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Abstract

We apply Computational Algebra methods to the construction of Hadamard
matrices from two circulant submatrices, given by C. H. Yang. We asso-
ciate Hadamard ideals to this construction, to systematize the application
of Computational Algebra methods. Our approach yields an exhaustive
search for Hadamard matrices from two circulant submatrices for this con-
struction, for the first eight admissible values 2, 4, 8, 10, 16, 18, 20, 26
and partial searches for the next three admissible values 32, 34 and 40.
From the solutions we found, for the admissible values 26 and 34, we lo-
cated new inequivalent Hadamard matrices of orders 52 and 68 with two
circulant submatrices, thus improving the lower bounds for the numbers
of inequivalent Hadamard matrices of orders 52 and 68. We also propose
a heuristic decoupling of one of the equations arising from this construc-
tion, which can be used together with the PSD test to search for solutions
more efficiently.

Keywords: Hadamard Matrices, Computational Algebra, Hadamard ideal,
Hadamard equivalence, algorithm.
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1 Introduction

In [26] the author describes a construction of Hadamard matrices of order 2v
from two circulant submatrices of order v each. In this paper we associate
Hadamard ideals to this construction with two circulant submatrices, as a means
of applying computational algebra techniques.

The problem of enumerating Hadamard matrices constructed from two cir-
culant submatrices is equivalent to the problem of enumerating pairs of {-1,1}
sequences with complementary periodic autocorrelation functions. Golay pairs,
since they have complementary aperiodic autocorrelation functions, are a very
special case, and have been very well studied [8]. Up to order 100, the enumer-
ation of Golay pairs is nearly complete [4].
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The more general periodic case has only much more recently attracted at-
tention, see for instance (3, 2, 7, 10]. In particular, the existence of a periodic
complementary pair of sequences of length 34 (which is excluded for Golay pairs)
was first established in [7] and the non-existence of a pair of length 36 is a con-
sequence of a theorem proved in {2, 9]. The non-existence of a pair of length 18,
that we have also verified independently, was already ruled out by exhaustive
search in {27], and also follows from the aforementioned theorem.

2 Hadamard matrices from two circulant sub-
matrices

A Hadamard matrix of order n is an n x n matrix with elements +1 such that
HHT = HTH = nl,, where I, is the n x n identity matrix and T stands for
transposition. For more details see the books of Jennifer Seberry cited in the

bibliography. An Hadamard matrix of order 2v which can be written in the
form

A’B

Hy, = (1)

_ BT AT

where A = (a;;), B = (bij) are two circulant matrices of order v i.e. ai; =
G1,j—i+1(mod »)» Dij = B1,j—i41(mod v), is said to be constructible from two circu-
lant submatrices, see [26]. The following matrix is an example of a Hadamard
matrix of order 8 constructible from two circulant submatrices of order v = 4
each:

11 1 -J1 1 - 1]
-1 1 1|11 1 -
1 - 1 1|- 111
11 - 1f1 - 11
- - 1 -]1 - 1 1
- - - 1|1 1 - 1
1 - - -1 11 -
-1 - |- 11 1]

where — stands for —1 to conform with the customary notation for Hadamard
matrices.

The two circulant submatrices A and B satisfy the matrix equation
AAT + BBT = ()1, )

where I, is the identity matrix or order v.
Since 2v must be equal to a multiple of 4 we have that v must be an even
integer for this construction to yield a Hadamard matrix.
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2.1 Equivalent Hadamard matrices

Two Hadamard matrices H; and H; are called equivalent (or Hadamard equiv-
alent, or H-equivalent) if one can be obtained from the other by a sequence of
row negations, row permutations, column negations and column permutations.
More specifically, two Hadamard matrices are equivalent if one can be obtained
by the other by a sequence of the following transformations:

e Multiply rows and/or columns by -1.
o Interchange rows and/or columns.

For a detailed presentation of Hadamard matrices and their constructions see
{15], (28], (23], [16] and for inequivalent Hadamard matrices see [14] and [13].

