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Abstract

The main objective of this paper is to introduce a
generalization of distance called superior distance in Graphs.
For two vertices u and v of a connected graph, we define
D,y = N[u] U N[v]. We define a D, - walk as a u-v walk
that contains every vertex of D,, .The Superior Distance
dp(u,v) from u to v is the length of a shortest D, , — walk.
In this paper, first we give the bounds for the superior
diameter of a graph and a property that relates the superior
eccentricities of adjacent vertices. Finally we investigate
those graphs that are isomorphic to the superior center of
some connected graph and those graphs that are isomorphic
to the superior periphery of some connected graph.

Key Words : superior distance, superior radius, superior diameter, superior
center, superior periphery.

1 Introduction and Definitions

By a graph we mean a non-trivial finite undirected connected graph
without loops and multiple edges. As usual V(G) denotes the set of vertices of a
graph G, and E(G) denotes the set of edges of G. The distance between vertices u
and v is the length of a shortest path in G between u and v. The eccentricity e(u)
of a vertex u is given by e(u) = max{ d(uv): ve V(G) }.The radius r(G) and the
diameter d(G) are defined as follows : #(G) =min{ e(w): u € V(G) } and d(G) =
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max {e(w): u € V(G) } . A vertex v of V(G) is called an eccentric vertex of a
vertex u if d(u,v) = e(u). A vertex v is called a center vertex if e(v) = r(G)and a
peripheral vertex if e(v) = d(G). If C and P are the set of all center vertices and
peripheral vertices respectively, then <C> is called the center C(G) of G and <P» is
called the periphery P(G) of G.In [5], Santhakumaran discussed three
generalizations of the radius and diameter namely (V,& - radius r, ,(V,8 -
diameter d,, (EV) - radius r,, (£V) - diameter d,, (8 - radius r;, (£8 -
diameter d; of a connected graph G. He proved that for any connected graph r; <
d; £2r; + I for i = 1,2,3. In [4] Parthasarathi and Nandakumar studied the
properties of eccentric vertices of a graph. For general notation and terminology,
we follow Harary[1,2].

If X and Y are two cities, then for a taxi driver the distance between the
two cities is the actual distance between the two cities. However for a mobusal
bus driver, the distance between the same cities is just higher than the usual
distance since he has to cover some important places in and around the two cities
to pick up and drop the passengers. So a mebusal bus driver has to find a shortest
rout that begins from X and ends at Y and passes through each of the
neighbouring places of X and Y.

In this paper we discuss a variation of distance that models the bus route
Jjust described. For a simple connected graph G and for two vertices ¥ and v of
G, let D,, =N [u] UN [v]. Wedefinea D,,- walk as a u-v walk in G that
contains every vertex of D, ,.

The superior distance dp(u,v) from u to v is the length of a shortest D,, , -
walk. For each vertex v of a simple connected graph G, we define the superior
eccentricity of v as ep(v) = max { dp (u,v): ue V(G) } . A vertex v of a graph G is
said to be a superior eccentric vertex of a vertex u if dp (u,v) = ep(u). A vertex u
is superior eccentric vertex of G if it is a superior eccentric vertex of some vertex
v. It is interesting to note that the superior distance from u to itself is greater than
zero. The superior distance in a simple connected graph G is a generalization of
distance because dp(u,v) = d(u,v) if N(u) and N(v) are singleton sets. However,
the superior distance is generally not a metric since dp (u,v) #0.

To illustrate the ideas presented above consider the graph K;; with the
end vertices labeled v and w and the fourth vertex labeled x.

w x u
® ® ®
oy
Figure 1
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A shortest D, , — walk is W : ux,vx,wx. The length of W is 5 and so
dp(u,x) = 5. Similarly dp(v,x) = dp (w,x) = 5; dp (u,w) = dp(w,v) = 2; dp(x,x) = 6.

