis-
tances can be obtained. Using a minimal distinct distance tree minimizes
the number of gaps corresponding to resistances that cannot be obtained.

Taylor [10] provides the most general known result on perfect distance
trees.

Theorem 1.3 (Taylor’s Condition). If there is a perfect distance tree
on n vertices, then n or n — 2 is a perfect square.
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Figure 1: All Known Perfect Distance Trees

Combining Taylor’s Condition with Proposition 1.1 gives an immediate
corollary.

Corollary 1.4. If neither n nor n — 2 is a perfect square, then M(n) >
(3) +1.

In 1991, Taylor [11] reported that a computer search by Shen Lin showed
that there are no perfect distance trees on 9 vertices. He noted that it
was unknown whether perfect distance trees on n vertices exist for n > 9.
In Theorems 1.6 and 2.2, we shall give some generalizations of Taylor’s
Condition that also improve upon results of Gibbs and Slater [2]. Section
2.2 describes an algorithm we used to show that there are no perfect distance
trees on 11 or 16 vertices. A modified version of this algorithm is used to
compute M(n) for n < 10. Also, all minimal distinct distance trees for
7 < n < 10 shall be provided. For other n, the bounds on M(n) shown in
Table 1 are established.

The upper bounds for M(n) in Table 1 are provided by examples. The
examples for n = 2, 3,4, 6 were given by Leech [7]. The examples forn =15
are presented in Figure 2 and include two that are equivalent to Golomb
rulers and others that were found by hand. A computer search was used
to confirm that these are the only examples for n = 5. The examples for
7 < n <10 presented in Figures 4 through 7 are minimal distinct distance
trees that were found by computer search. We doubt that the examples we
constructed for 11 < n < 18 in subsection 2.3 are minimal.

The diameter of a tree is the largest possible number of edges in a path
connecting two vertices of that tree. All of the known perfect distance trees
have diameter at most 3. In Section 2.5, the algorithm of Section 2.2 is used
to show that there are no additional perfect distance trees of diameter 3 or
less.

In the final section of the paper, we extend this problem to more gen-
eral graphs. In particular, if we have a forest with k components, where
component % is a tree on n; vertices, then we define a perfect distance forest
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28 30 Theorem 2.2 + Computer Search 30
36 39 Theorem 2.2 + Computer Search 39
45 50 Theorem 2.2 + Computer Search 50

n | (3) | Lower Justification of Upper
Bound Lower Bound Bound

1 0 0 Proposition 1.1 0

2 1 1 Proposition 1.1 1

3 3 3 Proposition 1.1 3

4 6 6 Proposition 1.1 6

51 10 11 Corollary 1.4 _ 11

6 | 15 15 Proposition 1.1 15

71 21 22 Corollary 1.4 22

8

9

10

11| 55 59 Theorem 2.2 + Computer Search 77
12| 66 69 Theorem 2.2 + Computer Search 94
13| 78 80 Theorem 2.2 + Computer Search 119
14| 91 93 Theorem 2.2 + Computer Search | 142
15| 105 | 107 | Theorem 2.2 + Computer Search | 165
16 | 120 | 121 Computer Search 214
17 |1 136 | 139 Theorem 2.2 254
18 | 1563 | 153 Proposition 1.1 294

Table 1: Bounds on M(n)

to be a weighted forest with set of distances

{1,2,...,Xk:<’;‘>},

i=1

We provide some interesting examples and a generalization of M(n) for
forests.

1.1 A Generalization of Taylor’s Condition

Before we can generalize Theorem 1.3, we need to extend our definitions
and notation from trees to arbitrary graphs. These graphs need not be
connected, but can have neither loops nor multiple edges.

Let G = (V, E) be a graph on n vertices and ¥ components. We denote
the sizes of the components of G by n; for i = 1...k. An edge-labeling of
Gisamap ) : E — Z+. The (weighted) distance, d(u,v), between vertices
u and v in an edge-labeled graph (G, )) is defined only if » and v are in
the same component of G. In that case d(u,v) is the minimum weight of a
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path from u to v in G. We define maxdist(G, A) to be the maximum of the
distances between pairs of vertices in (G, ).

A distinct distance labeling of a graph G is an edge-labeling such that
if u; # v1 and ug # vq are vertices of G, {u1,v1} # {uz,v2}, and d(u;,v1)
and d(uz,ve) are defined, then d(u1,v1) # d(uz,v2). We say that (G, )
is a distinct distance graph if ) is a distinct distance labeling. A perfect
distance graph is a distinct distance graph (G, \) whose maximum distance
is the number of pairs of distinct vertices in G such that the two vertices are
in the same component of G. That is, maxdist(G, \) = =5, (%), and the
distances in (G, A) are the consecutive integers {1,2,3, ..., maxdist(G, \)}.
For any graph G, M(G) is the minimum of maxdist(G, \) over all A such
that (G, )) is a distinct distance graph.