Remark 1 For a given set X of Hadamard matrices of arbitrary but fizved di-
mension n, the relation of H-equivalence (noted S here) is an equivalence rela-
tion. Indeed, H-equivalence is reflexive (H e H,VYH € X) symmetric (H, X H,
implies Ho Fd H, VH, H; € X) and transitive (H, H H; and H, . H; imply
H, A Hj, VHy,Hy,H3 € X ). Therefore, one can study the equivalence classes
and define representatives for each class.

To define X more formally, suppose P and Q are two monomial matrices of
order n (monomial means elements 0,+1,—1 and only one non-zero entry in

each row and column) where PPT = QQT = I,,. Then two Hadamard matrices
A and B of order n are said to be equivalent if A= PBQ.

3 Hadamard ideals

We detail the construction of Hadamard matrices from two circulant submatrices
with an eye to producing a set of nonlinear polynomial equations and study the
structure of the associated ideal which we will call a Hadamard Ideal.

Consider two vectors of v unknowns each (a;,...,a,) and (by,...,b,). These
two vectors generate two circulant v x v matrices A, and B,:

a az ... Q@ b] bz e b,,

a, a ... Qy-) bu bl o b,,_l
AII = . . . . 1 BII = . . .

a az ... a bz b3 e b.l

Once we have constructed the two circulant matrices A, and B,, the C. H.
Yang construction of Hadamard matrices from two circulant submatrices (see
[26]) stipulates that an Hadamard matrix of order 2v is obtained by arranging
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these matrices and their transposes as in (1):

-0.1 cee Oy b] b,,-
ay B/ Y | b,, b,,_)
Ho = Qs 2] bz ‘oo b]
2v = b b
-0 ... —09 a ... a2
-bz -b;; a ... az
| —b,, —b] ay ... ay J

The additional constraints {a;,...,ay,b1,...,b,} C {~1,+1}?" arise from the
fact that the elements of a Hadamard matrix are required to be +1. A succinct
algebraic description of these quadratic constraints given above is provided by
the following set of 2v algebraic equations:

a?-1=0,...,a2-1=0,6-1=0,...,62 -1 =0.

Another way to express this, is to say. that we want to target some elements of
the variety which are located inside the subvariety defined by

i—l,+1} X ... X {—1,-!-1}1.

—

2v terms

The matrix equation Hy, HJ, = (2v)I,, gives rise to the following categories
of equations:

¢ aset of quadratic equations whose precise structure will be detailed in the
forthcoming definition of Hadamard ideals;

¢ a quadratic equation of a different structure than the quadratic equations
mentioned above;

e the equation of the form
al+... 42+ ... b =2
which is satisfied trivially, sinceal =...=a2 =b3=... = b2 =1;

To systematize the study of the systems of polynomial equations that arise in
the C. H. Yang construction for Hadamard matrices from two circulant subma-
trices, we associate to them some Hadamard Ideals. This allows us to apply
numerous tools of computational algebra [5, 24] such as Grdbner bases to the
study of Hadamard matrices from two circulant submatrices. Similar Hadamard
Ideals have been associated to other constructions for Hadamard matrices, see
(18], [19]. The ideals that arise in all of these constructions share numerous sim-
ilar characteristics and this justifies using the term Hadamard Ideal to describe
all of them. When it is not clear which construction we are referring to, the
name of the construction may be mentioned explicitly, to remove any potential
ambiguities.
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Definition 1 For any even natural number v = 2,4,6,... set m = 4. Then
the v-th Hadamard ideal H, (associated with the two circulant submatrices

construction C. H. Yang) is defined by:
HV = (qh"-sqm-laQusag_1,---,0,2,“ l,b%— 1,...,b,2, - 1)

where q1,...9m—1 are quadratic equations defined by:

14

g; = Z (aia(i+j) mod v + bib(i+j) mod v) =0forj=1,...,m—-1.

i=]

(with the convention that for v = 2 there are no such equations) and Q, is a
guadratic equation defined by:

m
Q = Z (aia(i+m) + bib(i+m)) =0. (3)
i=1
The ideal H, is generated by m + 2v polynomials. Moreover, the ideal H, is
zero-dimensional (This is evident, because all elements of the variety | V(H,) |
are also elements of {~1, 4+1}?” which is in turn, a finite set).

