Some Applications of Spanning Trees in $K_{s,t}$

L.H. Clark, A.T. Mohr, and T.D. Porter*

Department of Mathematics Southern Illinois University Carbondale, IL 62901-4408 tporter@math.siu.edu

Abstract

We partition the set of spanning trees contained in the complete graph K_n into spanning trees contained in the complete bipartite graph $K_{s,t}$. This classification shows that some properties of spanning trees in K_n can be derived from trees in $K_{s,t}$. We use Abel's binomial theorem and the formula for spanning trees in $K_{s,t}$ to obtain a proof of Cayley's theorem using partial derivatives. Some results concerning non-isomorphic spanning trees are presented. In particular we count these trees for Q_3 and the Petersen graph.

Keywords. Abel's binomial theorem, Cayley's theorem, hypercube, Petersen graph, spanning trees

1 Introduction

We use the standard notation and terminology which can be found, e.g., in [12]. Let $\tau(G)$ denote the number of labelled spanning trees in a graph G. Let K_n denote the complete graph of n vertices and $K_{s,t}$ the complete bipartite graph with partite sets containing s and t vertices, respectively. It is well known, as in e.g. [2, 3, 4, 5, 6, 10] that

$$\tau(K_n) = n^{n-2}, \qquad n \ge 2 \tag{1}$$

$$\tau(K_{n}) = t , \qquad t \ge 2$$

$$\tau(K_{s,t}) = s^{t-1}t^{s-1}, \qquad s, t \ge 1.$$
(2)

We remark that (1) is often referred to as Cayley's theorem. Let s+t=n, where $1 \le s \le t$. We have the following observation:

Theorem 1. With $n \geq 2$, any spanning tree T in K_n is a spanning tree in $K_{s,t}$ for a unique pair (s,t), with $1 \leq s \leq t$ and s+t=n.

^{*}Contact author.

Proof. Consider a spanning tree T in K_n . Because T is a connected bipartite graph it is uniquely 2-colorable. So construct this unique bipartition by properly 2-coloring the vertex set of T with colors red (R) and blue (B). Let the number of red vertices be s and the number of blue vertices be t; w.l.o.g., let $s \le t$. We then have T is a spanning tree in this $K_{s,t}$.

The converse is straightforward.

Theorem 2. With s + t = n, any spanning tree in $K_{s,t}$ is a spanning tree in K_n .

Proof. This follows since $K_{s,t}$ is a spanning subgraph of K_n .

Theorem 3.

$$\sum_{s=1}^{n-1} \binom{n}{s} \tau(K_{s,n-s}) = 2\tau(K_n).$$

Proof. By combining Theorems 1 and 2 we see that to find $\tau(K_n)$ we can enumerate all labelled spanning trees in the possible $K_{s,t}$ graphs. The double count occurs from the 2-colorings of the partite sets.

We now proceed to show the LHS of Theorem 3 implies the RHS yielding a calculus based proof of Cayley's theorem. We shall apply Abel's binomial formula, [1], which states that for any x, y, and z that:

$$(x+y)^n = \sum_{s=0}^n \binom{n}{s} x(x-sz)^{s-1} (y+sz)^{n-s}.$$
 (3)

Theorem 4. $\tau(K_{s,t}) \implies \tau(K_n)$. In words, the formula for $\tau(K_n)$ can be derived from the formula for $\tau(K_{s,t})$.

Proof. From (3) we have

$$n(x+y)^{n-1} = \frac{\partial}{\partial x}(x+y)^n = \sum_{s=0}^n \binom{n}{s} s(x-z)(x-sz)^{s-2} (y+sz)^{n-s}$$
 (4)

and consequently,

$$\frac{\partial^2}{\partial y \partial x} = n(n-1)(x+y)^{n-2}$$

$$= \sum_{s=0}^n \binom{n}{s} s(x-z)(x-sz)^{s-2} (n-s)(y+sz)^{n-s-1}.$$
(5)

We also have,

$$n(x+y)^{n-1} = \frac{\partial}{\partial y}(x+y)^n = \sum_{s=0}^n \binom{n}{s} x(x-sz)^{s-1} (n-s)(y+sz)^{n-s-1}.$$
 (6)