Finally, a Taylor coloring of an edge-labeled graph (G, )\) is a function
t:V — {0,1}, where V is the set of vertices of G, such that if z and y are
in the same component of G then d(z,y) = |t(z) — t(y)| (mod 2).

Proposition 1.5. Every edge-labeled forest (F, ) has a Taylor coloring.

Proof. Choose a vertex z of F and set t(z) = 0. For each vertex y in the
component of z, set t(y) = d(z,y) mod 2. Note that, if y and z are in the
component of z and d(y, z) is even, then t(y) = t(z), and, if d(y, z) is odd,
then t(y) # t(z). Define ¢ on each of the components of F' using this same
process. (]

If ¢ is a Taylor coloring of an edge-labeled graph (G, A) with n vertices
and k components, then, fori =1,...,k and j = 0,1, we let

nij = |{z : = is in the ith component and ¢(z) = j}|.

The next theorem generalizes Taylor’s Condition to weighted graphs.
The proof generalizes Taylor’s proof for trees to arbitrary graphs that may
have multiple components. Applying this theorem to forests will aid us in
improving the lower bounds for M (n).

Theorem 1.6 (Generalized Taylor’s Condition). If (G, )) is an n-
vertex perfect distance graph with a Teylor coloring, then there are non-
negative integers a,az,...,ar, where a; = n; (mod 2) and a; < n; for
1=1,2,...,k, such that

a+al+---+ai+2=n,
where p = mazdist{(G, \) mod 2.

Proof. Let t be a Taylor coloring of (G, ). In the i-th component of G
there are n; on;; odd distances and ("4°) + ("?) even distances as in the
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proof of Taylor's Theorem. Since (G, )) is a perfect distance graph, the
number of odd distances equals the number of even distances plus p. That

is,
. "
TE nioniy = 2f=1[(n;'°) + ( ;’1)] +p.

Expanding and multiplying both sides by 2 we obtain
TX2n0mi1 = B, (n?,o —nio+ n?,1 —ni1) + 2p.
Rearranging, we obtain
n =L, (nio +nin) = L, (ndo — 2nioniy +nd)) +2p

= B (ni,0 — ni,1)* + 2p.
Letting a; = n;o — n;,; completes the proof. (]

The special case of the previous theorem where k£ = 1 implies Taylor’s
Condition as well as a generalization of Taylor’s Condition due to Gibbs
and Slater [2] (their Theorem 2).

The next proposition gives a criterion for determining the value of p in
the previous theorem if the size and number of components of a perfect
distance graph are known.

Proposition 1.7. Let (G, )\) be an n-vertex perfect distance graph, with q
components of odd size, and let p = mazdist(G,)\) mod 2. Then, p = 0 if
and only if g =n (mod 4).

Proof. By definition

k A —
p:%modz'
Thus p = 0 if and only if

Tk n? -5 n; =0 (mod 4).

Since n? mod 4 = n; mod 2, the result follows. O

The next proposition allows us to calculate n g and n,,; for a connected
n-vertex perfect distance graph. An equivalent result was noted by Gibbs
and Slater (2].

Proposition 1.8. Suppose t is a Taylor coloring of a connected n-vertex
perfect distance graph (G,)). Let p = mazdist(G, \) mod 2. Then, there
exists a nonnegative integer m such that n = m2+2p, ny o = m(m+1)/2+p,
and ny; = m(m—1)/2+p.

38



Proof. By Theorem 1.6, n = m? + 2p for some nonnegative integer m. It
follows that ny,0+n1,1 = n = m?+2p. In the proof of Theorem 1.6, we also
saw that nj p—n1,1 = m. Adding these equations gives 2n, o = m?+m+2p,
and subtracting them results in 2n;,; = m?—m+2p. The result follows. O

2 Focusing on Trees

In this section, we give some bounds on M(n). We also present the algo-
rithm that we use to determine M (n) for n < 10 and to show that there
are no perfect distance trees for 6 < n < 18. Examples of weighted trees
that meet M(n) for n < 10 are also presented. Finally, we establish that
Figure 1 contains all of the perfect distance trees of diameter 3 or less.
First, consider the smallest minimal distinct distance tree that is not
perfect. By Taylor’s Condition, it must have 5 vertices, and M(5) > 10. A
computer search establishes that Figure 2 shows all six examples of distinct
distance trees on 5 vertices having maximum distance 11. Thus, M(5) = 11.
Note that the two paths are equivalent to Golomb rulers of length 11.

1 3 _5 _2 3 .1 5 _2

—o " o oo o X
1 6 7
> 5 o 4 > 4 o 1 3 1
2 3 2

Figure 2: Trees that Meet M(5) = 11

2.1 Bounds on M(n)

We have seen in Proposition 1.1 and Corollary 1.4 that M(n) > (3), in
general, and M(n) > (3) + 1, if neither » nor n — 2 is a square. Theorem
2.2 of this section will allow us to improve on these lower bounds in some
cases. Theorem 2.2 also gives parity conditions that allow us to reduce the
number of weighted trees that must be checked when searching for minimal
distinct distance trees. In Theorem 2.4, we provide a cubic upper bound
on M(n), but conjecture that there is a quadratic upper bound.