4 Diophantine constraints, Grobner bases and
PSD test

In this section we mention necessary (but not sufficient) conditions for the ex-
istence of solutions in the two circulant submatrices construction. First we
describe a Diophantine constraint that is satisfied by all solutions of. Then we
describe the power spectral density (PSD) test.

4.1 Diophantine constraints

We multiply the matrix equation (2) from the left with the row vector e and
from the right with the column vector e = (1,1,...,1)%. This gives rise to the
Diophantine constraint ‘

a®+ b2 =2v (4)

wherea = a; +...+a, and b = b; + ... + b,. A derivation of the above
Diophantine constraint can be found in {27].

The condition that 2v can be written as a sum of two squares is a necessary
condition for the existence of solutions in the two circulant submatrices con-
struction. For example, for v = 26,we have that a = +4 and b = +6. We can
also have a = +6 and b= +4.

The fact that this condition is not sufficient can be illustrated by the case
v = 18. In this case, the equation (4) has the solutions a = 0 and b = +6 (or
a = £6 and b = 0) but the exhaustive search using the Hadamard ideal H,s
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shows that there are no solutions, i.e. there are no Hadamard matrices or order
36, with two circulant submatrices or order 18 each.

Another Diophantine constraint on the elements of the first rows of A and
B is obtained by pre-multiplying and post-multiplying (2) by the row vector
pT =[1,-1,...,1,-1]. This constraint is:

a2 + b2 =2 (5)

wherea, =a;—az+---+ay-1—a, and by = by — by + - +b,_1 — b, are the
alternating sums of the a}s and b;s.

Indeed we have that pT AATp + pT BBTp = pT I,,p implies
viag—ag+ - +a,_1 — a,,)2 +vby—bo+---F+ b,y — bu)2 = v(2v)

which gives a2 + b2 = 2v.

The fact that the sums and the alternating sums of the a}s and bls satisfy
the same Diophantine constraint can be used to reduce the number of candidate
solutions at an early stage, namely before applying the PSD test. From numer-
ical experiments for v = 10 and v = 16 we see that by using alternating sums
we can eliminate more than 70% of the candidate solutions that satisfy (4).

Definition 2 An even value of the parameter v is called admissible, if the Dio-
phantine equation a® + b%> = 2v has solutions.

Therefore, the first ten admissible values of the parameter v are: 2, 4, 8, 10,
16, 18, 20, 26, 32, 34.

The Diophantine constraint (4) can be used to accelerate the exhaustive and
partial search programs by extracting linear equations that can be added to the
Hadamard ideal. If (a, B) is a solution of the equation (4), then we obtain the
linear equations

lay+...+a| =« b1 +...+b,|= 8.

We note here that the methods of {20, 12] can be readily adapted to this
problem, so that running times would be drastically shorter and more complete
data could be obtained as well as higher orders could be reached.

4.2 Grobner bases

Grobner bases [5, 24] computations and analysis of the results of the exhaustive
searches, reveal an interesting fact about how equation (3) is realized in solutions
of the problem. In particular, we propose a heuristic decoupling of equation (3)
based on the observation that if we assume that equation (3) is realized as

m

m
Z (aia(ﬁm)) =k, and Z (bib(i+m)) = -k (6)

i=1 =1

where k is an integer, for all solutions for a fixed value of v, then Grébner bases
computations reveal that
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o for v = 4, we have that k = 0, by computing the reduced Grébner basis of -
the ideal H4 augmented with two equations that come from the solutions
of the Diophantine constraint a2 + 52 = 8

al*ad+al*a2+a2*a3+a3*ad+bl*bd+bi*b2+b2*b3+b3*b4,

al * a3 + a2 * a4 -k,

bl * b3 + b2 * b4 +k,

al + a2 + a3 + a4 -2,

bl + b2 + b3 + b4 -2, .

