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ABSTRACT

Let a and b be two positive integers. For the graph G with vertex set
V(G) and edge set E(G) with p=IV(G)| and g=IE(G)I, we define two sets
Q(a) and P(b) as follows:

Qa) =({ £ a,  (a+l),..., H(a +(q-2)/2)} if qiseven,

Q(a) = {0) U{ £ a, £ (a+]),..., H(a +(g-3)/2)} if qis odd,

P(b) ={ £ b, £ (b+1),..., £(b +(p-2)/2)} ifpiseven,

P(b) = {0} U{ £ b, £ (b+1),..., (b +(p-3)/2)} if pis odd.

For the graph G with p=IV(G)l and g=IE(G)l, G is said to be
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Q(a)P(b)-super edge-graceful (in short Q(a)P(b)-SEG), if there exists a
function pair (f, f*) which assigns integer labels to the vertices and edges;
that is, f*: V (G) — P(b), and f: E (G) —Q(a) such that f* is onto P(b) and
f is onto Q(a), and f*(u) = Z{f(u,v): (u, v) € E(G) }.

We investigate Q(a)P(b) super-edge-graceful labelings for three classes
of (p,p+1)- graphs.

1. Introduction.

If Gis a (p,g) graph in which the edges labeling h: E(G)—{1,2,3,...q} is
a bijection so that the vertex sums defined by h*(u) =Z{h(u,v): (u,v) in E}
(mod p) is distinct, then G is called edge-graceful. ([18]) Figure 1 shows a
grid with 12 vertices and 17 edges with two different edge-graceful labelings

Figure 1.

The edge-graceful labeling of graph was introduced by S.P. Lo [18] in
1985. A necessary condition of edge-gracefulness is (Lo [18])

This latter condition may be more practically stated as g(q+1) =0 or p/2 (mod
p) depending on whether p is odd or even.
The cartesian product of two paths is frequently called the grid graph .
Some edge-graceful grid graphs were considered in [10]. The cartesian
product of two cycles is called the torus graph. It was shown in [19,22,25] that
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the torus graph C,, x C, is edge-graceful for all odd m,n >2.

Lee, Lee, Murthy [5] showed that if G is a (p,q)-graph with p= 2 (mod 4)
then G is not edge-graceful. Schaffer and Lee [22] have shown that if G and H
are both odd-order, regular, edge-graceful graphs, where G is d-regular and has
m vertices, and H is k-regular and has n vertices, and furthermore =~ GCD(d,n)
= GCD (k,m) =I, then G x H is edge-graceful. In particular, they showed that
the torus graph C 2 41 x C 2 j4] is edge-graceful.

Dharam and Lee [1] recently introduced the following new graph labeling
problem. Let a and b be two positive integers. For the graph G with vertex set
V(G) and edge set E(G) with p=IV(G)l and g=IE(G)I, we define two sets Q(a)
and P(b) as follows:

Q(a) ={ £ a, x (a+1),..., ¥(a +(q-2)/2)} ifqiseven,
Q(a) = (0} U{ £ a, + (a+1),..., X(a +(g-3)/2)} if qis odd,
P(b) ={ £ b, £ (b+1),..., X(b +(p-2)/2)} if piseven,
P(b) = {0} U{ £ b, £ (b+]),..., X(b+(p-3)/2)} ifpisodd.

Definition 1. A (p,q)-graph G is said to be a Q(a)P(b)-super edge-graceful
graph if there exists a function pair (f, ') which assigns integer labels to the
vertices and edges; that is, f: E (G) »Q(a) and f*: V (G) — P(b), such that f*
and f are bijections, and f*(u) = Z{f(u,v) :(u, v) € E(G) }.

When a =b =1, the notion of Q(1)P(1)- super edge graceful graphs is
identical to the concept of super edge-graceful graphs which was introduced
by Mitchem and Simoson [20].

We illustrate the above concept with several examples

Example 1. The cycle C; is Q(a)P(a)-SEG for any a > 1. However, Cs is
Q(a)P(1)-SEG fora=1,2.
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Q(P(Q)-SEG Q(1)P(1)-SEG Q(2)P(1)-SEG
Figure 2.