First we show that each distinct distance tree is equivalent to a perfect
distance forest in which isolated edges are labeled with the distances missing
from the tree.
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Theorem 2.1. For any n > 2, there is an n-vertex distinct distance tree
(T, X) with mazdist(T, X) = d iff there is a perfect distance forest (F, p1) with
one component of size n and d — () components of size 2, where p(e) < d
for each edge e in a component of size 2.

Proof. Given (T, A), let F be the disjoint union of T and d— ('2‘) components
of size 2. Define p to equal A on F and so that the edges of the components
of size 2 are labeled with the d — (3) numbers z such that z <m and z is
not a distance in (T, A). Clearly (F, ) is a perfect distance forest.
Conversely, given (F, p), let T be the component of size n. Let A be the
restriction of 4 to T. Then since p(e) < d for each edge e in a component
of size 2, maxdist(T, A) = d. a

Now we prove a version of Taylor’s Condition for distinct distance trees.

Theorem 2.2. Let (T, \) be an n-vertez distinct distance tree such that
mazdist(T,\) = d. Suppose that, of the positive integers less than d that
are not distances in (T, )\), v of them are even and v of them are odd.
Then, there is an integer a such that a® + 2(u — v + p) = n, where p =
mazdist(T, ) mod 2.

Proof. Let g = d— (3). By the previous theorem, there is a perfect distance
forest (F, p) with one component of size n and g components of size 2, where
the edges of the components of size 2 are labeled with the g positive integers
less than d that are not distances in (T, ). p = maxdist(F, \) mod 2.
By Theorem 1.6 applied to forests, there are integers a,a,,...,ay, where
a=n(mod2),a;=0(mod 2),a<n,a; <2fori=1,2,...,9, and

a2+af+a§+--~+a3+2p=n+2g.

By examining the proof of Theorem 1.6, we see that a; = 2 if the corre-
sponding edge label is even and a; = 0 if the corresponding edge label is
odd. Thus,

a?+al+ai+--+ai+2p=0a’+4u+2p=n+2(u+v),
and the result follows. 0O

We can use Theorem 2.2 to improve upon our lower bounds in Propo-
sition 1.1 and Corollary 1.4. Corollary 2 in Gibbs and Slater [2] gives a
lower bound on the value of M(n) that can be shown to be equivalent to
ours. However, we obtain additional information from Theorem 2.2 about
the parities of the integers that are not distances in a distinct distance tree
on n vertices. For example, Theorem 2.2 implies that M(10) > 47. To
see this, first note that, by Corollary 1.4, M(10) > 46. If M(10) = 46,



then Theorem 2.2 provides an integer a such that either a2 + 2 = 10 or
a? — 2 = 10. Since 8 and 12 are not perfect squares, this is impossible.
Hence M(10) > 47. If M(10) = 47, then Theorem 2.2 can only be satisfied
if u = 2 and v = 0, giving a24-6 = 10. We were therefore able to confine our
computer search to the case where the two numbers less than 47 that are
not distances in the tree are both even. Using similar parity information
from Theorem 2.2 and a computer search, we have shown M (10) =

‘We conclude this subsection by giving upper bounds on M(n). The first
follows immediately from the definitions. Recall that a star is the special
case of a complete bipartite graph K, when p = 1. That is, a star on n
vertices is a tree with a central vertex attached to n — 1 leaves.

Proposition 2.3. If there is a distinct distance labeling of the star Ky 1,
for which the sum of the two largest edge-weights s d, then M(n) < d.

Proof. Since K n_1 is a star, the largest distance d in K; 1 is the sum
of the two largest edge-weights. Since K ,_; is a tree with n vertices,
M(n) <d. O

The bounds provided by Proposition 2.3 are not best possible. For
instance, the optimal labeling of K5 provides the bound M(6) < 19.
However, as shown by Figure 1, M(6) = 15. Nonetheless, we can use
Proposition 2.3 to obtain upper bounds on M(n). The first upper bound is
derived by using a greedy algorithm to label the star. At each step, label an
unlabeled edge with the smallest number such that all distances are distinct.
These labels are given as sequence A010672 in the on-line Encyclopedia of
Integer Sequences of Sloane and Plouffe [9]. A simple counting argument
gives the following explicit bound.

Theorem 2.4. M(n) <2n -3+ ("3') + (*3°) = in® - $n? + Ln-38.

