Classes of Hamilton Cycles in the 5-Cube

Italo J. Dejter * Abel A. Delgado
University of Puerto Rico University of Puerto Rico
Rio Piedras, PR 00931-3355 Rio Piedras, PR 00931-3355
idejter@cnnet.upr.edu adelgado@cnnet.upr.edu
Abstract

A Hamilton cycle in an n-cube is said to be k-warped if its k-paths
have their edges running along different parallel 1-factors. No Hamil-
ton cycle in the n-cube can be n-warped. The equivalence classes of
Hamilton cycles in the 5-cube are represented by the circuits associ-
ated to their corresponding minimum change-number sequences, or
minimum H-circuits. This makes feasible an exhaustive search of
such Hamilton cycles allowing their classification according to class
cardinalities, distribution of change numbers, duplicity, reversibility
and k-warped representability, for different values of & < n. This clas-
sification boils down to a detailed enumeration of a total of 237675
equivalence classes of Hamilton cycles in the 5-cube, exactly four of
which do not traverse any sub-cube. One of these four classes is the
unique class of 4-warped Hamilton cycles in the 5-cube. In contrast,
there is no 5-warped Hamilton cycle in the 6-cube. On the other
hand, there is exactly one class of Hamilton cycles in the graph of
middle levels of the 5-cube. A representative of this class possesses an
elegant geometrical and symmetrical disposition inside the 5-cube.

1 Introduction

Given a positive integer n, the n-cube @, is defined as the graph whose
vertex set is {0,1}" and whose edge set is formed by the pairs of ver-
tices (zo,...,Zn-1), (Yo,-.-,Yn—1) that differ in just one coordinate ¢ €
{0,1,...,n — 1}, (z; # yi, but z; = y; for j # ). A Hamilton cycle, (or
H-cycle), of a finite connected graph G is a cycle whose length coincides
with the vertex-set cardinality of G. If G = @, this cardinality is 2", If
we want to distinguish between the two orientations of an H-cycle, then
the two resulting objects are called Hamilton circuits, (or H-circuits); see
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[1]. An H-cycle and its reverse cycle are the same object, but an H-circuit
differs from its reverse H-circuit. This means that an evaluation of the
number of H-circuits in an n-cube must double that of H-cycles.

It is easy to see that there is just one equivalence class of H-cycles in
Q2 and also in Q3. In [1] and in [8, page 226], it is cited that there are 9
equivalence classes of H-cycles in Q4. In the present paper, we deal with
the following question.

Question 1 How many equivalence classes of Hamilton cycles exist in Qs
and how can they be classified according to class cardinality, distribution
of change numbers, duplicity, reversibility and representability into having
their k-paths running along different parallel 1-factors (represented by dif-
Jerent change numbers), where k < n?

We find, in Theorem 2 and its Corollary 3 of Section 4 and in tables
presented in Section 7, answers to Question 1, with a total of 237,675
equivalence classes of Hamilton cycles in the 5-cube. Recently, we learned
that this total is mentioned, still without a proof, by D. Knuth in [11, page
49], who encouraged us to present the present work.

Our results lead as well, via counting the number of elements in each
equivalence class, to the total number of H-circuits of Q5. This number hap-
pens to be exactly twice the number 906545760 of H-cycles of Qs, claimed
originally in [4], according to [2, page 162]; also cited in [6, 9, 14].

We also relate with the work of W. H. Mills in [12], showing in Corollary
4, Section 5, after having defined some elementary tools, that the Hamilton
cycles in exactly four of the mentioned equivalence classes do not traverse
any r-sub-cube of Qz, for 1 < r < 5, allowing as well to pose a general
Question 5 relating our mentioned tools to Hamilton cycles in @, that do
not traverse any r-sub-cube, for 1 <r < n.

The approach taken to obtain the results, via minimum change-number
sequences, seems absent in the literature, so we present it in Section 6.
Section 7 presents the distribution of the equivalence classes of H-cycles in
Qs with respect to invariants defined in Section 2.

Variations of our approach allowed, in Sections 8 and 9, to show that
there is no H-cycle in Qg of a type existing in Qs, and that there is just
one equivalence class of H-cycles in the middle-levels of Qs, ([13]), that we
accompany with some comments on its associated symmetry.

