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Abstract

Informally, a set of guards positioned on the vertices of a graph G is called
eternally secure if the guards are able to respond to vertex attacks by moving a
single guard along a single edge after each attack regardless of how many attacks
are made. The smallest number of guards required to achieve eternal security is
the eternal security number of G, denoted es(G), and it is known to be no more
than 8, (G), the vertex clique cover number of G. We investigate conditions under
which es(G) = 6,(G).

Keywords: domination, eternal security
AMS Subject Classification: 05C35, 05C69

1 Introduction

Burger, Cockayne, Griindlingh, Mynhardt, van Vuuren, and Winter-
bach [1, 2], introduced a dynamic form of domination which has been
designated eternal security by Goddard, Hedetniemi, and Hedetniemi
[4). Let S be a subset of the vertices of graph G = (V, E). An at-
tack on G is a choice of a vertex in V(G). A response by S (or
simply a response if S is understood) to an attack on v is a vertex
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w € SN N[v]. We say response w to an attack on v produces the set
§' = (S — w) U {v}. Informally, if such a response can be made no
matter what vertex is attacked, and if the changing position of the
guards can continue to respond forever, we say that the guards form
an eternally secure set. The eternal security number es(G) of G is
the minimum cardinality of an eternally secure set and an es-set of
G is an eternally secure set S such that |S| = es(G).

This attack/response process can be viewed as a two person game
in which one player, the attacker, selects a vertex to attack and the
other player, the defender, decides on a response. If at any point the
attacker makes an attack for which there is no response, the attacker
wins. Otherwise, the defender wins. In this context a set is eternally
secure if, under optimum play by both players, the defender wins.

Let 3,(G) be the vertex independence number of graph G and
0,(G) be its vertex clique cover number. It is easy to see that if S
has a distinct vertex in every set of a clique cover of G, then S is
eternally secure. Burger et al show the following basic inequality.

Theorem 1 [2] For graph G, 8,(G) < es(G) < 8,(G).

Many important classes of graphs have es(G) = 6,(G) and it
was originally conjectured that this is true for all graphs. However,
Goddard et al [4] have produced an infinite collection of counterex-
amples. Nevertheless, it is interesting to find families where this
equality holds. We refer to members of such families as mazimum-
demand graphs.

In order to formalize the concept of eternal security, Goddard, et
al [4] gave the following definition.

Definition 2 Let So C V. Then Sp is an eternally secure set if for
every positive integer k and any sequence vy, vy, ...,V of vertices of
G, there is a sequence of sets Sy, Sa, ..., Sk and a sequence of vertices
(quards) uy, uy, ..., ux such that v; ¢ S;_1, u; € Si_1, ujv; € E, and
Si = (Si—1 — {wi}) U {v:i} is a dominating set.

References [2] and [4] employ the notation v, (G) and 01(G),
respectively, for es(G).

We find definition 2 unsatisfactory for two reasons. First, the
definition states that for an arbitrary vertex sequence vy, vo, ..., vx

112



of vertices of G we can find a sequence of sets S;,S5s,...,S5k and a
sequence of vertices (guards) uy,us,...,ur such that v; ¢ S;_;1 ...
However, if Sy is not empty then any sequence with v; € Sp will not
satisfy this condition. Of course this problem can be addressed by
replacing the condition “v; € Si—1, u; € Si—1, u;v; € E” with the
condition “u; € S;_y N N[v;]".

Second, even with this change the definition does not reflect the
dynamic nature of the attack/response process. In particular, the
definition does not allow the attacker to base the next attack on the
most recent response. For example, consider the graph G in Figure 1.
Using the two player game interpretation of eternal security the set
S = {a,b, ¢,d} is not eternally secure. The first player attacks vertex
z. If the second player responds with ¢ producing the set {a, b, z, d},
then the first player attacks vertex z and the second player must
respond with a procuding the set{z,b, z,d}. At this point the first
player attacks w and the second player has no response. Similarly, if
the second player responds to the attack on z with d, then the first
player attacks vertex y which forces the response b at which point
the second player has no response to an attack on v.

