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Abstract

We introduce the ring of ordinomials which will be utilized in defining
the partial chromatic ordinomials of infinite graphs with certain prop-
erties - a generalization of chromatic polynomials of finite graphs.

1 The Ring of Ordinomials

Let O be the class of all ordinal numbers and Q* = @ — {0}. For more
information on ordinal numbers and their arithmetic see (4]. N denotes that
set of all positive integers while Ny is the set of all natural numbers.

First, we will define a free multiplication on the set B = {(A — ()| €
C,a € 0*}U {1} of formal objects by putting these building blocks next to
each other, satisfying the following axioms:

A1)(Vz; € B) (z1 2 = T2 71);
Az)(in € ]B) ((a:1 :Ez) T3 =TI (xz :Ba));
A3)(Vz € B) (z1 =1z);
Ay)(V¢ € C)(Vo; € O%)
(a1 € a3) = (A= QB (A= Q% = A= )22(A = % = (A= ()+).
To clarify how A4 works, we will give a few examples:
i) For k,l € N such that k < I, A=C)*(A=¢)} = (A=) (A=0)* = (A=¢)*+.
ii) For k € N, A= )*(A = OF = A= OF (A=) = (A= Q¥+ = (A= Q).
iii) (A= O“(A— O)¥2 = (A= Q2 (A= O = (A= Q*+2 = A= 2.
iv) A= QP = = A= QA= ¥ = A= QU = (A - ).
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Theorem 1.1 If B[A] denotes the set {[];—, z:|n € N, z; € B} defined
using the above multiplication, then B|)] is a free commutative monoid B

An element z of B[)] is called a reduced element, when z is either 1 or
[Tizi (A = €)™, for distinct {;’s. By reduced form of y € B[)], we mean a
reduced element z, such that y is equal to, by applying axioms A;, As, and
Ay, finitely many times. Consequently, reduced elements [T}, (X — ¢;)*¢
and l-[;.';l(/\ — &)% are equal, when n = m and there exist o € S, such
that ¢; = §,(;) and o; = B,(;), for i € {1, 2, ..., n}. By convention, we will
assume that 1 is not equal to any other reduced element.

Theorem 1.2 Every element of B[\] has a reduced form which is unique.B

From now on, we will assume every = € B[)] is a reduced element. For
every = € B[\, 1|z and if z = [];._, (A — ¢;)*, then for § € O* and ¢ € C,
(A=¢)? | z, when there exist i € {1, 2, ...,n},such that { = ¢; and 8 < o;.
Lety = ['[;';1 Y4, then y|z, if m < n and y; | z, for every j. By convention,
if z|1, then x = 1. If 2,y € B[)], then we will define the greatest common
divisor of x and y, denoted by (z,y), as the element z such that z|z and
z|y, and if w|z and w|y, then w| 2.

Assume that for y = [T;2, (A — §)% and & = [T7_; (A — G)*, y|z. So,
by definition m < n and (A — £;)% | [T, (A — G)%, for every j. Without
loss of generality, assume that £; = ¢; and as a result, B; < aj; Hence,
there exist v; such that 8; + 7; = a;. By using these facts, we have
z = y([[Z, (0 = &)™) ([Timmy1 (A = 6:)*). So, when y|z, there exist z
such that z = yz.

Our next goal is to define a degree function, denoted by deg(z), for every
element z of B[)]. Conventionally, deg(1) = 0. For z = [}, (A — ()™, let
B1,Ba, ..., Bn be the rearrangement of a3, as,...,an, such that §; < f <
... < Bn. Then, deg(z) is equal to the sum B + B2+ B3 +... + Bn. We will
call z purely infinite, when B is an infinite ordinal, which clearly implies
deg(z) is infinite. As deg( ) is now a well-defined mapping from B[] to O,
it is clear that for z,y € B[], if deg(z) # deg(y), then = # y.

If for z € B[], deg(z) is infinite, then it is easy to see that z can
be uniquely decomposed into the form yz such that y is purely infinite,
deg(z) € Ny, and (y, 2z) = 1. In the case that z is purely infinite, it is clear
that the decomposition would be z 1.

