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Abstract

‘We partition the set of spanning trees contained in the complete graph
K., into spanning trees contained in the complete bipartite graph K.
This classification shows that some properties of spanning trees in K, can
be derived from trees in Ka:. We use Abel’s binomial theorem and the
formula for spanning trees in K, to obtain a proof of Cayley’s theorem
using partial derivatives. Some results concerning non-isomorphic span-
ning trees are presented. In particular we count these trees for Qs and
the Petersen graph.
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1 Introduction

We use the standard notation and terminology which can be found, e.g., in {12].
Let 7(G) denote the number of labelled spanning trees in a graph G. Let K,
denote the complete graph of n vertices and K, the complete bipartite graph
with partite sets containing s and t vertices, respectively. It is well known, as
in e.g. [2, 3, 4, 5, 6, 10] that

(Kpn) =n""2, n>2 1)
T(Ks) =817, st 21 (2)

We remark that (1) is often referred to as Cayley’s theorem. Let s +t = n,
where 1 < s < t. We have the following observation:

Theorem 1. With n > 2, any spanning tree T in K, is a spanning tree in K,
for a unique pair (s,t), withl1<s<tands+t=n.
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Proof. Consider a spanning tree T in K,,. Because T is a connected bipartite -
graph it is uniquely 2-colorable. So construct this unique bipartition by properly
2-coloring the vertex set of T with colors red (R) and blue (B). Let the number
of red vertices be s and the number of blue vertices be t; w.lo.g., let s <t. We
then have T is a spanning tree in this K, s,t- o

The converse is straightforward.

Theorem 2. With s +t = n, any spanning tree in K, is a spanning tree in
K,.

Proof. This follows since K, ; is a spanning subgraph of K,. v o
. Theorem 3. .
n
> (s)‘r(K,'n..s) = 27(Ky).
s=1

Proof. By combining Theorems 1 and 2 we see that to find 7(K,,) we can enu-
merate all labelled spanning trees in the possible K. s,¢ graphs. The double count
occurs from the 2-colorings of the partite sets. (]

We now proceed to show the LHS of Theorem 3 implies the RHS yielding
a calculus based proof of Cayley’s theorem. We shall apply Abel’s binomial
formula, 1], which states that for any z, y, and z that:

n

(z+y)" = Z (Z)z(z —sz)*" Yy + sz)"5. 3)

5=0
Theorem 4. 7(K,;) = 7(Kn). In words, the formula for 7(K,) can be
derived from the formula for 7(K, ).
Proof. From (3) we have

n

7] n ’
n-1_ 7 n_ - - 8—2 n-s
n(z+y)*"! = o (z+y) ; ( s)s(z 2)(z - s2)*"%(y + s2) (4)
and consequently,

2

dyox:

= n(n— )(e+y)?

n

= Z (Z) 8(z — 2)(z — 52)*~%(n — s)(y + s2)" "L,

s=0

(5)

‘We also have,

n

e+ )" = 2o+ )" = > (2)e@- a1 n - )+ 522 (@
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By substituting z = n, y = 0, and z = 1 into (5) and (6), we obtain, respectively,
(7) and (8):

8=1

"t = i (:) (n—s)’s" oL (8)

s=1

Adding (7) to (8) gives

2n""1 = i (2) s""* 7 n — 5)*"In, (@)

s=1

which yields the equation in Theorem 3. This gives a proof of Cayley’s theorem
using partial derivatives. ]

The identity in (9) can also be found in [2, 8, 11]. The ideas in Theorems
1 and 2 are also valid when graphs are unlabelled, since the unique bipartition
aspect is a structural property of the graph T. So, for a connected graph G, let
I{G) be the number of non-isomorphic spanning trees in G. We have:

n/2

[n/2]
Theorem 5. I(K,,) = I(Ksn-s). (m]

s=1

A formula for I(K, ;) would then give a formula for I(K,). We wrote a
computer program that generates the set of labelled spanning trees in a graph
G. It then partitions this set into its isomorphism classes. Table 1 gives some
results found when G = K, ., I(Ks5) being the largest calculation in terms of
computing time we have been able to produce. The top number in row s and
column t corresponds to 7(K,,.) and the bottom number is I(K,.). We have
not seen these numbers in Table 1 in the literature.

Observational examples of Theorem 5 and Table 1, using well known values
of some I(K,), are:

I(Ks)'= 6 = I(Kl's) + I(K2,4) + I(Ks,s)
=1+2+3,
I(K7) =11 = I(K) 6) + I(K2,;3) + I(K3,4)
=1+3+7,
and
I(K1o) = 106 = I(K1,9) + I(K2,8) + I(K37) + I(Ka,6) + I(Ks5,5)
=1+4+4419+ 45+ 37.

We would like to derive a general or asymptotic formula for I(K,.). An
asymptotic formula for I(K,,) is given by Otter [9]

I(K,) ~ pn~%2r="  where p and r are constants.

141



2 138] 4 5 6 7 )
1 11131 1 1 1 1

1 1] 1 1 1 1 1
2 4 |12 32 80 192 | 448 | 1042

1 2 2 3 3 4 4
o | 8|42 | 2025 | sras [ 35721 | 139868

3| 7 10 14 19 24
4 4096 | 32000 | 221184
9 28 45
5 390625
37

Table 1: Values of 7 and I for K,

Our work so far has given partition numbers for I(K3,,) and I(K3,,). Let px(n)
denote the number of partitions of an integer n into k or fewer parts. Then, we
have:

I(Kzn) =p2(n—-1) = lnT-lj +1, forn>2 (10)
‘ n-2 .
I(K3n) =ps(n—1)+ ) paln—-2-k), forn>4. (11)
k=0

In (11), we adopt the convention that p,(0) = 1. As an example of (11),

I(K3,5) = 10 = p3(4) + p2(3) + p2(2) +p2(1) +22(0) .
c=44+2+4+2+1+1.

We ran our tree isomorphism program on some other popular graphs, namely
Q3 and the Petersen graph. Let Q, denote the n-dimensional cube and let
P denote the Petersen graph. 7(Q,) is known, the values 7(Q3) = 384 and
7(P) = 2000 are generally known, however, it appears that I(Q,) and I(P)
may not be so universally known. After applying our algorithm to @3 and P,
we have found that I(Q3) = 6 and I(P) = 20. Table 2 gives the breakdown of
the size of each isomorphism class in Q3. For example, row 2 denotes that there
are 3 classes, each containing 48 trees. Table 3 gives drawings of a representative
tree from each of the 6-classes. We remark the class containing the spanning
paths has 72 trees. Table 4 gives the different class sizes for the Petersen graph.
On Austin Mohr’s website (7], there are drawings of representative trees for the
Petersen graph similar to Table 3. There are also drawings for the trees given
in Table 1.
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T =384
I=6

101

000 001
110
011 010
001 101 100
110 111

Distribution of Class Sizes

Num Trees | Size of Class
24 1
48 -3
72 1
144 1
Total 384

Table 2: Q3
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T=2384
I=6

101

: 000 001
110 T
: 011 o010
1
.
"%l--- L = =~ 4001 101 100
al 110 m
o0 000
48 in class 48 in class
144 in class 48 in class
72 in class 24 in class
Table 3: Q3
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T = 2000

PN\, /|

Distribution of Class Sizes

| Num Trees | Size of Class
10 1
30 1
40 1
60 4
120 12
240 1
Total 2000 20

Table 4: Petersen Graph
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