Proof. Using the greedy algorithm to label Ki ,,_1, let ex be the label on
the k** edge. For e), we choose the least positive integer that avoids making
two equal distances in K ,—;. To do this, we must avoid the k— 1 previous
labels, the (*;') sums of the previous labels and the (*;!) sums of two
previous labels minus one (smaller)prevnous label. Therefore,ex < k—1+
(*31) + (*3') +1 =k + (5). By Proposition 2.3, M(n) < en—1 +en—2 and
the resuit follows. |

An asymptotically better bound is provided by a result of Graham and
Sloane [4, Theorem 1(3)], which implies that there is a distinct distance
labeling of K ,—; for which the sum of the two largest edge-weights is less
than n? + O(n#). The exact form of the term O(n$) depends upon the
distribution of the primes. By Proposition 2.3, this gives us a quadratic
upper bound on M(n).
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Corollary 2.5. M(n) < 2n2 4+ O(n %)

2.2 An Algorithm for Growing Trees

" The goal of this section is to present an algorithm that constructs all perfect
distance trees on any given number of vertices. First, we present a lemma
that is used to recursively determine the weights of the edges of the tree.
This lemma is also used frequently in Section 2.5. Although we will apply
the lemma primarily to trees, it holds in the more general case of a perfect
distance forest.

Lemma 2.6. Let F be a perfect distance forest with n vertices and e edges,
and let the weights on the edges of F be wy < wa < --- < w,. For each
1 £ k £ e, wi is the least positive integer that is not a distance in the
subforest of F induced by the edges labeled wy,ws, ..., wr—_1.

Proof. Let my be the least positive integer that is not a distance in the
subforest of F induced by the edges labeled wy,ws,...,wr_1. If wy were
less than my, then distance wi would be repeated in F. If w; were greater
than my, then we would have w; > my for all j > k and my could not be
a distance in F. Therefore, wy = m;. O

Note that Lemma 2.6 does not generalize to arbitrary graphs. In fact,
the weight on an edge of a perfect distance graph is not determined, in
general, by the set of lower weights in the graph. For instance, the three-
cycle with edges labeled 1,2,3 and the three-cycle with edges labeled 1,2,4
are both perfect distance graphs.

Algorithm 2.7. Our algorithm for constructing perfect distance trees on
n vertices is a depth-first search tree algorithm. The first few branches of
the search tree are shown in Figure 3. Each node of the search tree is a
weighted forest that is potentially a subforest of a perfect distance tree. The
children of each forest are obtained by adding a single edge. The weight
of the new edge, as determined by Lemma 2.6, is the least positive integer
that is not a distance in the parent forest. The children are forests that can
be obtained by adding this weighted edge in one of the following ways:

1. The edge connects a vertex in one tree to a vertex in a second tree of
‘the parent forest. (0 vertices are added)

2. The edge connects a new vertex to an existing vertex in the parent
forest. (1 vertex is added)

3. The edge is disjoint from the parent forest. (2 vertices are added)
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Figure 3: The Search Tree

However, the new weighted edge is only added if it does not cause one of
the following conditions to occur:

1. A distance is obtained in two ways.
2. A distance exceeds (7).
3. The number of vertices exceeds n.

Note that no node of the search tree is equivalent to any other node.

2.3 Using the Algorithm to Analyze M(n)

When no perfect distance tree exists, we modify the algorithm by allowing
for gaps and relaxing the condition on the maximum distance. First, we
consider the possibility that M(n) = (3) + 1 so that the set of distances
contains all but one of the integers in the set S = {1,2,..., (3), (3) + 1}
To handle this, the algorithm first uses the integers {2,3, ..., (3), (3) + 1},
then {1,3,4,..., (3), (3) + 1}, and at each stage i skips the integer i. If no
weighted tree T with M(T") = () +1 is constructed, then the algorithm can
be set to consider two or more gaps. Using this technique, we implemented
our algorithm to construct all of the examples that meet M(n) for n < 10.
These are shown in Figures 4 through 7.

Notice that, for 7 vertices, Taylor’s condition rules out the possibility
that M(7) = 21. For 8 vertices, Taylor’s condition gives M(8) # 28,
and a computer search exhaustively establishes that M(8) # 29. For 9
vertices, a computer search gives that M (9) > 39. Similarly, for 10 vertices,
our bounds show that M(10) > 47, and a computer search shows that
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4 10

Figure 5: Weighted Trees that Meet M(8)=30

5 11
1 22 ] 3 7 2 4

Figure 6: Weighted Trees that Meet M(9)=39

4 18 14
1 5 3 2 1

2

Figure 7: Weighted Trees that Meet M(10)=50

M(10) > 50. The parity information given by Theorem 2.2 was used to
reduce the number of cases that needed to be checked.