Now it is time to equip B[\] with a complex scalar product, defined as
7.2 = (7, z) € C x B[\] and having the following properties:

Py)(Vr € C)(Vz € B[A])((deg(z) € Ng) — (7 -z =1z € C[\]));
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[ Particularly, 7 -1 = 7 and to be more specific, 0 =0-1and 1=1-1]
P)(Vz € BA)((0-2=0) A (1-z=2));

P3)(vr € C)(Vz € BA)((7-2=0) — (T =0));

P)(V7; € C*)(Vz: € BN (1121 =72 - 22) = ((11 = T2) A (21 = 32) ).

We will define a free addition and a multiplication on elements of CxB[)]
having the following properties in order to introduce the desired free ring.

Addition:
PHYVr €C)(Vz; € BA) (n 21+ 72 T2 =72 - T3 + 71 - T1);
P)(vri € C)(Vzi € BA)) (1 -2y + (2 - T2 + 73 - 23) = (11 - %1 + T2 T2) + 73 - z3);
PH(Vri € C)(Vz €B)) (1 -z + 12 -z = (11 + 72) - T);
PH(VreC)(Vz eBM)(r-z+ 0 =7-z);
PH(Vr e C)(Vz € BA)) (T 2+ (-7) -z =0).
Multiplication:
PX)(Vr: € C)(Vz; € B)) ((11 - 31) X (72 - 32) = (m172) - (z122));
Py )(V7; € C)(Vx; € B[A])
(i 21 X (T2 T2+ T3 23) = (11 - T1 X T2+ T2) + (11 - 71 X 73 T3)),
((Tl Zy+ T Z) XT3 X3 = (T T1 X T3-23) + (T2 T2 X T3 '-'1?3));
PY)(VreC)(Vz eBA) (r-zx1l=1XT-2=7-2);
PX) (V1 € C)(Va; € B[N]) (11 - 21 X (72 T2 X 73+ 33) = ((11 - 71 X T2+ T2) X T3~ 23));
PJ)(Vr; € C)(Vz; € B[A]) (7'1 “IIX Ty T =Ty Ty XT -zl).

It is important to remark that one can deduce P;" from P, and P} and
P from P and properties of B[A] and C. It is easy to check that for every
7 € C and z € B[)], 0 x (r-z) = 0. The free ring we are looking for is
defined as

n
O\ ={> 7 z|neNmeCazeB}
i=1
Theorem 1.3 Q*[)\] is a free commutative ring having a multiplicative

identity.R

From now on, an element of @*[\] will be called an ordinomial and the
ring itself will be the ring of ordinomials as it is a free ring constructed in
a similar fashion as the familiar polynomial rings were and it also utilizes
ordinal arithmetic.

Theorem 1.4 C[}] is a subring of O*[)].
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Proof: Let p(A) be an element of C[A]. It is clear from P; and the funda-
mental theorem of algebra that p(A) € 0*[)], and thus C[\] C O*[)]. Now,
define g : C[A] < O*[)] that maps every element p()) = T, A" + - -+ T2 A2 +
TiA+70 (n € N, 7; € Cand 7, # 0) of C[A] to Ty - A+ + -+ 79 A2 471 -A47p-1
of @*[A]. It is easy to check that g is a well-defined mapping and for ev-
ery p(}) and q(}), g(p()) + (X)) = g(p(2)) + g(g(})) and g(p(N)g(N)) =
9(p(X)) x g(g(X)). M

Let’s assume that for x = 0. | 7 - =, Fy C {1, 2,...,n} is the set
of all ©’s such that deg(z;) is finite. If F, is non-empty, then for i € F,
7; - Z; is in C[)] and so is Yie F, Ti - Ti. Without loss of generality, assume
that, for 1 <k <n, F; = {k,k+1...,n}. As Yier, Ti - T3 is in C[A],
three cases may occur: it is equal to zero, a non-zero complex number, or
a polynomial. If it is equal to zero, then we will omit it from = and rewrite
T as Zf__:ll T; - Z3; If it is a non-zero complex number, say 7, we will rewrite
T as Zf;ll 7i % + 7 - 1; Finally, if it is a polynomial 7 - y with y € B[], we
can rewrite z as Y T T =Y iy T Ti+T- Y.