Example 2. The following graph is Q(1)P(1), Q(1)P(2) and Q(2)P(2)-SEG.

Q(1)P(1)-SEG Q(1)P(2)-SEG QQ2)P(2)-SEG
Figure 3.

Mitchem and Simoson [20] showed that if a tree of odd order is
Q(1)P(1)-super edge-graceful then it is edge-graceful. In [8], we see that not all
the (p,p+1)-graphs are edge-graceful.

Example 3. The following (4,5)-graph is the smallest order among all the

(p,p+1)-graphs. It is edge-graceful (Figure 4). However, it is not Q(1)P(1)-super
edge-graceful.
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Two edge-graceful labelings

Figure 4.

In this paper we want to investigate the Q(a)P(b)-super edge-
gracefulness of the three classes of (p,p+1)-graphs. Finding the Q(a)P(b)
-super edge-graceful labelings of graphs are related to solving the systems of
linear Diophantine equations. In general it is difficult to find them. Several
classes of graphs had been shown to be edge-graceful ( [2,3,4,5,6,7.8,10,
23,24,25] ). For more conjectures and open problems on edge-graceful
graphs the reader is referred to [7]. The reader should see the survey article of
Gallian [2] for various labeling problems.

2.Q(a)P(b)-Super Edge Gracefulness of the Amalgamation of

Two Cycles
Let G, H be two graphs with A, B are subsets of G and H respectively

with |Al =IBI. The amalgamation of (G,A) with (H,B) is the graph obtained by
forming the disjoint union of G and H and then identify A and B. If Aand B
each is one vertex, the construction is called the one-point union. We will use
Amal(GH,(A,B)) to denote the amalgamation of (GA) and (H,B). The
following graphs C(4,4) and C(3,5) are the Amal(C,,Cq,(u,u)) and
Amal(C;,Cs.(u,v)) respectively (Figure 5). We will denote Amal(Cy, Cny(u,v))
by DC(m,n) and called it double cycle.
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C4,4) C@3.5)

Figure 5.

Lee, Lee, Murthy [5] showed that if G is a (p,q)-graph with p= 2 (mod 4)
then G is not edge-graceful. However, we have C(m,n) with m+n = 3 (mod 4)
which is Q(1)P(1)-SEG.

We want to address in this section the following problem: for what m,n > 3,
C(m,n) is Q(a)P(b)-SEG..

Theorem 2.1. C(3,3) is Q(a)P(1)-SEG and Q(a)P(2a+1)-SEG fora > 1.
Proof. Figure 6 illustates that C(3,3) is Q(a)P(1)-SEG and Q(a)P(2a+1)-SEG
fora>1.

Q()P(1)-SEG Q(a)P(2a+1)-SEG
Figure 6.

Theorem 2.2. C(3,4) is not edge-graceful but it is Q(a)P(1)-SEG for a =1,2,3
and Q(1)P(2)-SEG, Q(2)P(4)-SEG. Furthermore it is not Q(a)P(b)-SEG for a
#1,2,3.

Proof. Figure 7 shows that C(3,4) is Q()P(1)-SEG for a =1,2,3 and
Q(1)P(2)-SEG.
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QUI(1)-SEG QRP(Y)-SEG QAP(1)-SEG Q()P(2)-SEG

Figure 7.

To see that it is Q(2)P(4)-SEG we label the edges (¢,,C,), (€,,C3 ),

(€3,€30(€3,€4)s (€3,C6) (€45Cs M(Cs,Cq) by 2,3,4,0, -3,-4,-2 in C(3,4),

then C(3,4) is Q(2)P(4)-SEG.
Now we want to show that C(3,4) is not Q(a)P(b)-SEG for a #1,2,3. Let

a>4, note that deg ¢, =4, degc; =2in C(3,4), i = 1,2,4,5,6.
Case 1. If the edge with vertex C; is labeled by 0, we have only one

c; é{ €,5€5,C4,Ce }» and f(c, Y=Ef (¢, V) ¢; , V) € E(CG4) le{t
a. £ (a+l). £ (a+2)}.