For 11 < n < 18, we are able to eliminate by computer search the
possibilities of relatively few gaps and thereby improve upon the lower
bounds in Proposition 1.1 and Corollary 1.4. However, it will take too
long for the algorithm to check higher numbers of gaps and find the exact
value of M(n). To complement the lower bounds, we give upper bounds for



M(n) by providing examples of distinct distance trees. A distinct distance
tree on 18 vertices with maximum distance 294 is shown in Figure 8. This

BREEKEKKK
R REEE

Figure 8: Weighted Tree That Shows M (18) < 294

establishes the upper bound M (18) < 294 listed in Table 1. By successively
deleting the edges of weights 80, 40, 95, 46, 23, 68, and 51, we obtain distinct
distance trees that justify the corresponding upper bounds, for 17 > n > 11,
listed in Table 1.

2.4 Bounds on the Weights

The following two theorems give bounds on the largest and second largest
weights in a perfect distance tree.

Theorem 2.8. Let T be a perfect distance tree with n vertices. and letzml
be the mazimum of the weights on the edges of T. Then, m; < |_£4nT—glLJ .

Proof. Let s = (3), the number of paths in T. Let e be the edge with
weight m;. Removing e from T leaves two disjoint trees: T3 and Ty. Let
d; be the maximum distance in T} and ds be the maximum distance in T5.
Let a and b be the endpoints of edge e such that ¢ is in T} and b is in T5.
By the triangle inequality there is a vertex = in T; such that the distance
from z to a is at least d; /2. Similarly, there is a vertex y in T> at a distance
at least d2/2 from b. The path in T from z to y passes through e, so the
distance from z to y is at least m; + (d1 +d2)/2. Now we get a lower bound
for this distance. Let k& be the number of vertices in T;. The number of
paths in Ty is (%). Since T is a perfect distance tree, the distances between
pairs of vertices in T} are all distinct. Thus d; > (’;) The number of paths
in T» is (";"). Therefore, there are (;) + (";k) paths in T3 UT,. Let P be
the path in 77 U T; of largest weight. Since T is a perfect distance tree, P
must have weight at least (£) + (*;*). Without loss of generality, we may
assume that P is in Tp. Thus, d2 > (£) +("3*). Using our lower bounds for
d1 and dp we see that the distance from z to y is at least m; + (£) + ("5%) /2.
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Since the maximum distance in T is s, we have
k n—k -3 1 s
< 8- —_ = — 2 - _
mp <s (2) ( 5 )/2 4k +2(n+1/2)k+2.

The previous inequality gives an upper bound for m; that depends on k.
Elementary calculus shows that the largest value of the upper bound occurs
when k = 3(n + 1/2). Therefore,

_ (n— 1)2

-1 s 1 1 s
L —_— —_ g -
m < 75 (n+1/2)*+ 2(n+1/2)3(n-|- 1/2) + 5 B

O

An elementary argument places & bound on the second highest weight
of an edge.

Theorem 2.9. Let T be a perfect distance tree with n vev;tices. Let mg be
the second highest weight of an edge of T. Then, my < |2=2=2|,

Proof. Let m; be the highest weight of an edge of T. Since, there is a path
in T that contains the edges of weights m; and m;, we have my +m; < (3).
Since my < m,, it follows that

ms |81 - |22 o

2.5 Trees with Diameter at Most Three

Proposition 1.2 shows that all perfect distance trees with diameter n — 1,
the maximum possible diameter, are included in Figure 1. In fact, all of
the known examples of perfect distance trees have diameters less than or
equal to three. In this section we use Algorithm 2.7 to show that Figure
1 contains all of the perfect distance trees of diameter at most 3. Clearly,
the only perfect distance tree of diameter 1 is the one given in Figure 1.
So we start by showing that all the perfect distance trees of diameter 2 are
pictured in Figure 1.

Proposition 2.10. For n > 4, the star K) ,— is not a perfect distance
tree.

Proof. Suppose for some n > 4 that K; ,—; has such a labeling. Every
pair of edges meets at the central vertex in K; 1. We use Lemma 2.6
to recursively determine the weights of the edges, starting with w; = 1
and ws = 2. Since the sum w; + we gives the distance 3, we must have

46



w3 = 4. Now, the sums w; + w3 and ws + w3 give distances 5 and 6,
so wy = 7. This gives distances 8, 9, and 11, thus ws = 10. However,
w; + ws = w3 + wg = 11, which is not permitted. Figure 9 displays the
nodes in our restricted (to the diameter 2 case) search tree. It illustrates
this argument which has led to a contradiction. a

Figure 9: Labeling a Star

We now restrict Algorithm 2.7 to trees of diameter 3. These trees consist
of two stars whose central vertices are joined by an edge. We adopt the
notation introduced by Leech (7] to denote such a weighted tree by

(al,ag,...,ak)b(cl,cz,...,cm). (2.1)

Here, (a1, a2, -.,ax) and (¢1, ¢2, ..., Cm) are the lists of weights in the stars
and b is the weight of the edge connecting them. To provide a unique
representation we require that @; < --- < ag, ¢; < --- < ¢m, and a1 < 1.
For example, the perfect distance tree on 6 vertices in Figure 1 is denoted
by (1,2)5(4, 8).