With regard to the above observation, we call an ordinomial z polyno-
mially reduced, when the set F; defined above is either empty or a singleton.
From definition of 0 = 0- 1, Fy = {1}. By polynomially reduced form of
Y, we mean a polynomially reduced ordinomial z which y is equal to using
the above process. Thus,

Theorem 1.5 Bvery clement of O*[)\] is equal to a polynomially reduced
ordinomial. W

Now, let z = 2;;1 T; - Z; be a polynomially reduced ordinomial such
that either F; is empty, or if not, n > 1. So, either deg(z;) is infinite for all
i, or for all except one index which we assume it is equal to n. If the former
happens, we know that every z; can be decomposed into y;z; such that
deg(y;) is infinite, deg(z;) € Ny, and (y;, 2;) = 1. If the latter happens, we
will do the same except for z,,. If all y;’s are distinct, we will call = a reduced
ordinomial. Now, assume they are not all distinct. We will partition the
set of indices into S;,S5,,...,S5, while S; contains all the indices ¢ such
that y;’s are equal; In latter case, we will assume that S,, = {n}. Then,
we have z = Eiesl T T + ZieSz T T+ + EieSm 7; - ;. We assume
for1 <j<m, y; = y; such that ¢ € S;; In latter case, we will assume that
Ym = 1. So, we can rewrite T as y; X (X, Ti - 2:) T Y2 X (Lies, 7= %) +
syl X (Ziesm Ti-2;). For1<j<m, Zjiesj T; - z; is a member of C[\]:
If it is zero, then y; x (3_;¢ s; Ti -z;) = 0; If it is a non-zero complex ¢;, then
Y5 X (e s; Ti - 2;) = y; X ¢; = ¢; - y;; Finally, it is equal to a polynomial

¢; - z;, then yj x (Xies; T 2i) = yj X &5+ 2; = ¢ - y;2; = ¢; - ¥z in
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which zJ is an element of B[A] such that y2 is the reduced form of y}2

and (y}, 2]) = 1. By rewriting z as described, z will either be equal to zero
or a reduced ordinomial. When n = 1 and F, is not empty, then z is a
polynomially reduced element of C[A] which would be a reduced ordinomial

by definition; Hence, 0 is a reduced ordinomial.

By the reduced form of an ordinomial y, we mean a reduced ordinomial
z such that y is equal to = by going through the processes described above.
If y becomes zero, we will call y a degenerate ordinomial; Otherwise, it is
called a non-degenerate ordinomial.

Theorem 1.6 Every element of O*[)] is equal to a reduced ordinomial. W

Let z = Y, 7; - z; be a non-degenerate ordinomial such that F, is
empty and for every i, z; is a purely infinite element of B[)\]; Then, we will
call z a purely infinite ordinomial. When, only F is empty, = is just called
an infinite ordinomial.

If 37, 7 - ; is a non-degenerate ordinomial, then so is 31, (—7:) - z;.
Moreover, It is clear that when one is purely infinite (or just infinite), so
would be the other.

Theorem 1.7 Ewvery element of O* ()] is either equal to 0 or a unique non-
degenerate ordinomial up to permutation of indices.

Proof: We only have to prove that if non-degenerate ordinomials z =
Y Ti-ziand y = Y70, @; - y; are equal, then n = m and there exist
o € Sy, such that 7; = @,(;) and z; = y,(;) for all i. Three cases may occur:
1) F; and F;, are both empty which is the case when they are both infinite
ordinomials; 2) F; and F, are non-empty sets and we assume F, = {n}
and Fy, = {m}; 3) Just one of F; or F, is empty. We start with the first
case:

Let >0 7i-z;and 3 7" =195 yJ be infinite non-degenerate ordinomials
such that z; = z{z] and y; = yjy; are the unique decomposition of z;
and y;; Clearly, (m,,z") =1 and (yJ, 7) = 1. Now assume that z}’s and
y;'s are all distinct elements of B[A]. It is not hard to see that the sum
ST m o T b U = T 7 (54al) + S b5 (44) s also an
infinite non-degenerate ordlnomlal