2 Properties

The following observations will be used throughout this paper.
For u, v, we V (G):
a d(u, v) <dp (u, v),
b dp(uv)>0;dp(uv)= dp(v, w,
c) dp(u, v) = d(u, v) iff N(uw) and N(v) are singleton sets;
d)  dpu,v) <dp (u,w) +dp(w,v)—dp(w, w) when N(u) #N (v)
e Either ifu =v and deg (u) >1 or u #v then dp(u, v) <dp (u, w) +
dp(v, v)+ d(u, v) — 4 and equality holds if G is a tree and u #v ;
p dp (uv) <2 deg (w);
g ewsew-1

h)  Superior eccentric vertex of a vertex u is itself iff deg (w) =p—I

There are two particular values of the superior eccentricity. For a simple
connected graph G, the superior radius rp(G) of G is defined by rp (G) = min
{ep (v): v € V(G)} and the superior diameter dp(G) of G is defined by dp (G) =
max {ep (v) : ve V(G) }. 1t is familiar that for a connected graph G and for an
integer ¢ such that #(G) < ¢ <d(G), there is a vertex v of G such that e (¥) = c.
But in the superior distance we have the following observation.

Observation 2.1 For a connected graph G and for an integer c such that ry, (G)
<c <dp(G), there may not exists a vertex v of G such that ep (v) = c.

The superior eccentricity of vertices of a tree is given below:

10 10
10® @ L 4 ® |0
15 10 10 15
10 10

Figure 2

In this example, there does not exist a vertex v of G such that ep(v) = 12

Theorem 2.2  For a connected graph G, the superior radius satisfies the
inequality rp(G) <dp (G)$2rp(G) -2.

75



Proof. The first inequality follows from the definitions. For the second
inequality, let # and v be the vertices of G such that d, (#,v) = dp(G) and let we
V(G) such that ep(w) = rp(G). By observation (d), dp (G) = dp(u,v) <dp(uw) +
dp(w,v) — dp(w,w). It is obvious that dp(w,w) 2. Thus we obtain dp(u,v) <ep(w)
+ ep(w) — 2 and hence rp (G) <dp (G) <2 rp(G) - 2.

We now consider the sharpness of the bounds of the theorem 2.2.

Define an n-longated star K,*(1,m), n >2m — I , formed by subdividing
n—1 times each edge of K ,, and introduce a new vertex v and join it with the

vertex u (say) of degree m
Vu Viz Vi2 Vi

* —o 00—
Va1 @V
\LV] ® Vie

Va3

V24
Vaa
V23
V22
Va5 V21
L
*—o—0—0
Vi1 V2 Vi3 Vg
Ky* (1,4)
Figure 3

Form 22, n22m- 1 , we define G,, =K,*(1,m). Label the vertices of
Gn, by Vit Vi2s oo Vim V21,V22 50000 Van 4oes¥imi s Vinz »oo0 Ve Other than « and v as
shown in fig.3. v, vy,..., Vmy, v are the end vertices of G, Set E,= {v,:i=
1,2,..., m}. E, is the set consisting of all superior eccentric vertices of G,,. From
the above construction we get the following relations:
ep(vy)=2n+lfori=12,.., m ep(v)=rp(Gy)= nt2,ep(u)=2m+n+1.
ep(vy)=2n+4—jfori=234,. ., mandj=23,.., m
Nowdp (G,) = 2n+2 =2(m+2) -2 =2 rp (Gn) -2

Therefore, for m 22, n 2 2m -1, the class A = {G,, : m 22, n 22m — I} is an
infinite class of graphs that verifies the sharpness of the upper bound in theorem
2.2.
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Consider the set % of all cycles C, on m verticess, m = 3.
r(Cs) = dp (C3) = 3, rp(Cy) = dp(Cy) =4, r;, (Cs) = dj, (Cs) = 5. The superior
radius and superior diameter of cycles C,, m > 5 are given by

m/2+4 if mis even
ro(Cy) = dp (Cm) =
(m-1)/2+4 ifmis odd

Hence we have another infinite class of graphs 0% = {C,, : m 2> 3} that verifies the
sharpness of the lower bound in theorem 2.2.