Without loss of generality, we may assume that the f'(¢; ) = Z{f (¢; V) (€
v) € E (C(3,4)) }=a, Since a>4 ,for any x. ye {+a,t (a+1),* (a+2)}, x+y€ {£
(a+1), £ (a-1)}, no matter what the £1( ¢ ) may be, (£ c;)ceV (C(3.4)}is

not a subset of consecutive numbers. According to our definition, C(3,4) is not
Q(a)P(b)-SEG for a #1,2,3

Case 2. If the edge with vertex C, is not labeled by 0, we have two
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vertices ¢, and ¢, €{¢),€,,C4,C5,Cq Jand £'(c; )v £(c; Je{Eat (atD),
* (a+2)}. Assume f*( ¢, 3#-( ¢, ), since  a>4 forany x.y.s.te {tat (at+l),
t (a+2)}, we have {x+y+s+t, s+t}#(- (¢, )-f'(c; )).or

{x+y, s+t}#{ -f“(c,.l ),-t*(c,.z )} Iff‘(c,.I )=-f"(c,.2 ), forany x. y. s. te{ta .
1 (a+l). % (a+2)},we also see {x+y+s+t,s+t)F(H(F( c, D}, or{x+y,
sHIZ(HE( ¢, D) or{xtysstt, s+t}FHHE( ¢, )1)), or (x4,

s+t)#{H(EH( <, )-1)}. According to our definition , C(3,4) is not Q(a)P(b)-SEG
fora=#1,2,3.

Theorem 2.3. C(3,5) is Q(a)P(1)-SEG for a > 1 and Q(1)P(b)-SEG if and only
if b=2,3,4.

Proof. Figure 8 shows that C(3,5) is Q(a)P(1)-SEG fora> 1

Q(OP(1)-SEG

Figure 8.
Figure 9 shows that C(3,5) is Q(1)P(b)-SEG for b=2,34.
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Q()P()-SEG Q(NP(3)-SEG Q(NP(4)-SEG

Figure 9.

Suppose that the graph C(3,5) is Q(1)P(b)-SEG , for b>5. Since C(3,5) has
7 vertices and 8 edges, We label the edges of C(3,5) by +1,+2,+3,+4, and
the induced vertex label set are {0,1b , £(b+1) H(b+2)},b>5. Notice that we
need to label the some edges of the Cs in the C(3,5) with 1,2,3,4 (or with
—1,-2,-3,-4), if not, there is a vertex in Cs with a label value smaller than b, if
not ,there is a label value of vertex in Cs ,the value is smaller than b.

We consider the following case : Assume any 4-permutations of 1,2,3,4 (or

-1,-2,-3,4) is X, x,. %%, Now as { x; +x;, , x;, +x; , X, +x;, }
#{ b,b"’l,b"’z },bZS (Or ‘ x,-l +Xi3 » x,-z +X13 . x":‘ +x"‘ }-‘#l-b,-(b-i-l),—(b+2)},

b>5), we see that C(3,5) is not Q(1)P(b)-SEG, b>5.
Theorem 2.4. C(3,6) is Q(a)P(1)-SEG for a =1,2,3,4 and Q(1)P(b)-SEG for b
=2 and 3.

Proof. We see that C(3,6) is Q(a)P(1)-SEG for a =1,2,3,4, and Q(1)P(b)-SEG
forb=2 and 3.
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QMP(-SES  QERIP(1)-SEG

QUPR)-SEG QUPQ) -SEG

Figure 10.
Theorem 2.5. C(4,4), C(4,5), C(4,6), C(4,7) are Q(1)P(1)-SEG..
Proof. We see that C(4,4) and C(4,6) are Q(a)P(1)-SEG for a > 1, and that
C(4.5) and C(4,7) are Q(1)P(1)-SEG.