2 Minimum Change-Number Sequences

Let Z, = {0,1,...,n — 1} stand for the set of coordinate directions of Q..
The edge set of @y, splits into n 1-factors fo, fi,..., fn—1, each containing
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271 parallel edges. In fact, if i € ZZ,, then the edges of f; are parallel
along the coordinate direction <.

Let us denote each parallel 1-factor f; just by the corresponding coordi-
nate direction i € Z,,. An H-circuit C of Q,, is completely determined by
the sequence s(C) of these coordinate directions, for the successive edges
of C, starting from the null vertex 0. In fact, let p°,p1, ..., 0?2 =1 be the
consecutive vertices of an H-circuit C' in Q,, where p® = 0 and p* ~! is
adjacent to °. Any two consecutive vertices p’ and p?*1, where submdlces
j+1 are taken mod 2", differ in exactly one component, say p] # pi*!,
with p} = p}*!, for £ € Z, \ {k}. Then, following [12] we say that k = k; is
the j-th change number of C. But k; coincides with some coordinate direc-
tion ¢ € Z,, with k;_; # i # k;41, (justifying the name of change number,
because an H-circuit cannot have contiguous edges in a common parallel
1-factor f;). Accordingly, we say that the sequence s(C) = koky ... kan—1
is the change-number sequence, (or CNS), of C. Also, observe that s(C)
can be identified with the sequence of 1-factors its component coordinate
directions represent, so we could say that s(C) is a change 1-factor sequence
of C.

There is just one H-cycle in Q3, represented by the CNS s(C2) = 0101
of an H-circuit Cy. Also, given an H-circuit C,,_; in Qn 3, for 2<n € Z,
an H-circuit C,, can be constructed from C,_; by interspersing the new
coordinate direction n—1 of Q,, (which is not a direction of Q,—;) between
each two change numbers present in s(C,_;). This way, from s(C;) =
0101, we get s(C3) = s2(Cy) = 02120212, s(Cy) = s%(C3) = s3(Cs) =
03231323032313, ...,s(Cp) = $2(Cp_1) = ... = s*"}(Cy) = ...

By considering lexicographically the coordinate directions 0,1,...,n—1
in their ascending order, it is seen that there is exactly one minimum CNS,
(or MCNS), of an H-circuit in each equivalence class of H-circuits in Q.

There is exactly one equivalence class of H-circuits in Q3, represented
by s(C3), with MCNS ¢'(C3) = 01020102.

3 Case n =4 and Some Invariants

Let A, = |Aut(Qy)|/2"~2. We will need Ay = 96 and As = 480. Given a
MCNS s, let £(s) be the cardinality of the equivalence class of H-circuits
that s represents, and let

(a) p = distribution of change numbers of s in non-increasing order;

(b) & =logy(£(s)/An);
(c) g =y(es), if s = t? and length(t) = 2"!; ¢ = n(ot), otherwise;

(d) r =1, if s71 is equivalent to s; r = 0, otherwise.
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Properties (c) and (d) may be referred as the duplicity and the reversibility
of s. We use the 9 classes of H-cycles in Q4 cited in [1] and (8, page 226]
to exemplify items (a)-(d). When arranging lexicographically the MCNS
of H-circuits associated to the 9 classes, from left to right and from top
to bottom, starting from s%(s’(C3)) and accompanied by the expressions

(p1 6’ q? T)? we get

0102010301020103 (4211,1,y,1) 0102010302120213 (3221,4,7,0)
0102010310121013 (3311,2,n,1) 0102013102010232 (3221,2,7,1)
0102013201020132 (3221,2,y,1) 0102101301021013 (3311,3,7,1)
0102101302012023 (3221,3,n,1) 0102030130321013 (3221,1,,1)
0102032123031213 (2222, 3,7,0)

Counting multiples of A4 = 96, we get a total of 2688 H-circuits in Q4, or
2688/2 = 1344 H-cycles, as cited in [2, 5]. Also note that the two of those
9 classes having r = 0 correspond to 4 classes of H-circuits in Q4, while the
remaining 7 classes of H-cycles, with » = 1, coincide with whole classes of
H-circuits. Thus, there are 11 classes of H-circuits in Q4 corresponding to
the 9 classes of H-cycles.