Now, assume that infinite non-degenerate ordinomials } .., 7; - z; and
23_1 ®;-y; are equal to each other. Let z, =/, y_,, and y ! be defined as was
defined in the previous paragraph. We can write i, 72+ 32, (—¢;) -
Yi = 2oiey Ti - (zhal) + 21_ —¢;) - (y397) = 0, and clearly there exist i,
and ji, such that =i = y; . As zi’s and y;’s are all distinct, z}, is only
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equal to y;I, and vise versa. Without loss of generality, assume i; = n and

si=mand z=uz; =y,. So, Z"—ll Ti+ (%} ”) +Xia 1( —;)- (!/;yél) +2zXx
(Tn-zp+(—0m) -y ) =0.Ifr, -zl +(— ¢m) Yo, is not equal to zero, because
z is distinct from the rest of z}’s and ¥;’s, the sum cannot be degenerated
to 0. So, 7, - ) = @ - YIh and as a result Tn = ¢m and zj, = yJ;,; Hence,
Tn = Y- Z,:l 7+ (@) + S5 (=45) - (W) = 0. By repeating the
argument given above we can prove that n = m and there exist o € S,
such that y; = z,(;) and ¢; = To(i)-

Now, assume for z = Y I | 7; - z; and Y1 & yj, we have z = y,

= {n}, and Fy, = {m}. So, we can write 3"1"' 7 - z; + 173 (- 4;) -
yJ + 70 Tn + (~bm) - Ym = 0. Assume 7, - T, and (—oy) - ym are not
equal. Then, on one side of the above equation we have a non-degenerate
ordinomial while the other side is zero which is impossible. It follows that
Tn*Tn = @m - Ym and as a result 7, = ¢, and :1:,, = Ym. So, we can
rewrite the above equation as Y0 ' 7 - z; + 2'"_ (-¢5)-y; =0 Ifn
and m are both greater than 1, then we can argue as we did for the first
case; If one was 1 while the other one was greater than 1, we would have a
non-degenerate ordinomial equal to 0 which surely is not possible; Finally,
if they are both equal to one we are not left with anything to argue about.

Finally, for non-degenerate ordinomials = and y, assume that z = y and
F; = {n} while F, is empty. Clearly, this case can not happen.l

From now on by an ordinomial we mean either 0 or a non-degenerate
ordinomial. The degree of an ordinomial z = S . Ti - zi, denoted by
deg(z), is defined as the largest ordinal occurring in the set {deg(z;)|i =
1,2,...,n} and as 0 = 0- 1, have deg(0) = 0. Our previous theorem
asserts that deg( ) is a well-deﬁned mapping from O*[A] to ©. So, for z
and y ordinomials, if deg(z) # deg(y), then z # y. An ordinomial z is
called a monic ordinomial, when for all i, 7; = 1 and deg(z) > 0.

The subset {1-z |z € B[]} of O*[A] denoted by B[A] and armed with x,
is a monoid isomorphic to B[A]. From P; it is clear that if 1-z and 1-y are
elements of B[A], then 1-zx1.y = 1- = 1-zy is not equal to zero. It is clear from
definition that every element of B[)\] is a monic ordinomial. On the other
hand, if M[}] is the set all monic polynomials in C[}], we know that with
polynomial multiplication it is a submonoid of C[A] homomorphic to B[)].
This observation will be used in our next section in which we talk about
chromatic ordinomials. But in general, as one may see in the following
example, ©*[)] is not an integral domain: (A — ¢)*’ x (A=) * +(-1)-

A=) == +(-1)- (A -0 =0.

At the end of this section, we will now develop a limit operation which
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would be the foundation of how chromatic ordinomials will be defined for
infinite graphs in section 2. Let f : N — N (f : w — w) be an order
preserving mapping, meaning that if k; < ks, then f(k1) < f(k2). We will
define limg_.,,(A — ¢)*) as follows:

,Pm()\__ C)f(k) - b(m()\ - C)f(k) — (,\_C)(Uk<uf(k)).