~(a+3) a+l 4 \o R
(a+2)

C ‘l) o
1 /- (a’.‘)) ¢ . pc]

AVA -(m a+1
226
3/ _(a”y 4
gy 3, 2T
P
-(ﬂm\ m 1 [l ar -(aeq) S
@ Cs ,Q
¢ - Cy -a a+2
o5
Q@P(1)-SEG Q()P(1)-SEG Q(a)P(1)-SEG Q(1P(1)-SEG
Figure 11.
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3. Q(a)P(b)-Super Edge Gracefulness of Cycle with a Chord
In this section, we consider the (p,p+1)-graphs that are cycles with a
chord. Assume the vertices of cycle are{v,,v,...,vp} and the chord connect
vertex v, with v, we denote this graph by Cy(r).
V2
v /‘G‘)‘\\‘ v
LN
(P) \(
N
\
N Ny
-~ ey
vy

4}
Ve

vy N

C5(5)

Figure 12.
In [8], Lee, Chen and Wang showed that

Theorem 3.1. If G is a cycle with one chord of odd order p, then G is
edge-graceful.
Theorem 3.2. The graph C4(3) is not Q(a)P(b)-SEG foranya,b> 1.
Proof. Suppose that the graph C4(3) is Q(a)P(b)-SEG for some a , b. Since C4(3)
has 4 vertices and 5 edges, there is one and only edge labeled by 0.

Consider the case that the edge (v, v3) is not labeled by 0. Without loss of
gener;ﬂity. the possible labeling is displayed in the following figure, where x
should be a or a+1 and y should be the other one.

Figure 13
We find that there are two vertices labeled by the same value, -x. That is a

contradiction.
So we consider the other case that the edge (v, v3) is labeled by 0.
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Remove the edge (vi, v3), we should have a Q(a)P(b)-SEG labeling on
C, ,which is impossible. The reason is shown in Figure 14,

Figure 14.

Theorem 3.3. The graph Cs(3) is Q(a)P(b)-SEG for

(I) a=land bg3

(2) a=2and bgl.
Proof. We list here four Q(1)P(1)-SEG labelings for Cs(3). We note here I; # 1.
However Iy = I*.

Figure 15.
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4 XDP(1}-SEG

Remark. Cgis not Q(1)P(1)-SEG. However, we see that C¢(3) (Figure 17)
and C¢(4) (Figure 18) are. Q(1)P(1)-SEG.

Figure 18.
Theorem 3.4. Co,(r) is Q(1)P(1)-SEG forany n=4kandanyr>3.
Proof. We give an Q(1)P(1)-SEG edge labeling of Cgy(r) as follows:
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We label the edges (Vay,vi),(V1, V2), (V2¥3), ... , (Vax _1,Vai) by 4k, —1, 4k — 1,
2,4k -2,-3, ... ,4k—i+1,—i,...,3k+ 1, -k We label the edges (v,
Vake 1)y (Vake1,Vake2h (Vaks2 Vakaa)s oov » (Vaxer,Vac ) by =3k, k+ 1, -3k + 1, k + 2, -3k
+2,k+3, ...,-3k+i k+i+1,..,-2k- 1,2k We label the edges,
(VakVake1)y (Vakst Vaka2)s (Vaxe2,Vaksa)s - » (Vox =1, Vex ) by —4k, 1, =4k + 1, 2, -4k
+2,3,...,-4k+i-1,i,...,-3k— 1, k. We label the edges, (Ve ,Vexs1)-( Ve,
Veks2)( Vekez, Veks3) --- » (Vaka, V) by 3k, =k = 1, 3k = 1, =k - 2, 3k - 2, -k -
3,...,3k—-i,~k-i-1,...,2k+ 1, -2k

Then the vertices, vy, v, V3,...,v are labeled by 4k — 1, 4k — 2,
4k-3, ..., 2k + 1, the vertices Vaxe, Vakaz, Vakadse-- » Vaks by =2k + 1, 2k + 2,
—2k + 3, ..., =1, the vertices Va2, Vaks3s Vakeds «-- » Vo1 by =4k + 1, —dk + 2, -4k
+3, ..., -2k — 1, the vertices Vex+1, Veks2,Veks3--+ » Va1 by 2k = 1, 2k — 2, 2k -
3, ..., 1, and the four vertices vy, Vax, Vex, Vsx by —4k, —2k, 4k, 2Kk, respectively.
Now we extend the edge label of (v,,v,) by 0.We see the induced vertex
labels is unchanged.