To apply the invariant (p,£,q,7) to the case n = 5 later on, we need to
say now the following. The list of 9 CNS’s and associated (p,£,q,7)’s, for
n = 4, was obtained

1. via an exhaustive search that produced 37 CNS’s,

2. then reducing the 37 resulting sequences to the minimum sequences
in the corresponding equivalence classes of H-circuits,

3. and finally deleting, from the resulting 37-term list, the repeated se-
quences.

This leaves us with the 9 classes in question.

4 Counting Results via Warped Paths

We show in what follows that the list approach essayed for n = 4 works for
n = 5 as well, provided that the H-circuits are divided into three subsets,
according to the following considerations.

The H-circuit of a MCNS in Q,, is called a minimum H-circuit. Given
a positive integer k < n, an H-cycle or H-circuit C of Q,, is said to be k-
warped if the k-paths of C have their edges running along different parallel
1-factors (of {f1,...,fn}).

Let C;, , = {k-warped minimum H-circuits of Qn}. Let Cpx C C}, ; be
the subset of C}, ;. in which each H-cycle of Q,, represented by an H-circuit



of Cy, . is present just once, exactly by the least of the two H-circuits it
stands for.

While |C 5| = |C2,2| = 1, it is not difficult to see that |C, ,,| = |Cpa| =
0 for n > 2, because no Hamilton cycle of @,, is n-warped. Also, from what
was presented above, it is seen that |C3,| = [Ca2| = 1, [C],] = 11 and
|Ca,2| =9, but |C4 5] = |Cy3] = 0.

Theorem 2 The cardinalities of the nonzero Cs;’s and Cy ;’s are:

(A) [Csal =1Cs4] = 1;

(B) G55l =Cs,3| =3;

(C) [Cs,| = 473037 and |Cs,2| = 237671.

In fact, there are ezactly z) = 2313 members of Cs 2 with r =1, so that
|C5 2| = 21 + 2(|Cs,2| — 21).

Corollary 3 There are exactly 237675 equivalence classes of H-cycles in
Qs. They are distributed as follows:

co = 2 classes of ho= 480 H-circuits; total 960;
= 16 classes of hy = 960 H-circuits; total 15360;
Cco = 90 classes of ho = 1920 H-circuits; total 172800;
3 = 3024 classes of hs = 3840 H-circuits; total 11612160;

cqg = 234543 classes of hq = 7680 H-circuits; total 1801290240.
This amounts to 1813091520 H-circuits in Qs.

To corroborate our calculations, notice that the number of H-circuits in
Corollary 3 equals exactly twice the 906545760 H-cycles mentioned in the
Introduction.

In the five cardinality categories in which the classes of H-cycles were
divided in Corollary 3, there are respectively dy = 2, d; = 15, ds = 80,
ds = 2216 and d4 = 0 classes with r = 1, totalling the z; = 2313 classes in
Theorem 2. Let ¢; = number of classes of H-cycles corresponding to the c;
classes of h; H-circuits in Corollary 3, for j = 0,1,2,3,4. The equation at
the end of Theorem 2 can be subdivided into equations ¢ = d; +2(c; —d;),
namely

=2 + 2 - 2 = 2,
G= 15 + 2 16 — 15) = 17,
b= 80 + 2 90 - 80) = 100,
dy= 2216 + 2( 3024 — 2216) = 3832,
b= 0 + 2( 234543 —  0) = 469086.

This allows to verify that |Cf 5| = 473037 = cj + ¢} + 5 + 3 + .
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5 Relation with the Work of W. H. Mills

We indicate the proofs of Theorem 2 and Corollary 3. We start by relating
with a concept of W. H. Mills in [12].

The four classes representing |Cs 3| = 3 and |Cs 4| = 1 have respective
associated MCNS’s and expressions (p,&,g,r) as follows:

01201320420310324034012431042134 (43333,3,n,1)
01201320432431240120132043243124 (43333,1,y,1)
01201321342340240120132134234024 (43333,0,y,1)
01230124032103240123012403210324 (43332,1,y,1)

where £ uses A; = 480. Thus, these four classes represent altogether 6240
H-cycles, and 6240 H-circuits of Qs, because r = 1 for each of them.