In addition to that this limit operation has the properties

n

131—121 (- H()\ — ()i )=7- (g ,2‘_{‘},()‘ AL )

i=1

for distinct complex numbers ¢; and order preserving mappings f; : N —
N, and

n mi n mj
Jim O [T = ¢ ®)) =" ( Jim (7; - TIr = Gs)fe®))
i=1 i=1 i=1 j=1

such that for every i, (;; are distinct complex numbers and f;; : N— N
are order preserving mappings. One may clearly see that

i) limg—u(X — Q)f®) = (A — ¢)*, when there exist M € N such that for
k> M and ko € N, f(k) = ko.

i) img—w (A = ¢)F%) = (X — ¢)¥, otherwise.

If f(k) can be decomposed into the form f; (k) + f2(k) in which f1, f2:
N — N are two other order preserving mappings, then following is not
necessarily valid

Jim (A= ()® = (Jim (A~ ()®) (lim (A~ ¢)72¥)).

For example, we know limg_. (A — €)% = (A — ¢)“. On the other hand,
we can decompose 2k into the form k + k; So, we have (limg_,(A —
¢)F)(limp—w (X — O)¥) = (A = ¢)?(A = ¢)¥ = (A — ¢)“2 which is not equal
to (A = {)v.

2 Partially Defined Chromatic Ordinomial

The chromatic polynomial of a finite graph I', C(T'; A), is the polynomial in
A which counts the number of distinct proper vertex A-colorings of I, given
A colors. For more information on chromatic polynomials see [1], (2}, and

[3]-

135



By a sequence of graphs, we mean the family {I',}nen in which [,
is a finite graph. We call a sequence, a chain of graphs provided that
clyc:--cIl'y C--+ andfor all n € N, |V(T,)| = f(n) in which f(n)
is a strictly increasing function from N to N. When for alln € N, I',, is
connected, the sequence is called a sequence of connected graphs. On the
other hand, if there exists M € N such that for all n € N, A([',) < M, then
we call {T';}nen a finite-degree sequence of graphs. It is obvious from our
definition that {Ny,}.en is a finite-degree chain of (disconnected) graphs
while {K,}nen is a (non-finite-degree) chain of connected graphs. Finally,
a chain {T',}nen is called non-oscillating provided that for all n € N and
for all v € V(Tp)\V(I'u-1), for every m > n, dr,, (v) = dr, ., (v).

A chain is called chromatically conformel, when for m € N, there exist
distinct (3, 2, ..., G in C such that for all n € N, C(T'y; ) = (A —
QY IA=G) M . (A=) ), in which for 1 < i < m, fi(n) : N> N
is order preserving and f(n) = fi(n) + fa(n) 4 - -- + fin(n). Furthermore,
for € N a chain is called chromatically recursive of degree r, when for
all n € N, C(Fn+'r; A) = p1(A) C(Trir-1; A) +p2(}) C(Pn+r—2;)\) +--+
pr(A) C(Tn; A), in which for 1 < i < r, pi(n) is an element of C[\] which are
not dependent on n, and r the smallest natural number such a recursion
holds. Moreover, we will assume that p;(A) + p2(A) + - + pr()) is a
non-constant element of C[A]. As one may see, {L, ~ K3 X P}nen is a
finite-degree chain of connected graphs which is chromatically conformal
and chromatically recursive:

ClLaid) = A = (A = (B2 = (S=pA)),
C(Lnt132) = (A2 = 304 3)C(Ln; A).

In general, a sequence is not necessarily convergent to a graph. A se-
quence converges to a graph I', if for every n € N, I';, € I' and if there
exists a graph I such that ', C T’ for every n € N, then ' C I".

Theorem 2.1 When a sequence {T'p}nen is @ chain, it is convergent to
I = |, cnTn. Moreover, when there exist m € N such that for every
n 2 m, I, is connected, then T is connected. M

From now on, whenever a sequence {I'y},en converges to a limit T,
we will use the notation I' = lim,_,, I',, (interchangeable with lim, en Ty,
lim pe Ty, or lim <, T',,). Moreover, as Theorem 2.1 guarantees that there
exists a unique limit for a chain, our attention would be more focused on
such families of graphs.

