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Abstract

In algebraic contexts Weyl group elements are usually represented
in terms of generators and relations, where representation is not
unique. For computational purposes, a more combinatorial repre-
sentation for elements of classical Weyl groups as signed permuta-
tion vectors was introduced in [§]. This paper characterizes some
special classes of Weyl group elements using this notation. These
classes are especially useful for the study of symmetric spaces and
their representations.

1 Introduction

Weyl groups are defined as reflection groups of root systems. That is, given
a root system ® in a Euclidian vector space V = R", for each vector a € &,
let s, be the reflection through a. The Weyl group is the group generated
by these reflections. In algebraic contexts, Weyl group elements are usually
given in terms of generators and relations. While this is useful for many
theoretical purposes, it is not efficient for computational problems since
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representation of an element as a product of generators is not unique. For
the classical Weyl groups the standard basis vectors e; in R™ will be mapped
to te; (where i and j may be equal). We use this to represent the Weyl
group elements in a more combinatorial manner, as signed permutations.

In this paper we give several results characterizing special types of Weyl
group elements. An involution 6 of the root system induces an involution
6 on its Weyl group by 8(w) := 6wd~1. If § is an involution of W then the
set Zp = {w € W | 6(w) = w™!} is called the set of §-twisted involutions
in W. This set is important in the study of orbits of minimal parabolic
k-subgroups acting on symmetric k-varieties, see 7, 8]. The geometry of
these orbits and their closures induce a poset structure on the set Zy. Un-
derstanding this poset structure is key to understanding the structure of the
orbits. In order to describe the orbits we need to have a characterization of
the twisted involutions. In this paper we give an explicit characterization of
these elements, when written in signed permutation notation. For § = id,
the identity map we get the set Zy ={w e W |w =w"1}.

Many of these results are relatively easy to state and easy to prove.
This is in contrast to similar results for Weyl groups using generators and
relations. Thus these results provide additional evidence of the usefulness
of this more combinatorial approach. This work will be used in a compu-
tational package for Weyl groups being developed by the first two authors.
The signed permutation notation for the classical Weyl groups and the re-
sults in this paper can also be used to simplify the algorithms for symmetric
spaces such as those found in [1, 2] and [3]. Those papers depend heavily
on the presentation of the Weyl group in terms of generators and relations,
but can be reframed.

2 Preliminaries and Notation

2.1 Classical Weyl Groups and Signed Permutations

In the Classical Weyl groups (those with root systems corresponding to
Dynkin Diagrams of type A, B, C, and D,) each root is the sum or dif-
ference of at most two standard basis vectors e;. Weyl groups of root
systems of type B and C are the same, hence from now on we only discuss
type B. An element w € W can be completely described by its action
on the e;. In particular, w(e;) = +e; for all 7, j not necessarily differ-
ent than i. For a nonzero real number a, define sgn(a) = +ifa > 0 and
sgn(a) = —ife < 0. We represent w € W by the vector (a;,as,...a,),
where w(e;) = sgn(a;)e|,;. That is, the vector corresponds to a signed
permutation matrix where the ith column has its £1 in the a;th row, and
the sign of a; equals the sign of that unique nonzero entry. Equivalently,
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starting with the permutation of the standard basis vectors in standard

notation
1 2 ... n -1 -2 ... -n
( a a ... @ —a1 —a2 ... —Qy )’
the signed permutation is just the first n places in the bottom row. Hence
the Weyl groups can be seen as subgroups of Ss,,.

The standard generators for Weyl groups correspond to reflections. The
Weyl group of type A,_; is generated by the transpositions s; = (1,2),s2 =
(2,3),83 = (3,4),...,8,—1 = (n — 1,n). Note this is Sy, the usual group
of permutations on n elements. The Weyl group of type B, is generated
by the transpositions s; = (1,2),s2 = (2,3),s3 = (3,4),...,80-1 = (n —
1,n),s, = (n,-n). Note that if w € W of type B, then w(—i) = —w(i)
for any ¢ = 1,...,n, justifying the use of only the first n positions in the
signed permutation notation. The Weyl group of type D, is generated
by the transpositions s; = (1,2),s2 = (2,3),53 = (3,4),...,8n-1 = (n —
1,n), and the element s, = (n, —(n — 1)) (n — 1, —n) which is a product of
transpositions. In this case as well, w(—i) = —w(i) for any i = 1,...,n.
To differentiate between the elements s, for B,, and D,, we will denote the
signed permutation (n, —(n — 1)) (n — 1, —n) in D, by s;.

The following proposition from [6] describes multiplication by basis el-
ements in signed permutation notation.