a1"2-1, a2°2-1, a3"2-1, a4"2-1, b1-2-1, b2-2-1, b3~2-1, b4~2-1

for an elimination ordering that eliminates k. We note that the Grébner
basis has 15 elements and was computed in Magma.

e for v = 8, we have that k = 0, by computing the reduced Grobner basis of
the ideal Hg augmented with two equations that come from the solutions
of the Diophantine constraint a2 + b2 = 16

al*a8+alxa2+a2*a3+al3*ad+ad*ab+ab*ab+ab*a7+a7*a8+bl*b8+blxb2
+b2*b3+b3*b4+b4*b5+b5*b6+b6xbT7+b7*b8,
al*a7+a2*a8+al*ald+a2+*ad+al3*ab+ad*ab+abka7+ab*a8+bl*b7+b24b8
+b1*b3+b2+b4+b3*b5S+bd*b6+bS*xb7+b6*b8,
al*a6+a2*a7+a3*aB8+al*ad+a2*«ab+ald*ab+ad*a7+a5*a8+bl*xb6+b2*b7
+b3*b8+b1*bd+b2*b5+b3*b6+bd*b7+b5*b8,

al * ab '+ a2 * a6 + a3 * a7 + a4 * a8 -k,
bl * bS5 + b2 * b6 + b3 * b7 + bd * b8 +k,
al + a2 + a3 + a4 + ab + a6 + a7 + a8 ,
‘bl + b2 + b3 + b4 + b5 + b6 + b7 + b8 -4,
al"2-1, a272-1, a3"2-1, a4"2-1, ab72-1, al

6-2-
b172-1, b272-1, b3"2-1, b4~2-1, b5°2-1, b6~2-

for an elimination ordering that eliminates k. We note that the Grébner

basis has 237 elements and was computed in Magma.

Based on the assumption that for each admissible value of » there is a value
of k so that equation (3) is realized as described in (6), for all solutions for this
fixed value of v we can carry out an analysis for any admissible value of v, in
order to establish reasonable estimates for the value of k. We make use of the
well-known fact that if =,y are &1 elements then we have

zy = +y — 1(mod 4).
m m
Upon reducing Z (@i@(i4m)) = k and Z (b3b(i4m)) = —k modulo 4 we obtain
i=1 Toi=1

ay+...+a,—m=k(mod4)and by +... + b, —m = —k(mod 4)
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(we remind here that m = £) which can be rewritten as:
k=a—m(mod 4) and k=m — b(mod 4)

where a, b are solutions of a2 + b = 2v. Here are the solutions mod 4 of the
first congruence above, for all admissible values of v (except v = 18, 36), for
v <50.

v a m k

4 +2 2 = 0(mod 4)

8 0, +4 4 = 0(mod 4)

10 - £2,#4 5 =1(mod 4),= 3(mod 4)
16 +4 8 = 0(mod 4)

20 42,46 10 = 0(mod 4)

26 +4,+6 13 = 1(mod 4),= 3(mod 4)
32 0,18 16 = 0(mod 4)

34 +2,+8 17 =1(mod 4),= 3(mod 4)
40 +4,48 20 = 0(mod 4)

50 0,46,+8,%+10, 25 =1(mod 4),= 3(mod 4)

These considerations on the possible values of k can be used to eliminate
sequences that cannot give solutions.

4.3 PSD test

The PSD test {11] furnishes another necessary condition for the existence of
solutions in the two circulant submatrices construction.

Definition 3 The Discrete Fourier Transform sequence (DFT) of the sequence
of length n, A = [ag,...,@n-1] is the sequence of length n:

n-1
DFTa = (poy-- . sitn-1], where py = Zin“‘, k=0,...,n-1, (7)
i=0 !
and where w = e%* = cos (%) +isin (22) is a primitive n-th root of unity (also

called the principal n-th oot of unity).

Definition 4 The Power Spectral Density sequence (PSD) sequence of the se-
quence A is the sequence of length n.:

PSDa= (14§ 1,-- | By 1]
i.e. the sequence of squared magnitudes of the elements of the sequence DFT,.

