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ABSTRACT. For any h € IN, a graph G = (V, E) is said to be h-magic if
there exists a labeling | : E(G) — Z}, — {0} such that the induced vertex
set labeling It : V(G) — Z,, defined by
tw)= E (uv)
uve E(G)

is a constant map. For a given graph G, the set of all A € Z 4 for which G is
h-magic is called the integer-magic spectrum of G and is denoted by /M(G).
The concept of integer-magic spectrum of a graph was first introduced in
[4). But unfortunately, this paper has a number of incorrect statements and
theorems. In this paper, first we will correct some of those statements, then
we will determine the integer-magic spectra of caterpillars.
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1. INTRODUCTION

In this paper all graphs are connected, finite, simple, and undirected. For an
abelian group A, written additively, any mapping ! : E(G) — A -~ {0} is called
a labeling. Given a labeling on the edge set of G one can introduce a vertex set
labeling {* :V(G) — A by

Ity = Z I(uv).

uv€ E(G)

A graph G is said to be A-magic if there is a labeling I : E(G) — A — {0} such
that for each vertex v, the sum of the labels of the edges incident with v are all
equal to the same constant; that is, I*(v) = ¢ for some fixed c € A. In general,
a graph G may admit more than one labeling to become A-magic; for example,
if JA} > 2 and I : E(G) — A — {0} is a magic labeling of G with sum c, then
A E(G) — A - {0}, the inverse labeling of !, defined by A(uv) = —l(uv) will
provide another magic labeling of G with sum —c. A graph G = (V, E) is called
fully magic if it is A-magic for every abelian group A. For example, every regular
graph is fully magic. A graph G = (V, E) is called non-magic if for every abelian
group A, the graph is not A-magic. The most obvious class of non-magic graphs
is P, (n > 3), the path of order n. As a result, any graph with a pendant path
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of length n > 3 would be non-magic. Here is another example of a non-magic
graph: Consider the graph H Figure 1. Given any abelian group A, a typical
magic labeling of H is illustrated in that figure. The combination of conditions
I*(u) = I*(v) = I*(w) = z imply that y = z = 0, which is not an acceptable
magic labeling. Thus H is not A-magic. We will generalize this fact in 3.2.

FIGURE 1. An example of a non-magic graph.

Certain classes of non-magic graphs are presented in [1]. The original concept of
A-magic graph is due to J. Sedlacek (11, 12), who defined it to be a graph with a
real-valued edge labeling such that

(1) distinct edges have distinct nonnegative labels; and
(2) the sum of the labels of the edges incident to a particular vertex is the
same for all vertices.

Jenzy and Trenkler [3] proved that a graph G is magic if and only if every edge
of G is contained in a (1-2)-factor. Z-magic graphs were considered by Stanley
(13, 14], who pointed out that the theory of magic labeling can be put into the
more general context of linear homogeneous diophantine equations. Recently,
there has been considerable research articles in graph labeling, interested readers
are directed to (2, 15]. For convenience, the notation 1-magic will be used to
indicate Z-magic and Z ,-magic graphs will be referred to as h-magic graphs.
Clearly, if a graph is h-magic, it is not necessarily k-magic (h # k).

Definition 1.1. For a given graph G the set of all positive integers h for which
G is h-magic is called the integer-magic spectrum of G and is denoted by IM(G).

Since any regular graph is fully magic, then it is h-magic for all positive integers
h > 2; therefore, IM(G) = IN. On the other hand, the graph H, Figure 1, is non-
magic, hence IM(H) = 0. The integer-magic spectra of certain classes of graphs
resulted by the amalgamation of cycles and stars have already been identified {5],
and in [6] the integer-magic spectra of the trees of diameter at most four have been
completely characterized. Also, the integer-magic spectra of some other graphs
aave been studied in (7, 8, 9, 10].

The concept of integer-magic spectrum of a graph was first introduced in [4]. But
infortunately, this paper has a number of incorrect statements and theorems.
1 the following sections, first we present corrections to this paper, then we will
letermine the integer-magic spectra of caterpillars.

66



2. CORRECTIONS

The paper [4] has one initial incorrect statement, which is used repeatedly in
proofs. The statement claims that if a graph G is IN-magic, then G is k-magic
for all k > 2. This is not necessarily true, as demonstrated in Figure 2.

FIGURE 2. An IN-magic graph that is not 3-magic.

Correction 2.1. If ¢ greph G has an IN-magic labeling | : E(G) — IN, then G
is k-magic as long as k does not divide l(e) for every e € E(G)

The following observation will be used as well:

Observation 2.2. If a graph G has a Z -magic labeling | : E(G) — Z, then G
is k-magic as long as k does not divide l(e) for every e € E(G)

Proof. In order to construct a k-magic labeling, we start with the Z-magic la-
beling of G, and replace every edge label !(e) with {(e) (mod k). Since &k does not
divide any I(e), none of these new labels are 0. O

Corollary 2.3. If G is Z-magic, then G is k-magic for sufficiently large k.