Figure 1: Illustration of Definition Conflict

On the other hand, the set § = {a,b,c,d} is eternally secure
according to Definition 2, even with the above suggested change.
Suppose S is not eternally secure. Under this assumption there exists
a sequence of vertices of G such that no response is possible to the
attack on vi. We choose v1,vs,..., v to be such a sequence with k
as small as possible. By this choice of k, v; ¢ {a,b,¢,d}. If v; = z let
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u1 = ¢. This produces a set S; with a distinct vertex in every set of
a clique cover of G. Such a set is eternally secure which contradicts
the assumption that S is not eternally secure. Similar contradictions
are obtained if v; = v, v; = w, or v; = y.

Finally, suppose v; = z. The minimality of k¥ ensures that vp ¢
{a,b,z}. If va = ¢, then letting u; = c and up = 2 also contradicts
the minimality of &; so, v # ¢ and similarly v # d. If v3 = z, let
uy =dand ug =¢; if v = y, let u; = ¢ and ug = d; if vo = v, let
u] = ¢ and up = b; and if v = w, let u; = d and uy = a. In each of
these cases we obtain a set Sy with a distinct vertex in every set of
a clique cover of G contradicting the choice of S.

Of course, for some graphs the attacker may be able to proceed
without regard to the defender’s responses, for example, when attack-
ing in succession the vertices of an independent set. In such cases
we may refer to a sequence of attacks. If vy, vs,..., v, is a sequence
of attacks and 51, Sy, . .., S is the sequence of vertices (guards) pro-
duced by responses uy,ug, ..., ux, we will say that the sequence of
attacks produces Si.

Motivated by an approach mentioned in [4], we avoid the above
difficulty by employing an algorithmic definition. The input is a
graph G = (V, E). The algorithm defines a function pz¢ on a subset
of P(V(G)) where P(V(Q)) is the power set of V(G).

ALGORITHM ES
&= P(V(G))
N:=0
T:= {S €£: S not a dominating set}
pc(S) :=0for all S €T
k:=0
while T## 0
=k+1
N:=NUT
E=E-T
T:= {§ €£: there is an attack on some vertex such that all
responses
produce a set in N'}
pc(S) =k for all S €T
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Note that the algorithm must terminate since P(V(G)) is finite.
Furthermore, £ is nonempty upon termination since V' itself will
never be placed in A/. We now can give the revised definition of
eternally secure sets.

Definition 8 Let G = (V, E) be a graph. A set S CV is eternally
secure if it remains in € upon termination of ALGORITHM ES when

applied to G. The value es(G) is the smallest cardinality of a set in
.

We make the following observation regarding the function ug.

Observation 4 IfS is not an eternally secure set, then either ug(S) =
0 and S does not dominate G, or pc(S) > 0 and there exists a vertez

v such that pg(S') < pe(S) for every S’ produced by a response to
an attack on v.

For a starting defense S of guards which is not eternally se-
cure, uc(S) is a measure of the number of steps in the game, as-
suming optimum play by both participants. In the above example,
pe({z,z,b,d}) = 0 and pg({a,c, 2,¥}) = O since neither of these
two sets dominate G. Consequently, z¢({a, z,b,d}) = 1 since a is the
only response by {a, 2, b,d} to an attack on z and pc({a,c, 2,b}) = 1
since b is the only response by {a,c, 2,b} to an attack on y. Thus,
rc({a,b,c,d}) = 2 since the responses by this set to an attack on 2
produce either {a, 2,b,d} or {a,c, 2, b}.

The value of ug(S) found by ALGORITHM ES also can be de-
termined by the following recursive definition.