‘We note that all elements of the PSD sequence of A are non-negative.
The following theorem is a direct consequence of the discussion in [11].
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Theorem 1 If the sequences [a1,...,a,] and [by,...,b,] are solutions of the
two circulant submatrices construction, then the corresponding components of
their PSDs sum to the constant

v v 2 v v 2

et (Sa) v (2s)

= i=1 i=] + i=] i=1 .
v—-1 v—-1

c

In view of the Diophantine constraint (4), it is easy to see that we have
c=2v.

Taking into account the non-negativity of the terms of the PSD sequence,
the PSD test for the two circulant submatrices construction can be expressed
by saying that if a term of the PSD sequence of the sequence [a,...,a,) (cor-
resp. [b1,...,b]) exceeds 2v then this sequence cannot yield a solution to the
problem.

The importance of the PSD test lies in the fact that it can be applied to the
sequences [ay,...,a,) and [by,...,b,) separately.

5 Structure of the variety V(H,)

‘We summarize in the following table the computational results of exhaustive and
partial searches obtained using the Hadamard ideals Ha, ..., Hzqs: (the symbol
| V(H,) | stands for the number of solutions of the system corresponding to the
Hadamard ideal #,).

v | V(M) |

2 8 = 2 x 2° exhaustive search

4 64 = 4 x 42 exhaustive search

6 0

8 1,536 = 24 x 82 exhaustive search

10 6,400 = 64 x 10% exhaustive search

12 0

14 0

16 229,376 = 896 x 162 exhaustive search

18 .0 (8)
20| 2,867,200 = 7,168 x 20? exhaustive search
22 0

24 ) 0

26 | 13,152,256 = 19,456 x 262 exhaustive search
28 0

30 0

32| > 723,901 partial search

34 > 18,465 partial search

36 0

40 > 320 partial search
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The value v = 36 is contained in the above table for completeness. We didn’t
perform computer searches for v = 36, because it is well-known that there are
no Golay pairs for v = 36 [1] and that there are no sequences with zero periodic
autocorrelation function [7].

The values v = 42,44, 46, 48 are not admissible. The value v = 50 is admis-
sible but no solutions are known, it is an open problem.

Examining table (8) our computational results can be stated concisely as:

Theorem 2 For the first thirteen values v = 2, .. .,26, the resolution of the sys-
tem corresponding to the Hadamard ideal H, (Hadamard matrices constructible
from 2 circulant submatrices by the method of C. H. Yang) indicates that

| V(H,) |= hy - v?
and that the proportionality constants are given by the sequence

v |2 4 6 8 10 12 14 16 18 20 22 24 26
hy[2 4 0 24 64 0 0 8% 0 7,168 0 0 19,456

6 Inequivalent Hadamard matrices

In this section we locate inequivalent Hadamard matrices, within the sets of
Hadamard matrices we have computed. Due to the large amounts of matrices
coming out of the exhaustive searches for » = 16 and v = 20, we work in two
phases. First we use the 4-profile criterion [6] (as implemented in Magma 2.11)
to identify inequivalent matrices within these sets. The 4-profile criterion is a
necessary but not sufficient condition for Hadamard equivalence. This means
that matrices with different 4-profiles are inequivalent, but matrices with equal
4-profiles may or may not be inequivalent. However, the profile criterion is
extremely efficient and can be seen as a means of partitioning a set of matrices
according to their 4-profiles. Then we use the graph isomorphism criterion
[21, 22] (as implemented in Magma 2.11) to search for inequivalent matrices
within the sets of matrices with equal profiles. The graph isomorphism criterion
is a necessary and sufficient condition for Hadamard equivalence.

6.1 Inequivalent matrices via the 4-profile criterion

Using the 4-profile criterion (as implemented in Magma 2.11) to search for
inequivalent Hadamard matrices made up from two circulant submatrices, we
obtain the results in the table below.

v 2 4 8 10 16 20 26 32 34 40
matrixorder {4 8 16 20 32 40 52 64 68 80 9)

ineq. matrices |1 1 2 1 10 56 99 857 167 4

It should be noted that the paper {11] contains many matrices of some of
the above orders and even if these matrices are Hadamard equivalent to the
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matrices reported in the above table, that can only increase the numbers of
inequivalent matrices.