Proof. If G has a Z-magic labeling ¢, then G is k-magic as long as k& > £(e) for
every edge e. So G is k-magic for every k larger than maz{£(e)} O

Theorems 3 and 7 in (4] discuss the double star DS(m,m). These theorems are
incorrect. The general case of double-stars DS(m, n) will be discussed later in 3.3.
However, here is the correct version from [6]:

Correction 2.4. Ifm > 2, then IM(DS(m,m))=IN~{ h>1: h|(m-2)}.

For example, DS(11,11) = IN — {3,9}.

Theorems 4 and 13 in [4] discuss the wheel W,,. Although the statements of these
theorems are correct, but the proof of theorem 4 is invalid, and the proof for
Theorem 13 is omitted. In particular, Figure 3 in [4] does not provide a 3-magic
labeling of the graph W;. Here are the theorems, with proofs [9]:

Correction 2.5. Ifn > 3, then IM(W,) = IN — {1 + (-1)"}.

Proof. We will consider two cases:

Case I. n = 2k + 1 is odd. We observe that the degree set of Wai4, is {3,2k+1},
hence it is h-magic for all even numbers h; we simply label all the edges by h/2.
Also, if h > k, then we label all the cycle edges by & and spokes by 1. This is a
magic labeling of Wag; with sum n = 2k + 1.
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Now, we may assume that h is odd and is at most k. If ged(k, h)=46,1<é<h,
then we label the cycle edges by 6 and spokes by x, where z is the nonzero solution
of the equation kz = 6 (mod h). This provides a magic labeling of W, with
sum z + 24. .

Finally, if h|k, we label h + 1 consecutive spokes by 1 and the rest of them by
h — 1. For cycle edges, we label those that are adjacent to the spokes labeled
h —1 by 1 the remaining by h — 1 and 1, alternatively. This would be a magic
labeling of W4y with sum 1. Therefore, Wagy1 is h-magic for all A > 1; that is
IM(Wapq1) = IN.

Case II. n = 2k is even. We observe that the degree set of Wy is {3, 2k}, hence
it cannot be 2-magic. Next we label all the spokes by z and the cycle edges by
a,b, alternatively. The requirement of having the same number for the sum of the
edges incident with vertices will provide the equation

(2.1) (2k—1)z=a+b (mod h).

If ged(2k ~ 1, h) = § > 3, then we choose @ = 1, b= —1, and z = h/4. this would
be a magic labeling of Wy with sum z.

If ged(2k — 1, h) = 1, then we choose @ = b = 1 and notice that the equation
(2k— 1)z = 2 (mod h) has a nonzero solution for z. We label all the spokes with
this z, the result is a magic labeling of Wy, in Z,, with sum z + 2. Therefore,
IM(Wai) = IN — {2}. O

Theorem 10 in [4], which discusses even coronas, is incorrect. Here is the correct
version:

Correction 2.6. The corona C,@K), where n is even, has integer-magic spec-
trum IN

Proof. Consider the Z-magic labeling in which all pendant edges are labeled
1, and the edges of C, are alternately labeled 1,—1. This shows directly that
the graph is Z-magic, and since all the edge labels have absolute value 1, by
Observation 2.2, the graph is k-magic for all k > 1. O

™1 T+1

FIGURE 3. A typical magic labeling of Fj.

Theorem 12 in [4], which discusses fans F, = P, + K is incorrect. For example,
IM(F3) = 2IN — {2}; A typical magic labeling of F3 = K4 — e is illustrated in
Figure 3, for which we require that a + b — 2z = a + b or 2z = 0 (mod h); that
is, h has to be even. On the other hand, if h = 2r, then F} is 4-magic (Figure 3).
Therefore, IM(F;) = 2IN — {2}.
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Section 4in [4] has title: “Graphs G with IM(G) = {1} J{4+2k: k=1,2...}.”
The corollary 2.3 indicates that there is no graph G with such an integer-magic
spectrum. Obviously, this means that Theorem 15 in [4] is not correct. This
theorem discusses one particular graph that is illustrated in Figure 4.

FIGURE 4. IM(G) = IN - {2,3}.

Correction 2.7. The graph G of Figure 4 has integer-magic spectrum IN — {2, 3}
Proof. Note that the Z-magic labeling, which by Observation 2.2, implies that G
is k-magic for all £ > 3. Clearly, this graph is not 2 or 3-magic. O

Theorem 18 in (4] discusses the integer-magic spectrum of stars ST'(n) = K(1,n),
which is incorrect. The correct versions is as follows [6):

Correction 2.8. Letn > 3, and p}*p3? - - - pi* be the prime factorization of n—1.
Then .