Definition 5 Let G = (V, E) be a graph. For a non eternally secure
set SCV

0 if S is nondominating

k if there is an attack on some vertez such that
any response produces a set S’ with ug(S') < k—1,and
some response produces a set S’ with pe(S’) =k -1

rG(S) =

In subsequent discussions we may speak informally of responses
to attacks in terms of the movement of a guard. In most such cases
the original and final sets of guards form eternally secure sets.
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References [2] and [4] present many examples of maximum-demand
graphs. These include paths, cycles, bipartite graphs, complete mul-
tipartite graphs, perfect graphs, and graphs for which the vertex
clique cover number is at most three. Other examples include the
Cartesian products K,;, X Ky, P, X Py, C4 X Cs, and Cs x Cs. Burger
et al [2] prove Tmn/23 < es(Cp X Cp) < 6,(Crp X Cp) in general. In
Section 2 we show C,, x Cy, is a maximum-demand graph for all values
of m and n. Section 3 discusses the situation for the coalescence of
two graphs, Section 4 presents results pertaining to a minimum non
maximum-demand graph, and Section 5 shows that graphs with no
subgraph homeomorphic to K4 are maximum-demand graphs. We
conclude with some open questions.

2 Eternal Security Number of C,, x C, and
P, x C, '

If m and n are both even, C,, X C, is bipartite and thus is a
maximum-demand graph. It is straightforward to demonstrate C,, x
C. is a maximum-demand graph for n < 3 and m > n. Thus we may
assume n > 4 and m > 5 is odd. The following theorem solves all
the remaining cases.

Theorem 6 Letn and m be integers where n > 4 and m > 5 is odd.
Then Cy, x Cy, is a mazimum-demand graph.

Proof: It is easy to see that 6,(Cr, x Cp,) = [Z2]; hence, by The-
orem 1 es(Cp x Cp) < [B2]. We claim that es(Cp, x Cy,) has
the same value. Without loss of generality assume that either n is
even, or n is odd and n > m. Embed the vertices of C,, x C, on
the m by n lattice {(4,j) : 0 < i <m-1,0< j < n-1} such
that the vertices in any row or column form a cycle of Cp, x Ch.
Designate the vertex at (i,7) by vij. For 0 < t < m — 1, let
dy = {’Ut,o,vt+1,1,vt,2,vt+1’3,vt,4, .. ,'Ut+1,n—l} if n is even and let d,
= {Ut,o, Vt+1,15 -+« Utdbm—1,m—1y Vt+m—2,ms Vt+m—1,m+1) Vt+m—2,m+2,
vvvy Vt4m—1,n—1} if n is odd. In both cases the addition in the first
subscript is modulo m. Figure 2 gives two examples, with the vertices
of do marked with circles and those of dy with squares. Note that
dy U di1, with the subscript modulo m, is an independent set and
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the closed neighborhood of d; is do Ud; Udy. Let S be an eternally
secure set for Cp, X C,. Let S; be the set produced by attacking the
vertices of dy U dy in any order. The independence of dy U dy implies
that S contains all of these 2n vertices. Let S» be the set which
is produced by then attacking the vertices of d; in any order. All
responses to the attacks on dy must come from dp Ud; Udy. Without
loss of generality, [5] of the vertices in dg do not respond to these
attacks. Thus, |SaNdoUdy| > n+ [§]. Let S3 be the set produced
by then attacking the vertices in d3, ds,...dm—2 in any order. These
vertices form an independent set and are disjoint from the closed
neighborhood of dg U d;; hence, all of these "—('-";—3-)- vertices must be
in S3. Furthermore, no vertex in do Ud; can respond to any of these
attacks. It follows that |S3| > n + [2] + 2m=3) — [ma]. By the
definition of response, |S3| = |S|; hence, since S was an arbitrary
eternally secure set, es(Cp, x Cp) 2 [B2] and the result follows 0O

[&] )
‘a..\l
1 7N\

rL (@)

y/

The following general observation is useful in determining es(FPp, X
Ch).

Observation 7 If H is a spanning subgraph of graph G, then es(H) >
es(G).

Using this observation and the fact than 6,(Pm, X Cp) = 0y(Pm X
P,) = 6,(Cy, x Cy), we have the following result.