By substituting x = n, y = 0, and z = 1 into (5) and (6), we obtain, respectively, (7) and (8):

$$n^{n-1} = \sum_{s=1}^{n} \binom{n}{s} s^{n-s} (n-s)^{s-1} \tag{7}$$

$$n^{n-1} = \sum_{s=1}^{n} \binom{n}{s} (n-s)^s s^{n-s-1}.$$
 (8)

Adding (7) to (8) gives

$$2n^{n-1} = \sum_{s=1}^{n} \binom{n}{s} s^{n-s-1} (n-s)^{s-1} n, \tag{9}$$

which yields the equation in Theorem 3. This gives a proof of Cayley's theorem using partial derivatives.

The identity in (9) can also be found in [2, 8, 11]. The ideas in Theorems 1 and 2 are also valid when graphs are unlabelled, since the unique bipartition aspect is a structural property of the graph T. So, for a connected graph G, let I(G) be the number of non-isomorphic spanning trees in G. We have:

Theorem 5.
$$I(K_n) = \sum_{s=1}^{\lfloor n/2 \rfloor} I(K_{s,n-s}).$$

A formula for $I(K_{s,t})$ would then give a formula for $I(K_n)$. We wrote a computer program that generates the set of labelled spanning trees in a graph G. It then partitions this set into its isomorphism classes. Table 1 gives some results found when $G = K_{s,t}$, $I(K_{5,5})$ being the largest calculation in terms of computing time we have been able to produce. The top number in row s and column t corresponds to $\tau(K_{s,t})$ and the bottom number is $I(K_{s,t})$. We have not seen these numbers in Table 1 in the literature.

Observational examples of Theorem 5 and Table 1, using well known values of some $I(K_n)$, are:

$$I(K_6) = 6 = I(K_{1,5}) + I(K_{2,4}) + I(K_{3,3})$$

$$= 1 + 2 + 3,$$

$$I(K_7) = 11 = I(K_{1,6}) + I(K_{2,3}) + I(K_{3,4})$$

$$= 1 + 3 + 7,$$

and

$$I(K_{10}) = 106 = I(K_{1,9}) + I(K_{2,8}) + I(K_{3,7}) + I(K_{4,6}) + I(K_{5,5})$$

= 1 + 4 + 19 + 45 + 37.

We would like to derive a general or asymptotic formula for $I(K_{s,t})$. An asymptotic formula for $I(K_n)$ is given by Otter [9]

$$I(K_n) \sim pn^{-5/2}r^{-n}$$
, where p and r are constants.

	1	2	3	4	5	6	7	8	 n
	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1
2	•••	4	12	32	80	192	448	1042	
		1	2	2	3	3	4	4	
3	•••		81	432	2025	8748	35721	139968	
			3	7	10	14	19	24	
4	•••			4096	32000	221184			
				9	28	45	ļ		
5	•••			•••	390625				
					37				

Table 1: Values of τ and I for $K_{s,t}$

Our work so far has given partition numbers for $I(K_{2,n})$ and $I(K_{3,n})$. Let $p_k(n)$ denote the number of partitions of an integer n into k or fewer parts. Then, we have:

$$I(K_{2,n}) = p_2(n-1) = \left| \frac{n-1}{2} \right| + 1, \text{ for } n \ge 2$$
 (10)

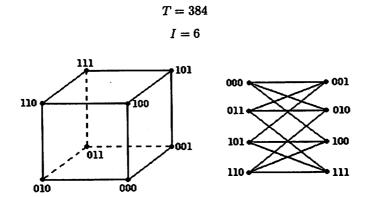
$$I(K_{3,n}) = p_3(n-1) + \sum_{k=0}^{n-2} p_2(n-2-k), \quad \text{for } n \ge 4.$$
 (11)