A useful property that relates the superior eccentricities of adjacent
vertices in a graph is given in the next corollary.

Theorem 2.3 If G is a connected graph of ordern p 2 3 and uv € V(G) with
en(v) <ep(u), then ep(u) —e, (v) <dp (uw) +d(uy) —4.

Proof. There exists u; € V(G) such that dj, (u,u;) = e, (u).

Since dp, (u,u;) <dp(u,v) + dp(v,uy) ~ dp(v,v), ep(w) <dp(u,v) + dp(v,uy) — dp(v,v).
This implies that ep(w) — ep(v) < dp V) — dp(v,v) < dp(uw) + dpv,v) +
d(uv) -4~ dp (v,v) by observation (e). Thus we obtain ey, () - ep(v) < dp (u,u)
+duv)- 4

Corollary 2.4  If G is a connected graph of order p 2 3 and uv € E (G) with
en(v) Sep(u) then ep(u) —e)) (v) 2 deg (u) 3.

Proof. By the above theorem 2.3,
We obtain ep(u) — e, (v) <dp(u,u) + du,v) — 4
=dpuu) -3
<2 deg (u) -3 by observation (f)
Next we give a definition on trees and give some propositions related with this
definition.
Let T be any double star. Then there are two vertices # and v such that
each pendant vertex is adjacent with either # or v. For a given double star T,
define the 7,, n 20, by subdividing uv ‘n’ times. It is obvious that To is the given
double star.

Proposition 2.5 InT,, dy(u,v) =2 g (T,) — d(u,v).

Proof. Let W be the D,,, — walk and let P be the unique u-v path in T,. Since W is
a D,, - walk , it contains every edge of P. Every edge incident with a pendant
vertex will be counted twice in W. Therefore
2q9(T) = dp(uu) + dp(v,v) + 2[d(u,v) - 2]
=dp(u,v) + d(u,v) by observation (e)
Hence dp(u,v) = 2¢(T,) - d(u,v)
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Corollary 2.6 If Ty =K, m 2 1, then ep(u) = 2q(Ty) where u is the center
vertex and ep(w) = 2q(T,) — | for every pendant vertex w of T,,.

proposition 2.7  For any vertex w of T, ep(w) 224 + r — 3) where r is the
radius of T,,.

Proof. Let w be a pendant vertex of T,,. Then superior eccentric vertex w; of w
is either u or v. Observations (e) and (f) give us
dp(w,wy) = dp(w,w) + dp(wi,wy) + dww,) -4

< 2deg(w) + 2 deg(w;) + 2r—-4

< 24 + 24+ 2r — 6, since w is a pendant vertex.

=2(24+r-3)

Let w be a vertex of T, which is not a pendant and w= u# v. Then
superior eccentric vertex w; of w is either u or v. By observations (e) and (f) we
obtain the following relation.

dp(w,w;) <2 deg(w) + 2deg(w,) +2r—6

<2A4+24 +2r-6

=2(24+r-3)
If w = u, then the superior eccentric vertex w; of w is either v or u itself . Then
observations (e) and (f) give the following relation: if w; = v, then

dp(u,v) = 2 deg(u) + 2deg(v) + d(u,v) — 4

24+ 24+ (2r-2) -4

If w; = u then obviously dp(u,u) <224 +r-3)

If w=v, then the superior eccentric vertex w; of w is either u or v itself.
The discussion given in the above case will be used to obtain the conclusion,
dp(vu) £ 224 + r — 3). Thus in all the cases we have proved that
dp(w,w;) £ 2(24 + r — 3) for any vertex w of T, where w, is a superior eccentric
vertex of w.

3 The Superior Center and Superior Periphery of a Graph

Having defined r(G) and djp(G) as extension of r(G) and d(G) for a
graph G, it is natural to define extensions of the center C(G) = « {v € V(G) : e(v) =
¥(G)} » and the periphery P(G) = < {v € V(G) : e(v) = d(G)} ». For a graph G, the
superior center of G is defined by Cp (G)= «{v : ep(V) = rp(G)} » and the
superior periphery is defined by Pp(G) = < { v € V(G) : ep(v) = dp(G)} ».