Theorem 8 The graphs P, xCp, and Pp,x P, are mazimum-demand
graphs.
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Of course, the fact that P, x P, is a maximum-demand graph
was known previously. [4]

3 On the Coalescence of Two Graphs

Let H and K be graphs with designated vertices vy and vk, respec-
tively. The coalescence G of H and K, written G = H o K, is the
graph obtained by identifying vy and vg. We designate the common
vertex in G by v, and, for convenience, also employ v for vy and vk
when discussing either H or K alone. Furthermore we call the copies
of H and K in G by the same symbols H and K, respectively.

Lemma 9 Letv be a vertez in a graph G. Then es(G—v) > es(G)—
1.

Proof: Any eternally secure set of G —v along with v is an eternally
secureset of G. O

Lemma 10 Let G = Ho K. Then 0,(H) + 0,(K) — 1 < 6,(G) <
6y(H) + 0,(K) and es(H) + es(K) — 1 < es(G) < es(H) + es(K).

Proof: The upper bounds are immediate since the unions of es-
sets or vertex clique covers for H and K forms an eternal security
set or vertex clique cover, respectively, of G. The lower bound for
6,(G) follows since it can be smaller than 8,(H) + 6,(K) only if v is
in a singleton clique of a minimum vertex clique cover of either H or
K, and then the total number of cliques required is reduced only by
one from 6,(H) + 6,(K).

Suppose es(G) < es(H) + es(K) — 2 and let S be an es-set of
G. Note that no vertex of H — v can respond to an attack on a
vertex of K — v, so, |SN V(K)| > es(K — v) and, by Lemma 9,
|ISNV (K)| > es(K)—1. Similarly, |SNV (H)| > es(H)—1. The upper
bound on es(G) implies at least one of the inequalities is an equality.
Without loss of generality, we assume |SNV(H)| = es(H) — 1 which
implies SNV (H) is not an eternally secure set for H. Among all such
sets we choose S so that py (SNV(H)) is a minimum. Since SNV (H)
is not an eternally secure set for H, there exists a vertex z € V(H)-8
such that either (i) SN V(H) does not dominate z or (ii) for every
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S’ produced by a response to an attack on z, py(S' NV (H)) <
pa(SNV(H)). Thus, no vertex of SN V(H) can respond to an
attack on z without contradicting the definition of S. If z # v, then
all responses from S to attacks on = must come from SNV (H) and
we contradict S being an es-set for G. Therefore, v = z ¢ S and
SNV(H) = SNV(H —v). If now we restrict attacks to K, then the
vertices of SN V(H) cannot respond. Therefore, S — (SNV(H)) is
an eternally secure set for K. Again we have a contradiction since
|S=(SNV(H))| < (es(H) +es(K) - 2) — (es(H) — 1) = es(K) — 1.
]

We show next that if H and K are maximum-demand graphs,
then there is a condition under which H o K is a maximum-demand
graph.

Proposition 11 Let G = Ho K where H, K, H—v, and K —v are
all mazimum-demand graphs. Then G is a mazimum-demand graph.

Proof: By Lemma 10 we may restrict our attention to the case
es(G) = es(H) + es(K) — 1 and 6,(G) = 0,(H) + 0,(K). Observe
that no minimum vertex clique cover of either H or K contains v in
a singleton set. Let S be an es-set of G.

Case 1. Suppose v ¢ S. The condition es(G) = es(H)+es(K)—1
implies either |[SNV(H)| < es(H) —1or |SNV(K)| < es(K) — 1.
Assume without loss of generality that |SNV(H)| < es(H) — 1. By
construction, no vertex of K — v can respond to an attack on H — v;
so, v ¢ S implies that SNV (H) = SNV (H —v) is an eternally secure
set for H — v. Thus, es(H — v) < es(H) — 1. By assumption H — v
is a maximum-demand graph and we have 8,(H —v) = es(H —v) <
es(H) — 1 = 6,(H) — 1. Therefore, we can add {v} to a minimum
clique cover of H—v to obtain a minimum clique cover of H, contrary
to the above observation.

