A Family of Comma-Free Codes with
Even Word-Length

L. J. Cummings, University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
ljcummin@math.uwaterloo.ca

Abstract

For even codeword length n = 2k, k > 1 and alphabet sizeg > 1a
family of comma-free codes is constructed with I_%;‘lr(a2 - [-";j)""’
codewords where 1 < r < k. In particular, a new maximal comma-
free code with n = 4 and o = 4 is given by one of these codes.

In a noiseless channel a message stream generated by using a comma-
free code avoids misframing errors since comma-free codes do not contain
overlaps of codewords by definition. Comma-free codes can still prevent
misframing errors even in a noisy channel if bit error correction is also
used. Accuracy is then a function of the error correction and the channel
used. Pioneering papers collected in the anthology [7] contain early studies
of simultaneous correction of both types of errors. Comma-free codes were
first discussed in a biology paper [3] and the first mathematical treatment
was [6].

A block code C with codewords of fixed length n > 1 over a finite
alphabet of o letters is comma-free if for all codewords x= z1...2Zyn, ¥y =
Y1...Yn € C none of the overlaps

Tepr1 Tabn-y t=1...,n—1 (1)

are in C.

We will refer to (1) as the ¢ overlap of x and y.

The Witt bound on the maximum number of codewords in any comma-
free code over an alphabet of size ¢ with codewords of length n is

=3 uln/ayt, (2)

din

where p is the Mdbius function of elementary number theory {6]. The
function (2) is well known in other contexts [4].
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Golomb, Gordon and Welch [6] conjectured that the upper bound (2)
was tight for all odd n. Seven years later, Eastman [5) found a construction
which resolved their conjecture affirmatively. An easily implemented algo-
rithm was subsequently given by Scholtz [10] for the case when 7 is odd,
but for even n the bound is not attained in general. For n = 2 Golomb,
Gordon, and Welch [6] showed that [?J is a tight upper bound. All iso-
morphism classes for word length 2 were determined in [2]. For n = 3 all
comma-free codes over finite alphabets were determined in [1].

Block comma-free codes over a binary alphabet attaining the Witt
bound for n = 2,4,6,8 have been know for some time (6, 9. In 1973
Niho used a backtracking program to find a maximal binary comma-free
code when n = 10 with 99 codewords which meets the Witt bound (8].

It was first shown by Golomb, Gordon, and Welch [6]) that the Witt
bound (2) is not attained for all even word lengths n = 2k when o > 3*.
Subsequently Jiggs [9] refined this by showing that the Witt bound is not
attained if ¢ > 2% + k. Currently the best result known is that the Witt
bound is not attained for ¢ > k%5t + k and n > 8 (11].

Earlier Jiggs [9] had shown that the Witt bound is not attained for
n = o = 4 with an exhaustive backtracking program written by Lee Laxdal.
He found a maximal comma-free code with 57 codewords but the Witt
bound is 60 for these parameters.

Theorem 1 Let X be a finite alphabet with o letters. There ezists a comma-
free code C. = C,(n = 2k,0) over T with [132-_] (02 - [%2-])’“"‘ codewords
wherek>1andl <r<k.

Proof: Let D denote a maximal comma-free codezz contained in the set
of pairs X2, It is well known that such a code has | %] codewords [6].
Let C, denote the set of codewords:

al...arcl...csbl...brdl...ds (3)

where a;b; € D,cjdj € 82\D,i=1,...r;j=1,...sandr+s = k. It is
crucial to note that each pair of entries a; and b; are separated by exactly
k — 1 entries in each codeword as are the pairs ¢; and d;.

To prove C, is comma-free we argue by assuming that if a variable
codeword w of the form (3) is the tt& overlap of codewords

W= a|--ealc) e cib, e bld, e,
w” Qe B b
in C, then w is not in C,..
Case 1 If 1 <t < r the ¢t overlap of the concatenation w'w” is
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air- elby - bLdy o dla”y - a"y (4)

where r+ s =k.

If (4) is also in Cr then it has the form (3). If ¢ < s then the length
of the preﬁx a't41+-a'rc’y - - s is greater than the length of a, - - - a,- and
ar = ¢, since the t”‘ overlap is being considered. Since @, and b, are
separated by exactly £ — 1 entries as are ¢’y and d’;, we conclude b, = d’,
and a,b, = ¢td’y € £2\D, a contradiction unless (4) is not in C,. On the
other hand, if ¢t > s then a, = ¥';_, and b, = a”;_, as is seen by counting
k — 1 entries in (4). In this case ayb, = V';_;a",_, which is an overlap of
a't-gb's—s and a”;_4b",_s € D. Since D is comma-free, a,b, & D, contrary
to the definition of C,.. Therefore, (4) is not in C, in this subcase as well.