Example 4. We illustrate a Q(1)P(1)-SEG labeling for Cg(5) in Figure 19.

Figure 19.

Theorem 3.5. Cy(n+1) is Q(1)P(1)-SEG if and only if n>3.
Proof. For n =3, we see C4(4) (Figure 18) is Q(1)P(1)-SEG.
For n =4, we see Cg(5) (Figure 20) is Q(1)P(1)-SEG.
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Figure 20.

Q)PQA)-SEG Q)PR)-SEC Q)PB)-SEG

Figure 21.

4. Q(a)P(b)-Super Edge Gracefulness of Dumbbell Graphs.
The dumbbell graph D(a,b) is formed by join two disconnected cycles

C, and C, by an edge.(Figure 22.)
Theorem 4.1. The dumbbell graph D(3,3) is Q(a)P(b) SEG for

(1) a=landb=1,2,3

(2) a=2,3andb=l.

(3) a=4,b=2a+l.

The graph D(3,3) is not  Q(a)P(1) SEG for a=4.
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Proof. (1) and (2) The dumbbell graph D(3,3) is Q(a)P(b) SEG for a =1 and b
=1,23anda=2,3and b=l.

QUAN(1)-SEG

Figure 22 .
(3)D(3,3) is Q(a)P(2a+1)-SEG, a>4.

Let a4, If we label the edges (¢,,€,) (€, €4 ), (€5,C4), (¢p,¢1 ),

(e, (cf,e3 ), (c3,¢3) by a,a+1,a+2,0,-a,-(a+1),-(a+2) in D(3,3), then

D(3,3) is Q(a)P(2a+1)-SEG.
D(3,3) is not Q(a)P(1)-SEG, a>4. Let a>4, note the dumbbell graph D(3,3)
is formed by joining two disconnected cycles C; and C; by an edge. If we label

the edge (c,,c,') by 0, for any x,y,ze (* a,* (a+1),% (a+2)}, we observe all the

X,¥,2 are not positive integers at the same time, or all the X,y ,z are not negative
integers at the same time. Without loss of generality, we may assume that the
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X,y are positive integers(or negative integers), z is negative integer (or positive

integer), we have min{ [x+ )| }=2a+1, max{|x+2,|y+7| }<2, then we see

{f( ¢;):c; € V(D(3,3))} is not a subset of consecutive natural number and the

negative natural number. According to our definition, D(3,3) is not
Q(a)P(1)-SEG for a>4.

If we label the edge (c,,c; )by x ,x€( at (a+l),x (a+2)}, we have at

least one vertex c, € V (D(3,3)) ,and f*( <, e {ta,(atl), £ (a+2)}, D(3,3)

is not Q(a)P(1)-SEG due to a>4.

Theorem 4.2. For any n > 3, the dumbbell graph DB(n,n) is Q(1)P(1)-SEG..
Proof. Let C, and C, are cycles with vertices uju,....,upand Vvy,va,.....Vn
respectively.

Consider two cases.

Case 1. n is odd. Assume that n=2k-1,k22. We label the edges
(), up) , (U, 1), (us,ug) ... (Ugg_zstag_3) » (g, 14)) bY 0,-1,-2,...,-(k-1)
and label the edges (uay,u43) . (ug,us) ., (ugug)
(Uop-gsting_3) s (Uag_n. 2 ) bY 2k-1,2k-2,2k-3,... k+1.