Case 2. Next suppose v € S. Here the condition es(G) = es(H)+
es(K) —1 implies either |SNV(H)| < es(H) or |SNV(K)| < es(K).
Assume without loss of generality that |SNV (H)| < es(H). Suppose
v is required to respond at some point to an attack on H—v producing
an es-set S’ of G. In that event, v ¢ S’ and we proceed as in Case
1 by substituting S’ for S. Otherwise, SNV (H — v) is an eternally
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secure set for H —v and es(H —v) < |SNV(H —v)| < es(H) — 1.
This leads to the same contradiction as in Case 1. O

Proposition 11 is not valid if the condition that H —v and K —v
are maximum-demand graphs is removed. One of the examples due
to Goddard, Hedetniemi, and Hedetniemi [4] shows that 3 = es(G) <
0,(G) = 4 if G is the complement of the Grétzsch graph shown in
Figure 3. We employ this fact in showing that the proposition does
not extend.

Grotzsch graph Complement of Grétzsch graph

Figure 3: The Grotzsch graph and its complement

Create a graph H by adding a pendant vertex v adjacent to vertex
4 in the complement of the Grotzsch graph. Because v, 1, and 5
are independent, there exists an es-set S of H that contains them.
Suppose that S = {v, 1,5}. Attack vertex 3. Vertex v cannot respond
since it is not adjacent to vertex 3. If vertex 1 responds, vertex 9
is not dominated. If vertex 5 responds, vertex 2 is not protected.
Thus es(H) > 4. It is easy to see that 6,(H) = 4, so es(H) = 4.
Let K = H and form G as the coalescence of H and K with the
vertex v’s identified. Then three vertices form an eternal security set
of H — v and four of K. It follows that es(G) = 7 but 8,(G) = 8
so Proposition 11 does not extend. Notice that if F is the graph
formed by coalescing n copies of H at the vertex v, es(F) = 3n + 1
and 6,(F) = 4n, so the difference in the two values can be arbitrarily
large. This arbitrary difference also can be shown by the examples
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in [4].

4 Adding Paths

This section is concerned with when it is possible to construct maximum-
demand graphs by adding paths to a known maximum-demand graph.
The following four lemmas provide useful tools.

Lemma 12 Suppose H is an induced subgraph of graph G. If S is
an eternally secure set of G such that |SNV (H)| is mazimized, then
SNV(H) is an eternally secure set of H.

Proof: Suppose not. Choose S to be an eternally secure set of G
such that [SNV(H)| is maximized, SNV (H) is not an eternally secure
set of H, and pg(SNV(H)) is minimized. Since SNV (H) is not an
eternally secure set of H, there exists a vertex z € H such that either
(i) SNV (H) does not dominate z or (ii) if w € SNV (H) is a response
to an attack on z, then py (((SNV(H))Uz)—{w}) < pa(SNV(H)).
The choice of S precludes (ii); hence, (i) holds and no vertex of
S NV(H) can respond to an attack on z. Therefore, the response
from S to an attack on z comes from G — H which contradicts the
maximality of |SNV(H)|. O

Lemma 13 Suppose graph G is obtained from graph H by adding
a path P of length at least two between distinct vertices v and w.
Suppose v and w are contained in every es-set S of G such that
|SNV(H)| is mazimized. Either |SNV(H)| > es(H)+1 or es(H —
{v,w}) = es(H) — 2. Furthermore, if v and w are adjacent, |S N
V(H)| > es(H) + 1.