An H-cycle C of a connected graph G is said to traverse a subgraph
H of G if the vertices of H span a sub-path of C. An H-cycle of Q,, is
a Mills cycle, (or M-cycle), if it does not traverse any r-sub-cube of Q,,
for 1 < r < n. Mills commented in [12] that all H-cycles of Q4 traverse
squares and that there is just one equivalence class of H-cycles in Q4 not
traversing any 3-sub-cube, represented by the last CNS in the 9-list above.
He also showed that the second cycle representing Cs 3 = 3 above, with
(p,€,q,7) = (43333,0,y,1), is an M-cycle. In fact, the four cycles realizing
both |Cs 3| = 3 and |Cs 4| = 1, represented by the 4 CNS’s displayed above,
are M-cycles. Moreover, [12] made explicit at least one M-cycle in Q,,,
for each positive integer n, and we observe that this cycle is in C,, 3. We
distinguish these facts as follows.

Corollary 4 The four cycles in Qs realizing [Cs3| = 3 and [Cs 4| = 1,
represented in the 4-list above, are M-cycles. Moreover, the M-cycle con-
structed by Mills in Q,, is in Cp 3.

Comparing these facts with our tools, a question can be made:
Question 5 For every integer n > 5, is every member of Cp , with r > 2
an M-cycle?

6 Details of Approach for Case n =5

Now we will describe the procedures that allowed the computations in-
volved. Every representative of (A) Cs 2, (B) Cs3 and (C) Cs 4 is given
by some MCNS starting respectively with (A) 0102..., (B) 0120... and

(C) 0123.... In each of these three instances, we use an exhaustive recur-
sion search via backtracking, in order to determine all H-circuits of Qs.
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Let each vertex (zo, z1, 2, Z3,Z4) of Qs be denoted by the integer
T =z + 221 + 4x2 + 823 + 1624.

Given a vertex z of Qs and a coordinate direction d € {0,1,2,3,4}, let
f(z,d) be the end-vertex of an edge along d whose other end-vertex is
z. In the selected programming language (TurboPascal), we consider the
function f as an array. Additionally, we introduce arrays c,v, m defined
from the set {0,...,32 = 25} onto the integers and initialized by ¢(i) =
5,m(i) = 0,v(i) = —1, for i = 0,...,32, in order to construct recursively
CNS’s, step by step, through augmenting partial CNS’s, as follows.

1. Let ¢(Z) be the i-th change number of a partial CNS s,

2. let v(2) be the second end-vertex of the edge realizing c(%) in a partial
H-circuit candidate S realizing s and departing from the vertex 0,
and

3. let m(v(i)) = 1.
Initialization also includes, in each one of our three instances:
(A) c(0)=0, ¢(1)=1, ¢2)=0, ¢3)=2, so

v(0)=0, ¢(1)=1, v(2)=3, v3)=2, v(4)=6, and
m0)=1, m(l)=1, m@3)=1, m(2)=1, m(6)=1;

(B) c(0)=0, c(1)=1 ¢(2)=2, ¢3)=0, so
v(0)=0, v(l)=1, v(2)=3 v3)=7 v(4)=86, and
m0)=1, m(l)=1, m@B)=1 m(7)=1, m(6)=1;

(©) c(0)=0, c(1)=1 ¢2)=2, ¢(3)=3, so
v(0)=0, »(1)=1, v(2)=3 v3)=7, v(4)=15 and
m0)=1, m(1l)=1, m3)=1 m(7)=1, m(15)=1.
The recursive step, denoted STEP(j, ¢, v, m), consists in essaying c¢(j —1) =
i, for each i = 0,1, 2, 3,4 different from:

(A) c(j—-2);
(B) c(j —2) and c(j - 3);
(C) (i —2), ¢(j —3) and c(j — 4).

Let k£ = f(v(j — 1),i) be a new candidate terminal vertex for S. After
checking that k is not yet in S, we set v(j) = k, m(k) = 1 and if j <
25 — 1 =31 then j := j + 1 and apply (recursively) STEP(j, ¢, v, m).