We first investigate those graphs that are isomorphic to the superior
center of some connected graph. Let G be a graph of order p. We define a graph
G’ from G by G* = G v K; and let the vertices of K; be u and v.

Theorem 3.1 For a graph G there exists a connected graph H such that Cp(H) =

G if any one of the following conditions hold.
1. For each w € V(G), G contains a w — u path which passes through v and

78



passes through all the vertices of G; and for eachw € V(G), G contains a w—v
path which passes through u and passes through all the vertices of G.

2. On each u — v walk, each vertex of G lies exactly once and either u or v appear
two times.

Proof. Suppose the condition 1 holds in G. Construct the graph H from the graph
G’ by adding two vertices x and y and introducing the edges ux and xp. From this
construction we observe that 4 (H) = deg(u) = deg(v) = p + 1. The superior
eccentric vertex of each vertex of H (except u and v) is either u or v. The superior
eccentric vertex of # is v and that of v is ». By the assumption a D, — walk will
be as follows : x, 4, w), wz,..., wp, v, 3, v; wherew, € V(G) foralli=1,2, ..., p.
This is a shortest walk between x and v. The length of this walk is p + 4. Thus
ep(x) = p + 4. Similarly ep(y) = p + 4. Now consider the D, — walk : &, x, 4, w,,
W; ..., Wp,V, ¥, v. The length of this shortest walk is p + 5. Thus ep(1) = ep(v) = p
+35.

Consider a vertex w; of G for any i. # and v are adjacent to all the vertices
w; of G and hence the superior eccentric vertex of each w; is either u or v. w, #,
Wi, W2, ..., Wity Wivg, .., Wp, V), V is a shortest Dy , _walk with length p+3 and
hence ep(w;) =p+3 forall i=1,2, .., p. The superior center vertices of H are
the vertices of G. So we conclude that there exists a connected graph H such that
Cin(H) =G.

Suppose condition 2 holds. By this assumption we can get ep(w;) =p + 3
foralli= 1,2, .., pandepx) =eply) =p + 3, ep(w) = ep(v) = p + 6 and hence
Cn(H) =G.

H:

X

Figure 4

We now turn to superior periphery of a graph. The graphs G those are
isomorphic to the periphery of a connected graph H are characterized next.

Theorem 3.2 Let G be a graph of order p. Then there exists a connected graph

H such that Pp(H) =G if A(G) = p— 1 and in G', for every pair of vertices u, v of
G there is a u— v path containing all the vertices of G.

Proof. Construct the graph H from the graph G as follows:

(i) add two vertices x and y and introduce the edges zx and vy.

(ii) For each vertex w; of G, i = 1, 2, ..., p, introduce two new vertices
W;;, Wiz and join them with w;,
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Superior eccentric vertex of each vertex of H is any one of the vertices of
degree 4 of G in G'. Consider any vertex w; of degree Ain G. x, u, w;, wy, ..., Wiy,
Wist, «., V, W;, Wi, Wi, w;is a shortest Dy — walk. The length of this shortest
walk is p + 6. Thus we obtain ep(x) = p + 6. Similarly ep(w;;) = ep(w;r) = p +6.
Also it is obvious that ep(y) =p + 6.

We use the same method to find the superior eccentricity of vertices of
G. Consider any vertex w; of G in G™. w;, Wiy, Wiz, Wi, 8 Wy, W, ..., Wi, Wisg, o
W, Wy, Wy, W, is a shortest D,,,,; -walk with length p+9. Thus e;(w) = p + 9 for
all i. Also it is easy to find that ep(u) = ep(v) = p + 7. Thus there exists a
connected graph H such that Pp(H) =G.

H: Wi2 Wij

Figure 5

Open Problem :Characterize graphs G for which dp(G) = 2r,(G) - 2.
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