Proposition 2.11. Let T be a labeled tree on n > 6 vertices with diameter
3. Then T cannot be a perfect distance tree.

Proof. The search tree in Figure 10 shows that T cannot be a perfect dis-
tance tree.

The search tree is constructed in stages such that at each stage the
weight of the edge added is the least positive integer that is not already
a distance in the tree. We first try to assign the weight as an a;, then
as b, and finally as a ¢;. Each branch of the search tree stops when we
observe that the associated construction cannot be extended to obtain a
perfect distance tree. This occurs when the next edge to be added would
create two paths of equal distance. For example, in the tree (1,7)3(2) the
next distance needed is 9. If we have (1,7,9)3(2) then we have distance
10 twice, namely 1+ 9 and 7 + 3. If we have (1,7)3(2,9), then we have
distance 12 twice, namely 7 + 3 + 2 and 9 + 3. Thus, this tree cannot be
made into a perfect distance tree. Also note that, in the tree (1,2,4)b(7)
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Figure 10: Search Tree for Diameter 3 Trees

the next distance needed is 8. If we have (1,2,4,8)b(7), then it contains
the distances 1+ b+-7 and 8+ b. Hence, no matter what weight is given to
b, we have two equal distances. Similarly, (1,2,4)b(7,8) cannot be a child
of (1,2,4)b(7). Hence, (1,2,4)8(7) is the only child of (1,2,4)b(7). It is
straightforward to verify that all cases have been considered in the search
tree shown in Figure 10. The search tree is finite and contains no perfect
distance trees with n > 6. a

2.6 Trees with Diameter Four

Propositions 2.10 and 2.11 deal with the diameter 2 and 3 cases, respec-
tively. Hence, it is natural to next consider the case in which the diameter
is 4. However, our argument in the diameter 3 case cannot be extended to
diameter 4. The problem is that the search tree restricted to the diameter
4 case is infinite. For any integer a > 2, Figure 11 pictures a weighted tree
of diameter 4 on n = 2a + 1 vertices that is clearly contained in our search
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tree. It is straightforward to verify that no two paths in the tree can have
the same length. Since a can be arbitrarily large, there are infinitely many
examples in our search tree.

Figure 11: The Diameter 4 Case

3 Graphs and Distinct Distance Sets

In this section we widen our focus to state some results about perfect dis-
tance graphs. It is not hard to show that, for every positive integer n,
there is a perfect distance graph on n vertices. Gibbs and Slater [2] give
one construction to show this. A perhaps simpler construction is to use
the set {1,2,...,n} for the vertices of a complete graph on n vertices,
and label each edge ab, where we assume that a > b, by the function
Mab) = (3) — b+ 1. It is straightforward to check that this satisfies the
definitions.

Although there are perfect distance graphs of all orders, there are still
many questions one might ask about their necessary structure. We begin
with some applications of Theorem 1.6 to graphs and forests with two
components. We then give a procedure for deriving one perfect distance
graph from another. Finally, we show how to apply Theorem 1.6 to obtain
a theorem on distinct distance sets due to Gibbs and Slater [2].

3.1 Perfect Distance Graphs with Two Components

It follows from Theorem 1.6 that if (G, ) is a perfect distance graph with
n vertices and two components, then n or n — 2 must be a sum of two
squares. The following theorem gives criteria for determining which of
these two alternatives will occur.

Theorem 3.1. Let (G,)) be an n-vertex perfect distance graph with two
components, one with n, vertices and the other with ny vertices, such that
G has a Taylor coloring.

(a) If one of the following conditions holds:
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(i) n=0 (mod 4) and ny,nz are odd,
(%) n =2 (mod 4) and ny,ny are even, or
(ii) n=3 (mod 4).

then n — 2 is a sum of two squares.
(b) If one of the following conditions holds:

(iv) n=0 (mod 4) and n1,ny are even,
(v) n=2 (mod 4) and n1,n2 are odd, or
(vi) n=1 (mod 4).

then n is a sum of two squares.

Proof. Under the given conditions, we can deduce the value of p by Propo-
sition 1.7. The result follows by Theorem 1.6. 0O

It is well known that a positive integer n is representable as a sum of
two squares if and only if each of its prime factors of the form 4k + 3 occurs
to an even power. Consequently, we call a prime factor of n of the form
4k+3 that occurs to an odd power a bad factor. The following result follows
immediately from Theorems 1.6 and 3.1 and generalizes Taylor’s Condition
to graphs with two components.

Corollary 3.2. Let n =ny + ng. If either

(A) Condition (i), (ii) or (iii) of Theorem 3.1 holds and n — 2 contains a
bad factor, or

(B) Condition (iv), (v) or (vi) of Theorem 3.1 holds and n. contains a bad
factor,

then no perfect distance graph whose components have sizes n, and ny can
have a Taylor coloring.