In case of returning (to the previous stage of STEP(j, ¢, v, m)), the run-
ning must clearly be stepped back to j := j — 1. However, if 7 = 31, then,
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in case that v(j) = 1,2,4, 8,16, that is if v(j) is in the set of neighbors of
the first vertex, 0, of S, then the final change number of s is clearly set
respectively equal to 0,1,2,3,4.

Each time this final goal of an instance of STEP(j, ¢, v, m) is attained,
the resulting s is written into a line of the text file created to the purpose of
keeping the exhaustive results and the running is sent back to the previous
stage of STEP(j4, ¢, v, m).

This way, we get three different text files, LIST(I), one per each of the
cases I = A, B, C considered. The number of lines of each of the resulting
files is: (A) 7635740; (B) 24; (C) 8.

Next, we consider in turn each of the lines of LIST(I), which represents
a CNS s. There are 2|Aut(Q,)| = 7680 transformations of s into equiva-
lent sequences (that is, representing the same H-cycle), not necessarily all
distinct. They are obtained by

1. switching s = s® = (sg, 51, ..., 531) successively to

sl = (slss‘Zs'- . 1331130)7' "1331 = (331150,'”)330);

2. applying the permutations = of the set {0,1,2, 3,4} to each s' in item
1 above, thus obtaining a CNS n(s?), for i =0,...,31;

3. considering both 7(s') and the reverse sequence 7(s?).

Considering the natural order of {0,1,2,3,4}, the 7680 CNS’s described
for s have a lexicographic order, from which we select the minimum one,
denoted by min(s). Accordingly, each LIST(I) is transformed into a corre-
sponding file MIN(I) of MCNS’s min(s), for I=A, B, C.

In order to get the exact number of (minimum representatives of) equiv-
alence classes of CNS’s, or of their corresponding H-cycles, repeated ele-
ments must be eliminated from MIN(I) . This task is done readily for cases
(B) and (C) because of the small cardinalities of MIN(B) and MIN(C),
yielding corresponding adjusted, or fitted, files FIT(B) and FIT(C), which
contain respectively the three MCNS’s making up Cs 3 and the one making
up Cs 4, summing up the four sequences in Section 5.

However, MIN(A) must be split successively into a collection of smaller
files, first by classifying the component MCNS'’s s = sps) ... s3; according
successively to their different values in the 5-th, 6-th, ..., 14-th coordinate
if needed, until files of sizes less that 216 are obtained. This produces 246
files that, because of the classification method, are ordered, say from file
F(1) up to file F(246), so that each sequence of F(3) is lexicographically
previous to (or less than) each sequence of F(j) if and only if ¢ < j, for
1<4,5 < 246.

Specifically, the mentioned subdivision of MIN(A) proceeds according
to whether the 5-th coordinate s4 of any of its MCNS’s equals either 0 or
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1 or 3, (because sps1s283 = 0102 must be followed by a change number
¢4 € {2,4}, since s starts with 0102, so ¢4 # 2, and 4 cannot happen as an
entry of s if 3 does not appear somewhere to its left). This splits MIN(A)
into corresponding files MINg(A), MIN; (A) and MIN3(A).

Each of the latter three files can then be split according to the val-
ues of the 6-th coordinate, yielding a finite collection of nonempty files
MIN,, s (A), where ay = 0,1,3 and as # a4. Subsequently, the 7-th co-
ordinate can be considered to refine the last stage of the subdivision into
smaller files, and so on. However, when one of these split files reaches < 216,
no further subdivision of it is taken, and the file is kept waiting in a list
of files until a total subdivision of MIN(A) into files with < 2!° lines is
obtained. When this list is reached, it is constituted by the 246 mentioned
files.

We rename these 246 files as F(1), F(2),. .., F(246) in the way specified
above and apply to each one of them a procedure that deletes repeated
elements, leaving one representative of a MCNS for each equivalence class
of H-cycles of Qs, as it was the case for MIN(B) and MIN(C), that yielded
FIT(B) and FIT(B). In the present case, F(1), F(2),..., F(246) yield this
way corresponding adjusted, or fitted, files G(1), G(2),...,G(246).