Corollary 2.2 If {I'y}nen i a chain of connected graphs. Then so is
[=limy., Ty .
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Theorem 2.3 Suppose {I', }nen is a finite degree chain. ThenT is a graph
of finite degree, where I' = lim,—,, ', .l

Let I' be an infinite graph and {I'y }nen be a finite-degree chain of con-
nected graphs such that I' = lim,,_,, I',. All the infinite graphs under
investigation are countable graphs of finite-degree. For more information
on infinite graphs see [5]. Throughout this section, by a chain of graphs,
a non-oscillating finite-degree chain of connected graphs is meant, unless
stated otherwise. If the limit lim,_,, C(I's;A) exists, then chromatic ordi-
nomial of I' is partially defined and we have Cp(I'; A) = limy,,, C(Ty; A).
Clearly, when {I';}nen is a chromatically conformal, C,(T; A) is defined.
As chromatic polynomial of I', is monic, partial chromatic ordinomial of
I is also monic and consequently in B[)\], due to properties of the limit
operation we introduced at the end of our first section.

For instance, let P = lim,,,,, P, be the one-way infinite path. We know
that {P,}.en is chromatically conformal, C(P,; A) = A(A — 1)*, and chro-
matic ordinomial of P is partially defined: Cp,(P;\) = limp_, C(Py; ) =
lim,,—,, A(A — 1)® = A(A — 1)¥. As another example, let L be lim,,_,, L.
This example is also chromatically conformal and we have

Cp(L; A) = limyy, C(Ln; A) = limp A(A = 1)(A2 = 3A 4 3)" = A() -
1)(A%2 — 31+ 3)v.

If for every chain of graphs {I'y }nen such that I’ = lim,,_,,, I';,, partial
chromatic ordinomial of I, Cp(T'; A), exist and for every two chain having
the aforementioned properties this ordinomial is equal, then chromatic ordi-
nomial of I' is universally defined and we have C(I'; A) = lim,—,, C(T'n; A).
Because this definition for universal chromatic ordinomial is still in is early
stages and proper refinements are needed, we will focus our attention on
partial chromatic ordinomial. By convention, chromatic ordinomial of fi-
nite graphs are partially (and universally) defined and it is equal to their
chromatic polynomial.

If T is an infinite graph with k components I'!, I'?, ..., I'* such that for
1<1<k, I T?,...,T! are infinite graphs and the rest of the components
are finite graphs. If chromatic ordinomial of I'!,I'?,..., I are partially
defined, the chromatic ordinomial of I is partially defined and we have

Cp(T; A) = Cp(TH0) Cp(TH A) -+ - Cp(TH A) C(THY; A) - - C(TF; ).
From the remark we made in Section 1, as all the factors on the right-
hand side of the expressions we have for Cp(I'; A) are elements of B[], this
ordinomial is also a non-zero element of B[)].

Now, let’s assume {I', },.en is a chromatically recursive chain of graphs
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of degree r. By definition, for all n € N,

C(Catr; A)=p ()‘) C(Fn+r—1; A)+ Pz(/\) C(Pn+r—2; A+ + pr(A) C(Ty; A).
Provided that C,(I'; A) exists, we have
Co(T5 ) = p1(X) Cp(T5 A) + p2(A) Cp(T50) + - - - + pr(X) Cu(T; A) = p(A) Cp(T; A).

We know p()) is a non-constant element of C[\] and as a result a finite
degree ordinomial. Let’s assume that p(A) = 7(A = ()™ (A = ()2 --- (A —
¢m)™™ in which m,ny,ny,...,n,, € N and ¢;’s are distinct complex num-
bers. As Cp(I';)) is monic, 7 = 1. Furthermore, from uniqueness of ele-
ments in B[] one can proof that (A — Q)*(A—=G)Y - (A= Cm)¥ | Cp(T; A).
So, if Cp(I';A) = z122 is the unique decomposition of Cp(T; A) such that
z, is purely infinite, deg(z2) € N, and (z,22) = 1, then (A - (;)¥(\ -
@)Y (A= Gm)? |21

Conjecture 2.4 z; = (A= (1)“(A = G)¥ - (A = Gn)¥.
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