Since every edge-labeled forest has a Taylor coloring, we can use Corol-
lary 3.2 to show that there are no two component n-vertex perfect distance
forests for certain values of n. For instance, if n = 14, then either condition
(ii) or condition (v) holds and both n = 2-7 and n — 2 = 22 - 3 contain
bad factors. If n = 21, then condition (vi) holds and n = 3 - 7 contains a
bad factor. We can also use Corollary 3.2 to determine the parity of n; in
certain cases. For instance, if we have a two component perfect distance
graph with a Taylor coloring and n = 6 or n = 8, then n; must be even; if
n = 12 then n; must be odd.
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3.2 Deriving New Perfect Distance Graphs

Given a perfect distance graph, the following theorem enables us to derive a
new perfect distance graph with approximately half the maximum distance,
but approximately twice the number of components.

Theorem 3.3. If there is a Taylor coloring of an n-vertex perfect distance
graph (G, \) with component sizes ny,na,...,Nnk, then there i3 an n-vertex
perfect distance graph (H, p) with mazdist(H, p) = | mazdist(G,))/2] and
component sizes equal to the nonzero entries in the list ny o,n1,1, 72,0,
N2,1,- - -, Nk,0,Nk,1, Where n; = nig + ni, for each 1 <i<k.

Proof. We define (H, ) as follows. The vertices of H are the vertices of
G. If e is an edge of G and A(e) is even, then e is an edge of H and
u(e) = Me)/2. If ey, eq,...,e; are the edges of a path from z to y in G
and A(e;) is odd iff i = 1 or £ = j, then there is an edge e from = to y in H
and p(e) = d(g,»)(z,y)/2. It is not hard to see that there is a path from z
to y in H iff d(g »)(z,y) is even. Thus, the sizes of the components of H
are the nonzero numbers in the sequence ny 9,711, n2,0,72,1,- - - k,0y Pk, 1-
Furthermore, the shortest path in G from z to y corresponds to a path in
H from z to y, where the path in H has half the length of the path in
G. The path in H is determined as follows. Since the path in G has even
length, it must contain an even number of odd edges. Consecutive pairs
of these odd edges and the intervening even edges correspond to single
edges of H. Now we show d(y ,)(z,¥) = d(g,(z,y)/2. Consider any
path from z to y in H of length s. Each edge of this path corresponds
to an edge or path in G of twice the length, so we get a corresponding
trail in G of length 2s. By the definition of distance, 25 > d(g )(z,y). It
follows that d(p ) (2, y) = d(g,»)(z, y)/2- Hence, the distances in (H, p) are
{1,2,...maxdist(H, u)}. That is, (H, u) is a perfect distance graph. (]

In Theorem 3.3, we must assume that (G, ) has a Taylor coloring, but
it is not necessarily true that (H, u) will have a Taylor coloring. Since every
weighted forest has a Taylor coloring, we can derive a new perfect distance
graph from any perfect distance forest. The new perfect distance graph
may or may not be a forest. For instance, we may start with a minimal
distinct distance tree on 7 vertices and apply Theorem 2.1 to obtain an
equivalent distinct distance forest on 9 vertices. Then, applying Theorem
3.3, we derive a new distinct distance forest with two isolated vertices.
Removing the isolated vertices, we obtain a distinct distance forest that is
equivalent to one of the minimal distinct distance trees on 5 vertices. This
is shown in Figure 12.  On the other hand, if we apply this procedure
to either of the minimal distinct distance trees on 8 vertices, as shown
in Figure 13, we obtain a new perfect distance forest. However, it is not
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Figure 13: Derivation of a Distinct Distance Forest, but not a Distinct
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Figure 14: Derivation that is not a Forest

equivalent to a distinct distance tree since it has more then one component
of size greater than 2. Furthermore, if we apply the above procedure to
the minimal distinct distance tree on 9 vertices, as shown in Figure 14, the
resulting perfect distance graph is not a forest and does not have a Taylor
coloring.

3.3 Perfect Distance Forests

In the previous section, Figures 12, 13, and 14 provide examples of perfect
distance forests, each of which possesses one or more isolated edges. Any
distinct distance tree with maximum distance M forms a component of
a perfect distance forest where all other components are isolated edges.
These edges are labeled with the positive integers less than M not obtained
on the original tree. We now consider what other types of forest can be
labeled as a perfect distance forest. Figure 15 displays a few examples of
perfect distance forests that do not have an isolated edge. We include some
partially answered questions regarding the forests in this figure.

1. What is the smallest number of components needed to form a perfect
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Figure 15: Perfect Distance Forests

distance forest with largest weighted distance d?

2. Can one construct a perfect distance forest in which the smallest
component has n vertices?

3. For what values of ¢ can one construct perfect distance trees of the
form tK; 2? Notice that Figure 14 includes the cases where t = 4 as picture
A. Moreover, the cases where £ = 2,3 (mod 4) can be eliminated as a
corollary to Theorem 1.6.