We apply a quicksort procedure © to each of G(1),G(2),...,G(246).
Such a © produces corresponding files H(1), H(2),...,H(246), each ap-
pearing with the MCNS’s represented by its lines in their correct lex-
icographical order. A unique file FIT(A) is obtained by concatenating
H(1),H(2), ..., H(246) in that order, with a total of 237671 lines. A list
of the firss MCNS's in each of H(1), H(2),..., H(246) can be found in (3].

However, we must remark that six of the 246 files G(1), G(2), ...,
G(246), were in practice too large for the quicksort procedure © to be
applicable, with more than 2000 lines each, so each of them needed to be
split into a collection of smaller files, repeating once more the procedure of
the previous paragraph, so as for © to be practicable in each split file, after
which the corresponding H(j) could be obtained by an adequate concate-
nation. These six files and their data can also be found in [3].

By concatenating FIT(A), FIT(B) and FIT(C), a file FIT containing
exactly 237675 MCNS’s is obtained, corresponding each to a MCNS. These
yields the claimed total of 237675 classes of H-cycles of Qs.

7 Invariant Distribution of the MCNS’s of (s

It can be seen that the first component p of the invariant (p,&,q,7) of a
MCNS, that behaves as a partition of 16, cannot have three or more 1’s.
Thus partitions 85111 and 76111 are impossible in this context. The other
partitions of 16 do happen for the 237675 MCNS'’s found. We indicate each
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of them with a single symbol, as follows, (where 85111 = a and 76111 = f
are not to be present).

84211 =5, 83311 =c, 83221=d, 82222=¢, 7521l=g,
74311 = h, 74221 =i, 73321 =k, 73222=j, 66211=1,
65311 =m, 65221 =n, 64411 =o0, 64321 =p, 64222 =g,
63331 =r, 63322=s, 55411=¢, 55321 =u, 55222 =,
54421 =w, 54331 =2z, 54322=vy, 53332=2, 44431 =q,
44422 = B, 44332 =, 43333 =34.

A table follows in which each line is headed by a triple pgr and each column
is headed by an integer £, where p, g,r and £ are as defined in (a-d) above.
The table shows the number of sequences s in FIT having the indicated
values of pgr and . From the table, the number of lines of FIT having
r = 1 is 2313, from which 2309 were present in FIT(A) and the other
four arise from the three lines of FIT(B) and the line of FIT(C), their
contributions indicated with a star. We rearrange the end of the table in
smaller sub-tables to accommodate too wide 5-digit numbers, when £ = 4.

1]2] 3 4 1]2 3 4 1]2 3 4

byo cy0 dy0
bn0 cn0 dn0 1 1
byl | 1 eyl | 1 dyl 1

bnl cnl 1 dnl 1

ey0 ay0 1 hy0 2
en0 gn0 1 || hnO 25
eyl gyl hyl
enl 1 gnl 4 hnl

iy0 1 iy kyO 4

in0 5 92 in0 3 209 || knO 81214
iyl jvl kyl

inl 8 jnl 15 knl 22

iy0 my0 3 ny0 4

in0 1 || mnO 119 || nnO 11 | 419
lyl | 3 myl 1 nyl 1

inl 4 4 mnl 1 nnl 1]15

oy0 1 1 py0 2 qy0
on0 6 113 pn0 3866 qn0 178
oyl | 211 pyl qyl
onl 3127 pnl 2 gqnl 22

ry0 2 sy0 1 4 ty0 1
rn0 35 | 1363 sn0 22 | 5529 || tnO 8 | 223
ryl 2 syl | 2|5 tyl |13
rnl 2 ] 53 snl 102 tnl 5 | 44
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112 3 4 2 3 4 112 3 4
uy0 1 vy0 wy0 14
un0 39 | 367 || vn0 3 | 1671 || wnO 47 | 7111
uyl vyl wyl 2
unl 79 vnl 4] 95 wnl 21|95
2 3 4 3 4 2 3 4
zy0 24 yy0 zy0 7
zn0 67 | 14955 || ynO | 51 | 40882 || znO 8 | 2764
zyl yyl zyl | 2
znl | 2 | 113 ynl | 89 0 || 2nl 162
2 4 3 4 1]2 3 4
ay0 7 By0 yy0 6|18
an0 97 | 9359 || BnO 12498 || yn0 85 | 77127
ayl Byl yyl | 4* | 6
anl | 2 | 158 Bnl | 266 ynl 1| 45
0 1]2 3 4
8y0 1)1
én0 106 | 25675
Syl {2+ {1~ |3
énl 8 | 354¢