Proposition 2.2. Forl <i<mn,
(i) (a1,a2,...,an)8; = (a1,82,...,Qi41,8iy...,0n).
(i) Ifax =i, and a; =i + 1 then si(a1,a9,...,a,) =
(a1,@2,...,ak-1,580(ar)|a}, k41, - . -, @11, 5g0(ar)|ak|, @141, - -, @n),
(iii) (a1,a2,...,8n)Sn = (@1,82,...,8(n-1), —Gn)-
(iv) (a1,a2,...,a2)83 = (@1,82,..., ~@n, =Q(n-1))-
(v) If a; = n then sy(ai,az,...,an) = (a1,02,...,—01,...,0n).

(vi) Ifax =n — 1, and a; = n then sa(ai,a2,...,0k,...01...,0n) =
(a1,@2,-..,—sgn(ag)layl, ..., —sgn(ar)laxl, ..., an).

2.3 Involutions of Weyl groups

As shown in [4] it is sufficient to consider only those involutions 6 that fix
the basis of the root system, and hence involutions @ that fixes the set of
generators of W. For type A,_; the only non-trivial involution that fixes
the basis of root system is defined by 6(i) = (n+1 —1i), for 1 <% < 7.
For type B,, there are no non-trivial involutions that fixes the basis of root
system. For type D,, the only non-trivial involution that fixes the basis of
root system is defined by 6(3) =i, for 1 <i<n—1, and 6(n) = —n.
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3 Results

We characterize several special types of elements in the signed permutation
notation. We begin by characterizing inverses.

Proposition 3.1. (a1,a2,...a,)7" = (by,bz,...b,), if |bjas)] = ¢, and the
sgn(b;) = sgn(ay,)).-

For example, (4,-1,2,-3)"! = (-2,3,-4,1). Consider (a;,as,... ay)
as denoting the position and sign of the unique +1 in each column of the
matrix A, then the inverse element is casily read off as the position and
sign of the unique +1 in each row of A.

Theorem 3.2. (i) Forw € W a Weyl group of type A,_, 8(w) = w, if
and only if w = (a1, 0z, ...,an) satisfies 6(a;) = an_i41 for alli.

(it) For w € W a Weyl group of type Dy, 8(w) = w, if end only if
w = (a1, @2, ..., Gy ) Satisfies a, = +n.

Proof. Recall that #(w) = fwh. For type An-1, ((a1,az,...,a,)) =
(6(as),6(an-1), -~ ,6(a1)) and result (i) follows. For type D,, if a; = +n

then 8((a,a2,...,a,)) = (a1,a2,...,a1_1, =@k, Qk41,- -+, 8n-1,—Cy) and
result (ii) follows. 0

It is difficult to tell whether an clement given by generators is in Zygq or
Zp. On the other hand, we can quickly see if an element given as a signed
permutation vector is in Zy4.

Lemma 3.3. An elementw = (a1, az,...ay) is in Zyq if and only if|aje;)| =
i for alli, and sgn(a;) = sgn(ay,,)).

Proof. This follows immediately from the characterization of inverses in
Proposition 3.1 above. O

Next we give a characterization of the signed permutation vectors that
are contained in Zy.

Theorem 3.4. Let W be Weyl group of type A,, and 0 the nontrivial
diagram involution. An element w = (ai,a2,...a,) € W is in Iy if and
only if a(ny1)—a; = (n+1) — 1 for all i.

Proof. First, if w™! = (by,...,bn) then bjq, = i for all i. Additionally, if
B(w) = (c1,...,¢n) then ¢; = (n + 1) — ay41-4, or equivalently, c,41-; =
n+1 - a;, for all i. Now, @pq41-q;, = n+1—1 if and only if by =
c,,+1-i=n+1-—ai. O
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Theorem 3.5. Let W be Weyl group of type D,,, and 6 the nontrivial
diagram involution. An element w = (a1,4ay,...ay) is in Iy if and only if
each of the following conditions holds:

(i) Fori# n, if a; = n then a, = —i.
(it) Fori#n, ifa; = —n then a, = 1.
(iii) Fori#mn, and j #n, if a; = J then a; = 1.
(iv) Fori#n and j #n, if a; = —j then a; = —i.
(v) No restrictions if a; = +i (even if i =n)

Proof. First, note that if w™! = (by,...,bn) then by, = isgna; for all i.
Additionally, 8(w) = (c1,...,¢n) is completely determined by

sgn(a;) if i #n and |a;} # n
a;{ —sgn(a;)ifoneof i=nor|a|=n
sgn(a;) if i =n and |a;] = n

c =

Suppose ¢; = b;. This implies |ajq,(| = i for all 4, that is |a;| = j if and
only if |a;| = . As well,

sgn(aq,)) if  # n and |a;| # n
sgn(a;) = { —sgn(a;) ifoneof i=nora;|=n
sgn(a;) if i=n and ja;]| =n

a

In [5] we developed an algorithm for computing the twisted (and non-
twisted) involutions. The algorithms generates the Z, and Z;q posets dis-
cussed in the introduction. Figure 1 gives the poset of the elements of Z
for the Weyl group of type A;. From each element there is an edge for
each group generator. The edges will correspond to one of two possible
operations. The following lemmas give the two possibilities. In Figure 1,
the operation in Lemma 3.6 is designated by a solid line while the operation
in Lemma 3.7 is designated by a dashed line.