In (11), we adopt the convention that $p_2(0) = 1$. As an example of (11),

$$I(K_{3,5}) = 10 = p_3(4) + p_2(3) + p_2(2) + p_2(1) + p_2(0)$$

 $\cdot = 4 + 2 + 2 + 1 + 1.$

We ran our tree isomorphism program on some other popular graphs, namely Q_3 and the Petersen graph. Let Q_n denote the n-dimensional cube and let P denote the Petersen graph. $\tau(Q_n)$ is known, the values $\tau(Q_3)=384$ and $\tau(P)=2000$ are generally known, however, it appears that $I(Q_n)$ and I(P) may not be so universally known. After applying our algorithm to Q_3 and P, we have found that $I(Q_3)=6$ and I(P)=20. Table 2 gives the breakdown of the size of each isomorphism class in Q_3 . For example, row 2 denotes that there are 3 classes, each containing 48 trees. Table 3 gives drawings of a representative tree from each of the 6-classes. We remark the class containing the spanning paths has 72 trees. Table 4 gives the different class sizes for the Petersen graph. On Austin Mohr's website [7], there are drawings of representative trees for the Petersen graph similar to Table 3. There are also drawings for the trees given in Table 1.



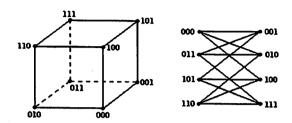
Distribution of Class Sizes

	Num Trees	Size of Class
	24	1
	48	· 3
	72	1
	144	1
Total	384	

Table 2: Q_3

$$T = 384$$

 $I = 6$



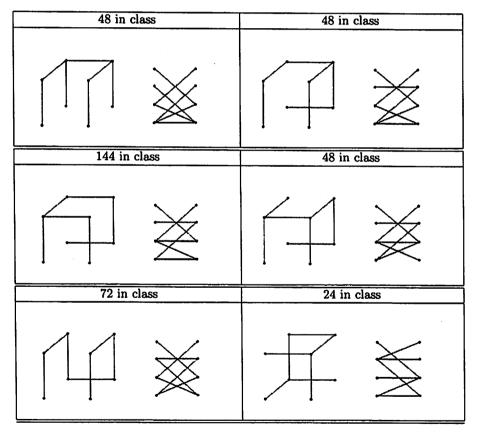
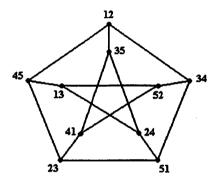


Table 3: Q_3

$$T = 2000$$
$$I = 20$$



Distribution of Class Sizes

	Num Trees	Size of Class
	10	1
	30	1
	40	1
	60	4
	120	12
	240	1
Total	2000	20

Table 4: Petersen Graph

References

- N.H. Abel, Beweis eines Ausdrucks, von welchem die Bionimial-Formel ein einzelner Fall ist. J. reine angew. Math. 1, (1826), 159-160. Reprinted in Euvres Complètes, 2nd ed., 1, (1881), 102-103.
- [2] T.L. Austin, The enumeration of point labelled chromatic graphs and trees, Canad. J. Math. 12, (1960), 535-545.
- [3] L. Clark, On the enumeration of multipartite spanning trees of the complete graph, Bull. of the ICA 38 (2003), 50-60.
- [4] O. Eğecioğlu and J.B. Remmel, A bijection for spanning trees of complete multipartite graphs, Congressus Numerantium 100 (1994), 225-243.
- [5] I.J. Good, The generalization of Lagrange's expansion and the enumeration of trees, Proc. of the Cambridge Phil. Soc. 61 (1965), 499-517.
- [6] R.P. Lewis, The number of spanning trees of a complete multipartite graph, Discrete Math. 197/198 (1999), 537-541.
- [7] A. Mohr, http://www.cs.siu.edu/~amohr/.
- [8] J.W. Moon, Counting labeled trees, Canad. Math. Monograph No. 1, Canad. Math. Congress, 1970.
- [9] R. Otter, The number of trees, Ann. of Math. 49 (1948), 583-599.
- [10] T.D. Porter, Generating the list of spanning trees in $K_{s,t}$, J. of Comb. Math. and Comb. Comput. 50 (2004), 17-32.
- [11] L. Székely, Abel's binomial Theorem, http://www.math.sc.edu/ ~szekely/abel.pdf.
- [12] D.B. West, Introduction to Graph Theory, Second Edition, Prentice-Hall, Upper Saddle River, NJ, 2001.