We list the MCNS’s with £ < 1 from FIT(A), that are not previously
presented (in Section 5), where the initial subsequences 0102 are eliminated

to save space, together with the corresponding triples pgr.
With £ =0, (1 sequence out of 2): 3432101243420102343210124342 4yl

With £ =1, (14 sequences out of 16):

0103010201040102010301020104
0103101210140102010310121014
0103212021240102010321202124
0131424142320102013142414232
0132414241320102013241424132
1034030230140102103403023014
3130414321240102313041432124

e 90 sequences with & = 2,

byl
Iyl
tyl
vyl
vl
syl
5y0

0103020102040102010302010204
0103101410130102010310141013
0131020102420102013102010242
0132010201420102013201020142
1013010210140102101301021014
3014030210340102301403021034
3402313402340102340231340234

o 3023 sequences with £ = 3 out of 3024, and

o 234543 sequences with £ =

4.
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iyl
oyl
oyl
iyl
syl
Tyl

The remaining sequences of FIT(A), which can be found in (3], are:




8 A Nonexistence Result on (g

An adaptation of the exhaustive recursion search via backtracking in Sec-
tion 5 to the case of the 6-cube Q¢ was essayed for the exhaustive search of
elements of Cg 5. However, the computational language indicated a stack
overflow error. The essayed program was then modified to obtain just an
exhaustive list Ps 43 of sub-paths of H-cycles in Qg of length 43, where
the stack overflow error was not present. The resulting list Pg 43 contained
1182 lines. By readapting and applying a modified concatenated exhaustive
search for the elements of Cg 5 departing from Pg 43, no such an element
was produced, from where we concluded that Cg 5 = 0.

Theorem 6 Css = 0.

In view of this theorem, it is seen that Question 5 does not lead to the
production of H-cycles in Cp »_1, for every n > 5, such as it was shown
for Mills cycles in @, for every n > 5, in [12]. However, the Mills cycles
produced in [12] were all in C,, 3, for every n > 5.

9 Uniqueness in the Middle-Levels of Qs

A second adaptation of the search in Section 5, to the graphs Msx formed
by the middle levels of Qar41, that is induced by the vertices of Q,, having
weights € {k,k + 1}, ([13]), allowed to obtain an interesting contrasting
result. To compare with the relatively high counting of equivalence classes
of Hamilton cycles in Qs, we have just the following.

Theorem 7 There is only one equivalence class of Hamilton cycles in the
middle-levels graph My of Qs.

Proof. Mg has regular degree 3. Using the mentioned adaptation, we
found that there is only one equivalence class of H-cycles in Ms. The
MCNS of an H-circuit C for this class can be represented as follows,

024 103 214 023 104 312 403 124 301 234
012 304 213 402 134 201 423 014 302 413

where each triple ¢, of numbers represents the coordinate directions of the
edges incident to the corresponding vertex p = p' in C, (i = 0,1,...,19
taken mod 20), with the direction along which C continues set as the first,
or leftmost, position in ¢, and the remaining two directions presented lexi-
cographically. It is seen easily that the starting vertex is p® = 01010, with
support {1,3} C ZZ,. This yields Theorem 7.
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We will give now a symmetric presentation of a representative of the
equivalence class in Theorem 7. Another way of presenting the MCNS
in the the proof of Theorem 7 is as follows, where the last, or rightmost,
position in each t, equals the edge direction previous to p in C,

024 130 241 032 140 321 403 124 301 243
012 340 213 402 134 201 432 014 320 413

This is called a 1-factorable presentation of C. Note now that the middle
positions of these t,’s forms a 1-factor g of Ms.