Proof: Suppose v and w are contained in every es-set S of G
such that |S N V(H)| is maximized and let S be such a set. By
Lemma 12, |SNV(H)| > es(H). Suppose |SNV(H)| = es(H). If
we restrict our attacks to H — {v, w}, then v and w cannot respond
without violating the assumption that they are in every es-set with
maximum intersection with H. This implies that SNV (H — {v, w})
is an eternally secure set for H — {v,w}. Thus, es(H — {v,w}) <
[SNV(H — {v,w})| = [SNV(H)| —2 = es(H) — 2. Since adding
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{v,w} to any eternally secure set of H — {v, w} produces an eternally
secure set for H, we have es(H — {v,w})+2 > es(H); hence, es(H —
{v,w}) = es(H) — 2. If v and w are adjacent, then SNV (H —v) is
an eternally secure set of H which implies |SNV(H)| > es(H) + 1.
a

The proof of Lemma 13 actually suffices for any cutset {v, w} but
we do not require that result here.

Lemma 14 Let n > 3 and suppose G is obtained from graph H by
adding a path P = (vq,vs,...,vn) between distinct vertices v1 and v,
of H. Let S be an es-set for G. If |SNV(H)| > es(H) + 1 then
es(G) > es(H) + [5] - 1.

Proof: Attacks on the [3]—2 independent vertices v3, vs, ..., Vg[n]-3
cannot be responded to by vertices in H. Thus [S—V(H)| > [ %T -2
and es(G) = |S| = |SNV(H)|+|S-V(H)| 2 es(H)+1+[2] -2 =
es(H)+[3]-1. O

Lemma 15 Supposen > 4 is an even integer and G is obtained from
graph H by adding a path P = (v, vy, ..., v,) between distinct vertices
v1 and v, of H. If there ezists an es-set S for G such that |[SNV (H)|
is mazimized and |S N {v1,vn}| < 1, then es(G) > es(H) + % — 1.

Proof: Without loss of generality suppose v; is not in S. By Lemma
12, SN V(H) is an eternally secure set for H, so |S NV (H)| >
es(H). Attacks on the independent vertices vg,vs,...,vn—2 cannot
be responded to by vertices of H which implies |S - V(H)| > 3 — 1.
Thus, es(G) = |S| = |SNV(H)|+|S-V(H)| > es(H)+%-1. O

Theorem 16 Letn > 4 and suppose G is obtained from graph H by
adding a path P = (v1,vy, ..., Un) between distinct vertices v1 and vy
ofH. If H, H—wv, H—vy, and H— {v1,v,} are mazimum-demand
graphs, then G is a mazimum-demand graph.

Proof: Adding {v2,vs}, {vs, vs}, ..., {vorz1-2, 02[12‘-]—1} to a clique
cover of H provides a clique cover of G, so GU?G) <6,(H)+[3]-1
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If es(G) > es(H) + [5] — 1, the theorem follows from the assump-
tion es(H) = 6,(H) and the inequality es(G) < 6,(G). Conse-
quently, we assume that es(G) < es(H) + [5] — 2. Let S be an
es-set for G such that |S N V(H)| is maximized. By Lemma 12,
SNV(H) is an eternally secure set of H. By the contrapositive to
Lemma 14, |SN V(H)| < es(H); hence, |[SNV(H)| = es(H) and
IS — V(H)| < [3] — 2. Also attacks on the [5] — 2 independent
vertices v3, us, . . ., V1 49(j2]—2) cannot be responded to by vertices of
H; hence, |S — V(H)| = [2] — 2 and es(G) = es(H) + [2] - 2.

If n is even, the contrapositive to Lemma 15 implies |SN{v1,vn }| 2
2 and hence the hypothesis of Lemma 13 is satisfied. Thus, by Lemma
13, es(H — {v1,vn}) = es(H) — 2. Adding {v1,va}, {vs,v4},..
{’Ugl'n’l 1, Vo[ 1} to a clique cover of H — {v1,v,} provides a chque
cover of G; 50, 0,(G) < 0y(H — {v1,vn}) + [5] = es(H — {v1,v,}) +
[3] = es(H)—2+[%] = es(G) and the theorem follows in this case.