Lemma 3.6. Given a Weyl group W, w € W, an involution 6 and a basis
element s;.

(i) If w € Tiq then sjws; € L.
(i) If w € Ty then s;wl(s;) € Ls.

Lemma 3.7. Given a Weyl group W, w € W, an involution 6 and a basis
element s;. ‘
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Figure 1: Poset of T, for type A4

(1) If w € Tiy and s;ws; = w, then sjw € Tiy
(i) If w € Iy and s;wl(s;) = w, then s;w € I,

The next theorems characterizes when each of the above operations will
be used. These lead to improved algorithms for computing the involution
posets. : ’

Theorem 3.8. Let W be a Weyl group of type An_,,B, or D,. For
i<n, ifwe W then s;ws; = w if and only if w = (ay,...a,) satisfies
{lail, lai1]} = {4, + 1} and sgn(a;) = sgn(ait1).

For Weyl group of type B,, then s,ws, = w if and only if w =
(@1,...a,) satisfies a, = +n. For Weyl group of type D,,, then sawsy = w
if and only if w = (a1,...0,) satisfies {|an—1],]ax|} = {n — 1,n}, and
Sgn(an-l) = Sgn(an)'

Proof. From Proposition 2.2 if ¢ < n then s;w acts on w by switching the
elements which are equal to +i and +(i+1) but leaving their signs in the old
positions, while ws; switches the elements in the ith and (i + 1)st positions
and their signs as well. Hence s;ws; = w if and only if {a;,a;4+1} = {i,i+1}
and sgn(a;) = sgn(ai4;). Similarly, multiplying on the right and left by
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s, changes the sign of the element in the nth position, and the sign of the
element that is +7. Finally, multiplying on the left and right by s; switches
signs of the elements in the (n — 1)th and nth positions and that of whose
absolute values are n — 1 and n so sawsz = w if and only if w = (ay,...ax)
satisfics {|an-1],|an|} = {n —1,n}, with perhaps some further condition on
the signs. To see that signs must be the same, compute according to the
rules of proposition 2.2.

sﬁ(aly az,... aan)sﬁ = Sﬁ(al, az, ..., —0n, _a(n—l))
= (al9a2a e ,sgn(an)|an..1|,sgn(an_1)|an|)
O

The next theorem gives the twisted case.

Theorem 3.9. Let W be a Weyl group of type A_1. Fori<n,ifwe W
then s;wl(s;) = w if and only if w = (a1, ... ay) satisfies {a(n—i), An-i+1)} =
{i,i+1}.

For W of type D,,, i < n-1, s;wd(s;) = w if and only if w = (ay,...an)

satisfies {|ai|, |ai+1|} = {i,i + 1} and sgn(a;) = sgn(aiy1). For W of type
D, andi=n—1 ori = n, then s;wé(s;) = w if and only if w = (a1,...ay)
satisfies {lan—li, ‘anl} = {n - 1an}x and sgn(a,-1) = _sgn(an)'
Proof. For the A, case, observe 8(s;}) = sp—;. Proceed similarly to the
proof of theorem 3.8. From Proposition 2.2 if i < n then s;w acts on w by
switching the elements which are equal to 7 and (i+1), while w8(s;) = ws,—;
switches the elements in the (n — )th and (n — i + 1)st positions. Hence
s;wh(s;) = w if and only if {a(n_i), @(n-i+n)} = {f, 4+ 1}.

For the D, case, note first that 6(s;) = s; if i < n — 1 so in these
cases s;wl(s;) = s;ws; and we get the same result as in theorem 3.3, Now
0(sp-1) = si. Both s,_1 and s;, operate on the elements (n—1) and n and
the (n — 1)st and nth positions. So that sws,—1 = w and sp—1wsy = w
if and only if w = (a,...a,) satisfies {|a,-1l,|an|} = {n — 1,n}, with
perhaps some further condition on the signs. To see that signs must be
opposite, compute according to the rules of proposition 2.2.

sn-1(a1,82,...,an)sa = Sn—1(a1,a2,..., —an, —a(n-l))
= (a1, @z, ..., — sgn(an)|an-1l, ~ sgn(an-1)ax|).
A similar calculation shows the s;ws,—1 = w also requires that sgn(a,,—1) =
- sgn(a,).
While both of the above theorems hold for all w € W, we are in fact
most interested in the case when w € Ziq, or w € Zy. It is interesting to
note that one of the conditions for w in Theorem 3.9 is that sgn(an—1) =

—sgn(a, ) which matches the criterion in Theorem 3.5, namely, if w € Zy
then sgn(a.—1) = —sgn(a,).
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