Corollary 3.4 (Theorem 1.6). If tKi can be labeled as a perfect dis-
tance forest, thent =0,1 (mod 4).

Proof. Each component i in tK; 2 is a copy of K 2. Consider a coloring of
component . If the labels are all even, then a; = n;¢ — n;,; = 3 as defined
in the proof following Theorem 1.6. If the integer labels on this component
are either both odd or one odd and one even, then it follows that |a;| = 1.
Therefore, a;2 = 9 or a;% = 1.

Let k represent the number of components that are labeled with two
even labels, so there are t — k¥ components labeled otherwise. Inserting this
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information into the equation from Theorem 1.6 yields 9k+1(t—k)+2p = 3t,
which can be simplified to k = £32. If ¢ is even, then Proposition 1.7 gives
that p = 0. Since £ must be an integer, ¢ = 0 (mod 4). If ¢ is odd then
p =1, and again since k is an integer { = 1 (mod 4). a

4. For what values of ¢ can one construct perfect distance trees of the
form tK; 37 Notice that Figure 14 includes the cases where t = 2, 3, and 4
as pictures B, C, and D. Unlike the case for tK; 2, Theorem 1.6 does not
quickly rule out any of the cases for tKj 3.

5. For what values of £ and s can one construct perfect distance trees
of the form tKj 2 U sK; 3? Notice that Figure 14 includes the cases where
t=1,s8=1 in example E.

6. Are there other perfect distance forests without isolated edges and
with multiple components that can be labeled as perfect distance trees,
such as example F of Figure 147

3.4 Distinct Distance Sets

Gibbs and Slater [2] define a distinct distance set for a graph G to be a
vertex subset S of G with the property that there are ('g') distinct distances
between pairs of vertices in S. Although they consider unweighted graphs,
we can consider weighted graphs with integer weights by replacing each
edge of weight w by a path of length w. While we do not analyze distinct
distance sets in detail, some of our results can be applied to the problem
of distinct distance sets. For instance, our results yield a generalization of
Taylor’s Condition for distinct distance sets from [2] that is equivalent to
the following corollary of Theorem 1.6.

Corollary 3.5. If there is a weighted graph G with a Taylor coloring such
that G contains a distinct distance set of size j and mazdist(G) = (3), then
either j or j — 2 is a perfect square.

Proof. Let H be the complete graph whose vertices are the j members of
the distinct distance set. Label each edge =y in H with the distance from z
to y in G. Thus, H is a perfect distance graph and the result follows from
Theorem 1.6. ]

Gibbs and Slater [2] have conjectured that the converse to Corollary
3.5 holds. For instance, although there are no perfect distance trees on
9 vertices, Taylor [11] constructs a tree of weighted diameter 36 with a
distinct distance set of size 9. A slightly different distinct difference set
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with these parameters, is given by the 9 solid vertices in Figure 16. More
recently, Lin et. al. [8] constructed trees T' with distinct distance sets of
size j = 11,16, and 18 and maxdist(T") = (}), giving further support to the
conjecture. In fact, they showed that there are weighted trees on n vertices
with distinct distance sets that meet the lower bound for M(n) given by
Theorem 2.2 for all n < 18.

4

Figure 16: A Distinct Distance Set on 9 Vertices

Summary and Open Problems

We conclude with a summary of the results contained in this paper together
with some associated open problems.

1.

The only perfect distance trees with n < 24 vertices are those given
in Figure 1. Problem: Are there any other perfect distance trees?

. The values of M(n) for 1 < n < 10 are shown in Table 1. Problem:

Determine M (n) for n > 10.

. Lower bounds on M(n) for n < 17 (beyond the obvious lower bound

given by Proposition 1.1) were determined using Theorem 2.2 and
computer searches, and are given in Table 1. Problem: Improve these
lower bounds for n > 10.

By Graham and Sloane [4], there is a quadratic upper bound on M (n)
of the form 2n? 4 O(n% ). Problem: Improve this upper bound.

The graph in Figure 8 provides examples that improve the upper
bound on M(n) for 11 < n < 18. Problem: Find further examples
that improve those bounds.
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6. Bounds on the maximum weight and second highest weight in a per-
fect distance tree are given by Theorems 2.7 and 2.8. Problem: Find
additional constraints on the weights in a perfect distance tree.

7. Proposition 2.10 shows that any unknown perfect distance tree must
have (unweighted) diameter greater than 3. Problem: Find additional
restrictions on the structure of a perfect distance tree.

8. Theorems 3.1 and 3.3 provide the beginning of a theory for perfect
distance graphs. Problem: Develop the theory of perfect distance
graphs.

9. Section 3.3 provides some examples and restrictions on perfect dis-
tance forests. It also poses a list of open questions.

10. Figure 15 gives a new example supporting the Gibbs and Slater con-
jecture regarding distinct distance sets. Problem: Verify or refute
that conjecture.
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