Suppose n is odd. If every such S contains both v, and vy, then
the hypothesis of Lemma 13 holds and we may proceed as in the even
case replacing {vzf 1-1>V2[2 1} with {'Ug[ﬂ‘l 1} Otherwise, we may
assume without loss of generallty that v; is not in S. Produce S’ from
S by attacking the [3]—2 independent vertices vo, v4, . . ., Un-3. Since
v; ¢ S, these attacks cannot be responded to by vertices of H. Thus
IS'"NV(H)| = |SNV(H)| =es(H) and |S' -V (H)|=|S-V(H)| =
[21 — 2; hence §' — V(H) = {v2,v4,...,vn-3}. Thus, v, must be
in S’ in order to dominate v,_;, and furthermore it cannot respond
to attacks on H — v, without leaving v,-; unguarded. It follows
that S’ N V(H — v,) is an eternally secure set for H — v,. Hence,
es(H — v,,) < es(H) — 1. By assumption 8,(H — v,) = es(H — vy).
Also, adding the [3] — 1 cliques {v2,vs}, {vg,v5},.. ., {vn-1,va} to
a clique cover of H — v, produces a clique cover of G. Therefore,
0,(G) < Oy(H —vn) +[3] —1 < es(H) -1+ [%] — 1= es(G) and
the theorem follows. O

Theorem 17 Let G be obtained from graph H by adding a path P =
(v1,v2,v3) between adjacent vertices vy and v3. If H and H—{vy,v3}
are mazimum-demand graphs, then G is a mazimum-demand graph.

Proof: Clearly 8,(G) < 0,(H) + 1 and es(H) < es(G) < es(H) + 1.
If es(G) = es(H) + 1, the result follows from the assumption that
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es(H) = 6,(H). Thus suppose es(G) = es(H). Since v; and v3
are adjacent, the contra-positive to Lemma 13 implies there exists
an es-set S of G such that |S N V(H)| is maximized and either v;
or v3 is not in S. Without loss of generality we assume v; ¢ S.
Since |SNV(H)| = es(H) = es(G) = |S|, the vertex v ¢ S. This
implies that v3 € S or vz would be unguarded. Note that vs cannot
respond to any attack on H — P without leaving ve unguarded. Thus,
SNV(H — P) is an eternally secure set for H — P which implies
es(H—P) < es(H)—1. By assumption, 8,(H—P) = es(H—P). Thus
6,(H — P) < es(H) — 1 = 6,(H) — 1. Adding the clique {v1,v3} to
any vertex clique cover of H — P creates a vertex clique cover of H, so
6,(H) < 6,(H—P)+1. We conclude that 8,(H) = 6,(H—P)+1 and
there exists a minimum clique cover C of H such that {v;,v3} € C.
Then, (C — {v1,v3})U{v1, v, v3} is a clique cover of G of size 6,(H).
Thus, 6,(G) < 6,(H) = es(H) = es(G) and the result follows. O

It clearly is not true in general that es(G) = 6,(G) if G is ob-
tained from H by adding a path of length one between two vertices
of H, even if every subgraph K of H satisfies es(K) = 6,(K). Sim-
ply consider the complement of the Grdtzsch graph minus an edge.
The only remaining case to consider is adding a path of length two
between two independent vertices. This case remains open.

5 Eternal Security Number of K, Minor Free
Graphs

A graph is said to be K4 minor free if it contains no subgraph home-
omorphic to K4. Let F be the set of graphs that do not contain a
K4 minor. We begin with a lemma for 2-connected graphs in F.

Lemma 18 Suppose G is 2-connected and does not contain K4 as a
minor. Then either G is a cycle or G contains a cycle with ezactly
two vertices of degree greater than two.

Proof: If G is not a cycle, then obtain G’ from G by suppressing
all divalent vertices. Note that G’ is still 2-connected and does not
contain Ky as a minor. Therefore G’ is a series-parallel multigraph
and can be constructed recursively from a K3 by the operations of
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subdividing and doubling edges (see Diestel [3], p. 185). By con-
struction G’ contains no divalent vertices; hence, G’ contains parallel
edges. Any two parallel edges in G’ correspond to a cycle in G which
satisfies the conclusion of the Lemma. O

Armed with this lemma, we proceed to the result.