Case 2 If r < t < k then the t& overlap of w'w” is

' 7 7 ' 4 4 " non 1
Ct~r+1"'Csb1"'brd1"'dsa 1@ wC 1 +C gy (5)

If (5) is in C, then it has the form (3) and a; = ¢/;_,4,. Arguing as
before, by = d's_r41 and a1b; = ¢t—r41d't—ry1 € T2\D, contrary to the
definition of C, unless (5) is not in C,.

Case 3 If k < t < k + r then the & overlap of w'w” is

/ / ! ! n " 1 " o 4
Oopgr---bpd'y oo odsa”y a6 (6)

Here,a; = b';_ k+1 andb; =a";_ k+1 showing that a1b; = b's_ k410" t— k41
is an overlap of a';_p4+10'¢—x4+1 and a”t— k416”141 in D, a contradiction
unless (6) is not in C,..

Case 4

If k + r <t < n then the t# overlap of w'w” is

" n o oy "o 7
d't—k-r+1"-dsa 10o0ap ey b d s (7

The prefix a; -+ -a,c; - - - ¢, of w necessarily has length greater than the
prefix d's_x_ry1---d'sa"1---a”, of (7). Since k+7 <t, a”y = Ci—k—ri1
and, arguing as in previous cases, b", = d;_k_,4 yielding the contradiction
a",.b"r = ct—k—-r+ldt—k—r+l € EZ\D, unless (7) g C,-.

This completes the proof.

The construction (3) for 7 = 1 first appeared in [6] in a proof of a
theorem giving bounds on the asymptotic density of the number of words
in a maximal comma-free code codewords of even length.

Consider the binary alphabet ¥ = {0,1}. If n = 4 then k£ = 2 and only
r = 1 is possible in the construction (3). The only maximal comma-free
code in £? is D = {01} (or {10}) and £2\D = {00,10,11} ({00,01,11}).
The resulting comma-free code is {0010,0110,0111} if 01 is chosen and this
meets the Witt bound of 3.
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If¥ = {0,1} and n = 6 then k = 3 then both r = 1 and r = 2 are
possible in the construction (3). If 7 = 1 then again there is only D = {01}
(or {10}) and Z?\D = {00, 10,11} ({00, 01, 11}), but since the word length
is 6 the resulting code has 9 codewords again meeting the Witt bound. If
7 = 2 then the only possibility is to repeat the the single pair 01 (or 10) in
(3) so that there are still only 9 codewords provided by the construction.

More generally, if n > 6 and ¢ = 2 then |_-‘133Jr(¢72 - [E;J)’“" =337,
Thus, the greatest number of codewords a binary code C, can have occurs
when r = 1.

Corollary 1 Ifo =2 and n = 2k,1 < k, then any comma-free code C, can
have at most 3%~ codewords of length n.

If n = ¢ = 4 then C, has 5"112~" codewords by Theorem 1. The only
feasible value for r is 1 and C,(4,4) has 55 codewords, two short of the 57
codewords in the code found by Jiggs in a computer search [9). Nevertheless
it is interesting because it is maximal.

Let CF(n, o) denote the class of comma-free codes with words of length
n over an alphabet ¥ with ¢ letters.

Theorem 2 There ezists a mazimal CF(4,4) code with 55 codewords.

Proof: We list the 55 codewords of a C;(4,4) code obtained by the
construction given by Theorem 1. We begin by choosing the maximal
CF(2,4) code given by {01, 02,21, 31,32}.

0010 0020 2010 3010 3020
0013 0023 2013 3013 3023
0110 0120 2110 3110 3120
0111 0121 2111 3111 3121
0112 0122 2112 3112 3122
0113 0123 2113 3113 3123
0210 0220 2210 3210 3220
0212 0222 2212 3212 3222
0213 0223 2213 3213 3223
0310 0320 2310 3310 3320
0313 0323 2313 3313 3323

There are 256 possible codewords. Of these 16 are periodic and so
cannot appear in any comma-free code. Each codeword of C; (4, 4) generates
an equivalence class [w] of 4 codewords under cyclic permutation. These
classes are necessarily disjoint since a comma-free code cannot contain two
words from the same class. Removing periodic codewords and those in the
equivalence classes of C leaves 20 codewords which form 5 classes under
cyclic permutation:
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[0003], [0033], [0131), [0232], [0333].

Routine checking shows that each codeword in each class creates an
overlap with the codewords in C. Therefore, C is a maximal comma-free
code.
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