We label the edges (v,v,), (V3.v4) » (Vs5.v6) s (V3o Vae2) »
(Voegsvy) by —(2k-1) ,-(2k-2),-(2k-3),...,-k, and label the edges
(vasv3) » (Wauvs) o Weuvg) = s (Var_govye3) 5 (Var-2sVary) bY
1,2,3.....(k-1).We label the edge (u;,v;) by k.

Then the vertices u,,u,,....,uz.; are labeled by 1,(2k-1),(2k-2),(2k-3),...,3,2,
and the vertices vi,V,.....Vay  are labeled by -(2k-1),-(2k-2),...,-3,-2,-1.

Case 2. n is even. Assume that n=2k,k>2. We label the edges
(uy,u3) 5 (uz,u4)
(4s,1tg) ***» (Ugg-3rlokz) » (Uey U2 ) BY 0-1,-2,...,(k-1) and label the
edges (4,,u4),
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(g, us),(Ug,t07) s (o n,Uap_1 ), (Uqe, 1) by 2k,2k-1,2k-2,... k+].

We label the edges (vy,vy) ., (v3,v4) » (V5.¥6) ***y (Var_3sVarz) o
(vop1svar) by =2k , -(2k-1),-(2k-2),...,-(k+1), and label the edges
(v2,v3) 2 (V45 v5), (v, 1) = (VagpsVaker) s (V,v)) by 1,2,3,... k.-We label
the edge (u,,v,) by k.

Then the vertices u;,u,,--,u,, are labeled by 1,2k,(2k-1),(2k-2),....,3,2,
and the vertices v),v,,....,vy are labeled by -(2k-1),-(2k-2), -(2k-3), ..., -3,
-2,-1.
- Thus for any n=2k , k22 , the dumbbell graph DB(n,n) is
Q(1P(1)-SEG.

Example 5. . We illustrate a Q(1)P(1)-SEG labeling for DB(7,7), DB(8,6) and
Q(1)P(1)-SEG labelings for DB(9,9), DB(10,10) respectively, in Figure 23 .

/Ty o N 2 4N N
P O W }3,5/-@\4 .
) 3} ) {5 A2 N 3 2
i Voo X v O by
! 3 - y 2
C’L{ B——® o3 ¢ =D
R -‘\‘ K AN /1 ™ 7
N 1 SR o 2 &5 3 o 3
&) 5 5 ) .~ - A} ) “
\./"’"T?"(:) \%*;J\.y '\k - 7 _(::)_, 3
DB(7.7)is QUIP(L-SEG DB(E.8) i QUIP(1)-SEG
s AP
AfIr8 &y TN Al
2 © ; Y G, & Wiy i
(o (jl (~')"':'" U }’9
P oA fo 5
SO D e
& e ot % s
b .4 LA NN L . :E e
Dy’ TEr s
DB(9.9 i QPO WSEG . DB(10.10) is QUIX1)-SEG

Figure 23 .

Theorem 4.3. DB(4.4) is Q(a)P(b)-SEG for
(1) a=land b=123.
(2) a=234andb=l.

Proof.
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QUX1)-SEG

Figure 24.
Theorem 4.4. DB(5,5) is Q(a)P(b)-SEG for
(1) a=land b=1234,
(2) a=2andb=1,2,34,5,6.
(3) a=34,5and b=1.
Proof.

<
0

XP(3)-SEG o
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Theorem 4.6. DB(6,6) is Q(a)P(b)-SEG for
(1) a=land b=1,234.
(2) a=2andb=1,2,34,5,6.

Proof.

QUIPS)-SEC 2P(6)-SEG
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S. Conclusion.

In this paper we try to address the following problem: "For what (a,b)
we have Q(a)P(b)-SEG (p,p+1)-graphs?”. At present we have only touched the
surface of this problem, a lot of problems remain unsolved. We invite readers to
consider the following three conjectures.

Conjecture 1. C,(3) is Q(1)P(1)-SEG for all n >8
Conjecture 2. C(m,n) is Q(a)P(1)-SEG if m+n is even.
Conjecture 3. For any r > 3,Cy,(r) is Q(1)P(1)-SEG forall n> 3.
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