Theorem 19 Every graph which does not contain a K4 minor is a
mazimum-demand graph.

Proof: Suppose not. Let G be a minimal member of F which is not
a maximum-demand graph, that is, G is not a maximum-demand
graph but every proper subgraph of G is a maximum-demand graph.
Note that es(G) and 8, (G) are the sums of the corresponding values
of the components of G. Thus, since G is minimal in F, G is con-
nected. If G has a cutvertex then there exist nonempty subgraphs H
and K of G such that G = H o K. Since G is minimal in F; H, K,
and all subgraphs of H and K are maximum-demand graphs. Thus,
by Proposition 11, G is a maximum-demand graph, a contradiction.
Thus, we may assume that G is 2-connected.

If G is a cycle, we are done. Otherwise let G be a 2-connected
minimum member of F with respect to being a maximum-demand
graph. By Lemma 18, G contains a cycle C with exactly two vertices,
z and y, of degree greater than two. Let P, and P, be the two
internally disjoint paths in C with ends z and y. Let /; be the length
of P; and assume, without loss of generality, that l; > lp. Let H
be the subgraph of G which is obtained by deleting the edges and
internal vertices of P;. Since G is minimum in F, H and all of its
subgraphs are maximum-demand graphs. If /; > 3, Theorem 16
implies G is a maximum-demand graph, a contradiction. If [; = 2
and I = 1, Theorem 17 shows G is a maximum-demand graph, again
a contradiction. If [; = 1, then P; and P are parallel edges which
implies 8,(G) = 6,(H) and es(G) = es(H). Since H is a maximum-
demand graph, so is G, yet another contradiction.

The only remaining case to consider is l; = ly = 2. Let V(P) =
{z,u,y} and V(P;) = {z,v,y}. Let S be an es-set for G such that
SNV(H — C) is maximized. Let S’ be the response produced from
S by attacking u and v. These attacks cannot be responded to by
vertices in H — C. Thus S'NV(H -C) = SNV(H - C). By

125



Lemma 12 SNV (H — C) is an eternally secure set for H — C. Thus,
es(G) = es(S’) > es(H — C) + 2. Adding {z,u}, {y,v} to any clique
cover of H—C produces a clique cover of G, so0 8,(G) < 8,(H—C)+2.
Since G is minimum in F, es(H — C) = 6,(H — C). Therefore,
0,(G) < es(H — C) + 2 < es(G) which implies 6,(G) = es(G),
once again contradicting the assumption that G is not a maximum-
demand graph. The theorem now follows. O

The following corollary is immediate.

Corollary 20 Every series-parallel graph is a mazimum-demand graph.

6 Open Questions

The study of eternal security seems to be both difficult and rife with
interesting questions. Here are three.

1. Goddard et al [4] wonder if toroidal graphs are maximum-
demand graphs. We take this down a notch and pose the same
question for planar graphs.

2. If S is an eternally secure set, does S contain a minimum eter-
nally secure subset?

3. Goddard et al [4] show that if 8,(G) = 2, then es(G) < 3 and
they ask if there is a similar bound on es(G) when 8,(G) = 3.
We feel this question is worth repeating and offer the following
partial solution: If 3,(G) = 3 and there exists an independent
set of vertices S = {a1, as, a3} which is in no induced K: 33, then
es(G) < 15. To see this let A4; be the set of vertices adjacent
to a;. Notice that {a;} U (4; — (4; U Ay)) is complete and
Bu((A; N Aj) — Ag) < 2 for distinct 4, j, and k. Furthermore,
since S is in no induced K33, 8,(A; N A; N A) < 2. By the
Goddard et al result, es((A; N A;) — Ag) < 3 (three sets) and
es(A; N A; N Ax) < 3. Adding one guard for each complete
graph {a;} U (4; — (4; U Ay)) yields the 15.
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