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Abstract

In this paper we obtain a set of inequalities which are necessary
conditions for the existence of balanced arrays of strength five, having
m rows (constraints), and with two symbols. We discuss the use of
these inequalities to obtain an upper bound on m, and present some
illustrative examples.

1 Introduction and Preliminaries

For ease of reference we provide here some basic concepts and definitions
concerning balanced arrays.

Definition 1.1 A balanced array (B-array) T with m rows (constraints),
with two symbols (say, 0 and 1) and of strength t (< m) is merely a matriz T
of size (mx N), with elements 0 and 1, such that in every t rowed submatriz
T* of T every vector a (tx 1) of weight i (the weight of a, denoted by w(a),
means the number of ones in it, and clearly 0 < w(a) < t) appears with the
same frequency p; (say).

Remark 1 The vector u' = (o, 1, 42, -, iit) 15 called the indez set of the
array T, and clearly

t
t
we2(6)

Note: The above definition can be easily extended to B-arrays with s
symbols.
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It is quite clear that B-arrays are generalization of orthogonal arrays
(O-arrays) for which u; = p for each i (that is y; is independent of i). Also
the incidence matrix of a balanced incomplete block design (BIBD) Cor-
responds to balanced arrays of strength two with the restriction that the
weight of each column vector is the same. Balanced arrays, under certain
conditions, have been extensively used to construct fractional factorial de-
signs of varying resolutions. For example, a B-array of strength t = 5 would
give rise to a factorial design of resolution VI (i.e. a design which allows
us to estimate all the effects up to and including two-factor interactions
in the presence of three-factor interactions when all other interactions are
negligible). In order to obtain further information on the importance of
these combinatorial arrays to combinatorics and statistics, the interested
reader may consult the references (by no means it is an exhaustive list) at
the end of this paper, and also further references cited therein.

From the above discussion it is quite clear that the construction and
existence of such arrays become very important. It is not difficult to see
that, for a given p', the construction of a B-array for m(> t) is a non-trivial
one. Furthermore the problem of obtaining the maximum possible value
of m, for a given p’, is very important in combinatorics and statistical
design of experiments. These problems for B-arrays and O-arrays have
been investgated, among others, by Bose and Bush [1], Chopra and/or
Dios’ [3,4,5,6], Rafter and Seiden(8], Rao [9,10], Seiden and Zemach [11],
etc.

2 Necessary Conditions for the existence of
Balanced Arrays

In the rest of the paper we restrict ourselves to B-arrays with £ = 5. How-
ever some of the results stated here can be easily extended to a general ¢
with some modifications.

Lemma 2.1 The non-ezistence of a B-array for anym = k (k > 6) implies
its non-existence for any m > k.

Lemma 2.2 A B-erray with m = t(= 5) always ezists for any given yu'.

Lemma 2.3 A B-array Tof strength t(= 5) is also of strength t' where 0
<t < t(=5).

Remark 2 Given the index set of T is ', it can be easily checked that the
elements of the index set of T, considered as an array of strength t', are
merely a linear combination of the elements of y'. In this case we get the
following result:
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5o
A, t,) = ZO ( i ).U-H'J' (21)
1=l
where A(j,t') is the jth element of T with its strength ¢’. Also A(j,5) =
15, and A(j,0) = N. The next result can be easily established by counting
in two ways, through columns and rows, weights of the vectors.

Lemma 2.4 Let z;(j = 0,1,..,m) be the number of columns of weight j in
a B-arrey T with m rows and witht = 5. Then the following results hold
good:

Bo = i I; = N (2.2)

j=0

k
By = ija:j = Zarm,A(r,r) 1<k<5
r=1
Where m, stands for m(m — 1)...(m — r + 1), and a, are positive integers
which are known.

Remark 3 The equations (2.2) clearly connect the moments of the weights
of the columns of T to the polynomial functions of m, and ui's. Thus
for a given pl, we get merely polynomial functions in m. For computa-
tional ease, we next give various values of a, for values of k(1 < k < 5):
[1,(1,1),(1,3,1),(1,7,6,1), and (1,15,25,10,1)].

Theorem 2.5 For a B-array T with m rows and strength t = 5 to exist,
the following result must hold:

N%Bs —2N2B3B? + B} >0 (2.3)

Proof: Consider

fm) =3"3(% - 0*)%x;  where

i=0

p— 2% _ B

N N’

Clearlyf(m) >0
If we expand the L.H.S, and use (2.2) we will obtain the result.
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Theorem 2.6 Consider a B-array T with m rows and having strength t =
5. The following is true:

N?By —2NB;B; + B1B2 >0 (2.4)

Proof: To derive (2.4), we consider the following:

;2
E i(52 2 ZJ Tj B,
J(] _a).’x:jZOwherea_—J__

we obtain the result after ezpanding the LHS.

Theorem 2.7 For an m-rowed B-array T witht = 5 to ezist, the following
must be true:

N2B; —2NB B, + B?B; >0 (2.5)
Proof: To obtain (2.5), we consider the inequality

B _ b2 > _2Jzi _ B
ZJ (7-b)*>0 where b = =W

Ezpanding the LHS, and with appropriate substitution we obtain (2.5).

Theorem 2.8 Consider a B-array T with m-rows and = (o, pa, - p5).
For T to ezist, the following must hold:

(Bs +3B3 + 3By + By)$ < (Bs)} + (Ba)? (2.6)

Proof: In order to establish (2.6), we use the following result (known as
Minkowski’s Inequality):

[Z[zi + yi]p] " < [Z[zi]”] ’ + [Z[yi]p] '

i=1 i=1

To derive (2.6), we set p = 3 in the Minkowski’s inequality, and we take

8 3 .2 1
Zi=733%F, 4 = J3%;

, after some simplification we obtain (2.6).

Theorem 2.9 For a B-array T with t=5 and m rows to exist, it is neces-
sary that the following is satisfied:

(Bs + 6By + 12B3 + 8By)3 < 2(By)} + (B5)3 (2.7)
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Proof: Here we need extended form of Minkowski’s inequality:

1

D (zi+ui + Zi)p] ’ < [Z(xi)p]% + [Z(yi)p]
i-1

L

+ [Z(Zi)p] '

1
»

1
Here also, we get (2.7) after some simplification, setting z; = j 3281:?, Yi =
1 1
i%c?, and z; = j3z3 in L.H.S. and R.H.S.

Theorem 2.10 Consider a B-array T of strength t=5 and with m rows.
For T to exist we must have the following inequality:

Y/Bs < ¥/By + ¢/Bs —3B4 +3B3 — B, (2.8)

Proof: In the Minkowski’s inequality we make the following substitutions:
. .2y 1} .2 4
zi = (j3 - j3)2d, 5 = 53

Therefore x; +y; = J ?fa:jﬁ’ and obtain the result after some simplification.
Next we prepared a computer program to check if an array T exists for
a given m and El . If anyone inequality is contradicted, then T does not
exist. If we want max(m) for a given y’, we start checking all inequalities
beginning with m=6. If at least one inequality is contradicted for m=k+1
(say), then max (m) = k. However we would like to point out that if all
inequalities are satisfied for a m > 6, it does not mean that the array exists

for that value of m.

Example: Consider the arrays (1,4, 1, 1,1, 1), (1,1, 1, 7, 4, 3) and (2,
5,7, 1, 1, 1). The max (m) for these arrays respectively are found to be 6,

8, and 7 by using (2.8) for the first index set, (2.3) and (2.4) for the second
one, and (2.7), (2.3), (2.4) for the last one.
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