Let a € ZZ4. Denote each edge in Mg N f, with end-vertex supports
{b,c} and {a, b, c} by (a,bc). Then g is composed by the following five edge
pairs in the respective 1-factors f;, for i =0,2,1,4,3:

(0,21), (0,24), (2, 14), (2, 13), (1,43), (1,40), (4, 30), (4, 32), (3,02), (3, 01).

Then the permutation (12)(34) of ZZ4, which transforms the 1-factorable
presentation of C given above into

014 240 132 041 230 412 304 213 402 134
021 430 124 301 243 102 341 023 410 324

with starting-vertex support {2,4}, allows to express g simply as
{wi = (G, @G+ 1)(GE+2)),2: = (G, (E+1)(E+3));1 € Zys},

with numbers taken mod 5. This edge notation can be used to represent
the successive edges of C, and we do so now, interspersing between each
two such edges a capital letter representing, and indexed with, the edge of
g incident to their common vertex:

(1$ 03)7 A(2.03)1 (4a 03)) F(3,40)a (01 34)1 I(2,34)’ (11 34)7 C’(.'.",14) )
(4,31),Bo,31y, (2,31),G1,03), (3,12),J00,12), (4,12),D(1,42),
(2’ 14)’ c'(3,14)5 (0, 14)1 H(4,01)v (17 04)1 F(3,40)) (2a 40)7 E(4.20)v
(0, 42)! D(1,42) ’ (3’ 42)1 I(2,34)» (4) 23)a G(l,23): (01 23)’ A(2,03)a
(3,20), Ea,20), (1,20),J(0,12)» (2,01),Hq01), (3,01), Beo,a1)-

The edges of g can be interpreted as expressing every third edge in an H-
circuit of the graph of proper levels @5\ {0,1} = Qs \ {00000, 11111} of Qs.
This H-circuit is given by the CNS

040123212340434012101234323401

starting at the vertex with support {1,2}, or in a more cyclical form, given
by the successive concatenation of the paths

30— 1iGE+1)(E +2)(5 - 2),
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where j = 2i with 1 = 0,1,2,3,4. The remaining edges of Qs \ {0,1}
form, together with the edges of g, five 6-cycles C* that have CNS’s given
respectively by

((G+2)GE-1)GE+1)2 =G+ - DG+ 1)(E+2)E - 1)(E+1),

starting at the vertices v* whose respective supports are the numbers i €
ZZ4. Note that C* is isomorphic image of the middle-levels cycle of Qs
under the isomorphism ¢; that sends 0 € Q3 onto v* and 1 € Q3 onto the
complement of v*~2, for i € Z;. The 3-sub-cubes ¢;(Qs) and ¢;11(Q3)
have solely the edge

u; = (6 +2,i(i + 1))

in common, for i € Z4. Thus, these 3-sub-cubes form a 5-cyclic chain of
five 3-cubes, where each two contiguous 3-cubes share just an edge.

There is a 10-cycle Cy, formed by the concatenation of contiguous-
edge pairs w_;u_;, for ¢ = 0,1,2,3,4. On the other hand, there are just
five edges of Q)5 \ {0,1} not in the union of the 3-cubes ¢;(Q3), and they
form, together with the edges z;, (i € ZZ,), a 10-cycle C, disjoint from C,,,,.

By coloring the H-circuit C with two colors, we obtain the two 1-factors

b ={(,G+2)G-2), 0 +1,5(G +2));5 =2i,i=0,1,2,3,4},

hy={(—-2,3(+2), (G +2,5(+1))5=2,i=0,1,2,3,4}.

We get a 1-factorization of Ms, formed by g, h; and hy. The 1-factor hy
forms, together with g, a Hamilton cycle D of Ms. The 1-factor hy forms,
together with g, the union of the two 10-cycles C,,, and C,. By expressing
C similarly, it is seen that the permutations o; = (,% + 1)(i + 2,4 ~ 1)
yield equivalences between C and D, for i € ZZ,. Moreover, the antipodal
map 7 of Q5 given by uniform binary complementation is closed in h; and
exchanges g and hp. Thus, 7 offers another equivalence between C' = hoUh,
and D = gUh,. It is also closed in Cy., and in C,. It is seen that the total
number of isomorphisms of Qs restricting to equivalences between C' and
D is 10, obtained by combining 7 with the five o;’s.
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