In particular, we establish two new constructive lower bounds for the num-
bers of inequivalent Hadamard matrices of orders 52 and 68.

6.1.1 Two new constructive lower bounds for the numbers of in-
equivalent Hadamard matrices of orders 52 and 68

In this section we establish constructively two new lower bounds for the num-
bers of inequivalent Hadamard matrices of orders 52 and 68, by combining the
inequivalent Hadamard matrices with two circulant submatrices, with inequiv-
alent Hadamard matrices coming from other constructions. Denote by Nj the
number of inequivalent Hadamard matrices of order k. We establish the in-
equalities

Nz > 743, Ngg > 515.

All the inequivalent Hadamard matrices constructed in this paper are available
in the web page http://www.cargo.wlu.ca/circulantSubmatrices .

6.1.2 Order 52

Inequivalent sets of Hadamard matrices of order 52, are available from the fol-
lowing five sources:

1. 638 matrices, web page of Christos Koukouvinos;

2. 76 matrices, see [19]; (these are included in the 638 matrices mentioned
above)

3. 4 matrices, 4 Williamson array construction;

4. 11 matrices, skew 4 Williamson array construction;

5. 99 matrices, see table (9) above.

Using the 4-profile criterion in the above 752 Hadamard matrices of order 52,
we establish constructively a new lower bound for the number of inequivalent
Hadamard matrices of order 52, i.e. N5 > 743.

6.1.3 Order 68

Inequivalent sets of Hadamard matrices of order 68, are available from the fol-
lowing five sources: '

1. 2 matrices, web page of Christos Koukouvinos;

2. 338 matrices, see [19];

3. 5 matrices, 4 Williamson array construction;

4. 4 matrices, skew 4 Williamson array construction;
5. 167 matrices, see table (9) above.

Using the 4-profile criterion in the above 516 Hadamard matrices of order 68,
we establish constructively a new lower bound for the number of inequivalent
Hadamard matrices of order 68, i.e. Ngg > 515.
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6.2 Inequivalent matrices via the graph isomorphism cri-
terion

Using the graph isomorphism criterion (as implemented in Magma 2.11) to
search for inequivalent Hadamard matrices made up from two circulant subma-
trices for v = 16 and v = 20, we obtain the following refined results.

e for v = 16, there are 10 inequivalent Hadamard matrices of order 32 made
up from two circulant submatrices. This result was obtained by applying
the buckets algorithm [17] in the 8 sets corresponding to the 8 inequivalent
matrices located with the 4-profile criterion. It may be interesting to
remark that the set of 229,376 matrices of order 32 is separated in 10
subsets with respect to Hadamard equivalence and that six of these subsets
are of cardinality 16,384 = 24 and four of these subsets are of cardinality
32,768 = 215,

e for v = 20, there are 56 inequivalent Hadamard matrices of order 40
made up from two circulant submatrices. This result was obtained by
applying the buckets algorithm [17] in the 48 sets corresponding to the
48 inequivalent matrices located with the 4-profile criterion. It may be
interesting to remark that the set of 2,867,200 matrices of order 40 is
separated in 56 subsets with respect to Hadamard equivalence and that
all of these subsets are of cardinality 51,200 = 21152,

All the new inequivalent Hadamard matrices constructed in this section are
available in the web page http://www.cargo.wlu.ca/circulantSubmatrices
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8 Conclusion

In this paper we introduce the concept of Hadamard ideals to the study of
Hadamard matrices constructible from two circulant submatrices for the con-
struction of C. H. Yang. Hadamard ideals are used to perform exhaustive
searches for the first seven admissible values 2, 4, 8, 10, 16, 18, 20 and partial
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searches for the next three admissible values 26, 32 and 34. From the solutions
we found, for the admissible values 26 and 34, we located new inequivalent
Hadamard matrices of orders 52 and 68 with two circulant submatrices, thus
improving the lower bounds for the numbers of inequivalent Hadamard matrices
of orders 52 and 68.
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