IM(KL") = Upiw.
i=1
3. CATERPILLARS
Caterpillar is a tree having the property that the removal of its end-vertices results
in a path (the spine). We use CR(a;,a2,--- ,ay) to denote the caterpillar with a
P,-spine, where the ith vertex of P, has degree a;. Since CR(1,a;, - an,1) ="
CR(ay,- - ,a,) and a; # 1 (2 < i < n — 1), we will assume that a; > 2. Further-

more, if a) = 2 or a,, = 2, then we will have a graph with a P; pendant, which is
nonmagic.

WP
! }“2 ﬂa eee O O

FIGURE 5. A Caterpillar of diameter n + 1 (P,-spine).

Gyr-1
; 2

Z i 3— (-1 i .

E (-1)'a; andci=—-2——a,-+a,-_1—--'+(-—-1) a; (1<i<n—-1). Also,

i=1

Theorem 3.1. Given a caterpillar G = CR(a,,a,...,a,), let 0 =
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let C be the set of all positive divisors of ¢; Vi=1,--- ,n— 1. Then
0 if ole; for somei=1,--- ,n—1;

N-C ifo=0

U dIN  otherwise,

deD

where D is the set of all positive divisors d of o with the property that d te Vi=
1l,---,n—1.

IM(G) =

Proof. Let | : E(G) — Zx be a magic labeling of G = CR(a,,--ay) and let
yi be the label of u;u;41 (1 £ ¢ < n— 1), as illustrated in Figure 5. Note
that in any magic labeling of G all the terminal edges have the same label z,
which is then equal to the vertex sum. The graph G is h-magic if and only if we
can find nonzero elements z,y; € Z, such that I*(u;) = z. This will provide a
homogeneous system of n equations with n unknowns y; + (a; —2)z = 0 (mod h)
and y; + yi-1 + (a; — 3)2 =0 (mod k), that will result in

(3.1) oz =0 (modh),
(3.2) ¥i = ciz (mod h)

“D"-1 & ; 3—(-1)! ;
where 0 = % —Z(—l)‘a; and ¢; = +)' —ai+aij_y—---+(—1)'a;.

i=1
We observe that if oc; for some i, then y; = 0 and the graph would be nonmagic.
In particular, if ¢; = 0 for some i, then the graph is nonmagic. Assume that
¢ #0.
If o = 0, then equation (3.1) is automatically satisfied. Choose z = 1 and note that
equation (3.2) has y; = 0 as its solution if and only if h be a divisor of ¢;. Therefore,
to avoid this solution we must exclude all the divisors of ¢; (1 < i< n—1). In
this case, the interger-magic spectrum of the caterpillar would be IV — C.
Finally, suppose 0 #0and o t¢; forall i = 1,--- ,n— 1. We claim that IM(G) =
U dIN, where D is the set of all positive divisors d of ¢ with the property that
deD
dte,Vi=1,.--- ,n—1.
Suppose h € IM(G). Then equation (3.1) has a nonzero solution for z if and only
if ged(o, h) = d > 1, and h/d divides . Also, d { c;, Vi. Because, if djc; for some
i=1,---,n—1, then d(h/d)|c;z or hly; and y; =0 (mod h). Therefore, h = dk,
where d € D.
On the other hand, let h = dk with d € D and k € IN. Note that d € D implies
that d > 1. We choose z = h/d#0 (mod h). Since d { ¢;, then d(h/d) { c;z or
hty; and ;20 (mod h). Therefore, h € IM(G). a

Corollary 3.2. Using the notations of theorem 8.1, G = CR(ay,as,...,a,) is
nonmagic if and only if olc; for somei=1,2,--. ,n—-1.

Double-stars are special cases of caterpillar whose spine is P,. In fact, double-stars
are trees of diameter 3 with two central vertices u and v plus leaves. Then as a

corollary of theorem 3.1, for the integer-magic spectrum of double-stars CR(m, n)
we have:
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Corollary 3.3. Let C be the set of all positive divisors of n — 2. Then

0 if (m = n)|(n - 2);
IM(CR(m,n)) = N-C ifm=mn
Ugep dIN  otherwise,
where D is the set of all positive divisors of m — n that do not divide n — 2.

Examples 3.4.

(a) IM(CR(28,4)) = 4INU3IN — {1,2}. Here, m —n = 24, whilen — 2 = 2.

(b) IM(CR(16,10)) = 3IN. Here, m — n = 6, while n — 2 == 8.

(c) IM(CR(10,21,17)) = 0. Here, ¢; = —8, ¢z = —10, o = 5, and o|cs.

(d) IM(CR(12,9,6)) = 8IN. Here, ¢c; = —10, c; = 4,and 0 = 8.

(e) IM(CR(17,10,6)) = IN — {1,2,3,4,5,8,15}. Here, c; = —15, ¢z = 8,
and o = 0.

(f) IM(CR(5,6,8)) = 0. Here, ¢; = 3, ¢2 =0, and ¢ = 6. The set of divisors
of cp is IN.

(g) IM(CR(7,5,14)) = 15IN. Here, ¢; = =5, ¢; = 3, and ¢ = 15, and 15 is
the only divisor of o that does not divide ¢; and cs.
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