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Abstract

A Latin square of order n is an n by n array in which every row
and column is a permutation of a set N of n elements. Let L = [ ;]
and M = [m, ;] be two Latin squares of even order n, based on
the same N-set. Define the superposition of L onto M to be the
n by n array A = (i j,m;,;). When n is even, L and M are said
to be nearly orthogonal if the superposition of L onto M has every
ordered pair (i,7) appearing exactly once except for i = j, when the
ordered pair appears 0 times and except for i — j = n/2 (mod n),
when the ordered pair appears 2 times. A set of ¢ Latin squares of
order 2m is called a set of mutually nearly orthogonal Latin squares (¢
MNOLS(2m)) if the ¢ Latin squares are pairwise nearly orthogonal.
We provide two elementary proofs for results that were stated and
proved earlier. We also provide some computer results and prove
two recursive constructions for MNOLS. Using these results we show
that there always exist 3 mutually nearly orthogonal Latin squares
of order 2m, for 2m > 358.

1 Introduction

A Latin square of order n is an n by n array in which every row and col-
umn is a permutation of a set N of n elements. Unless otherwise stated,
we assume N = {0,1,2,...,n}. Let L = [l; ;] and M = [m; ;] be two Latin
squares of order n. Define the superposition of L onto M to be the n by n
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array A = (l;,;,m; ;). Then L and M are said to be orthogonal if the super-
position of L onto M has every ordered pair (%, j) appearing exactly once.
A set of Latin squares in which each pair is orthogonal, is called a set of
mutually orthogonal Latin squares. Mutually orthogonal Latin squares have
been extensively studied (see Dénes and Keedwell [3]). In [6], Raghavarao,
Shrikhande and Shrikhande define the concept of two Latin squares being
nearly orthogonal. Latin squares L and M are nearly orthogonal if the
superposition of L onto M has every ordered pair (4, j) appearing exactly
once except for i = j, when the ordered pair appears 0 times and except
for i — j = n/2 (mod n), when the ordered pair appears 2 times. A set
of t Latin squares of order 2m is called a set of mutually nearly orthogonal
Latin squares, denoted by t MNOLS(2m), if the Latin squares are pairwise
nearly orthogonal. The following two Latin squares of order 4 are nearly
orthogonal.

(=] B V) ]
Wl

1
3
2

=N O] W
Ll K751 Nt B ]
W=

N O] =

W =IO

3|0 0

In [6], Raghavarao, Shrikhande and Shrikhande explained that nearly
orthogonal Latin squares are useful for conducting experiments eliminating
heterogeneity in two directions and using different interventions each at
each level. They went on and proved Theorem 2.1 using eigenvalues for part
a) and the theory of group divisible designs for part b). However, the result
can easily be proved using elementary counting arguments. Therefore, an
elementary proof will be provided in Section 2. In Section 3, we define
difference sets for t MNOLS(2m) and give some computer results concerning
these difference sets. In Section 4, we give a direct product construction for
NMOLS and a Bose-Shrikhande-Parker-like construction [1] for NMOLS.
Then, we combine the computer results and the two constructions to show
that 3 MNOLS(2m) always exist for 2m > 358. In the Section 5 we give
some conjectures and problems.

2 Old Results and New Proofs

First we bound the number of Latin squares in a set of MNOLS(2m).

Theorem 2.1 ([6]) Let m > 2 be a positive integer.
a)If there exists a set of t MNOLS(2m), thent < m + 1.
b) If m is even and there exists a set of t MNOLS(2m), then t < m + 1.
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Proof a) Suppose there are ¢ MNOLS(2m) based on the set N = {0,1
...,2m—1}. Let the entry in row ¢ and column j of the superposition of the
¢t MNOLS be (a} ;,a2;,...at ;), where a¥; comes from the k** Latin square.
Consider the cells, which have a}; = 0 and let C = {(3,5)la;; = 0}. In
these cells, and for a fixed value of 2 < k < ¢, the multiset {af’jl(i,j) € C}
={1,2,..,m—-1,m,m,m+1,...,2m~— 1}, where the element m occurs twice.
Note that m’s coming from different Latin squares must occur in different
cells, for if they occur in the same cell, there would be two identical elements
in the same cell and this is forbidden by definition of nearly orthogonal. Us-
ing the fact that the element m occurs twice in positions from C and there
are 2m cells with a} ; = 0, we can have at most 2m/2 +1 = m + 1 Latin
squares in a set MNOLS of order 2m. Therefore ¢t < m + 1 as required.

b)Suppose that there are m 4+ 1 MNOLS(2m) based on the set N={0,1,
..., 2m — 1} where m is even. Let the entry in row 7 and column j of the
superposition of the m + 1 MNOLS be (a} ;,a?;,... a;’,‘;”). Consider the
entries from just two of the Latin squares. The 2m entries (0,m), (1,m +
1),...,(2m—1,m—1) all occur twice in a total of 4m distinct cells. We shall
call these pairs special pairs. If we consider the special pairs between all
possible pairs of Latin squares, we see that there are (™} ')4m = 2m3+2m?
of them. Any particular cell can hold at most m/2 special pairs. For if there
were m/2 + 1 special pairs in a particular cell, then we would have at least
one instance where one special pair comes from Latin squares A and B and
the other special pair comes from Latin squares A and C where B # C.
This would imply that the entries from Latin squares B and C are identical
at the cell in question, which is not allowed by definition. Hence there must
be at least (2m3 + 2m?2)/m/2 = 4m? + 4m cells to hold the special pairs.
This contradicts the fact that there are only 4m cells. 0

Due to Theorem 2.1, Raghavarao, Shrikhande and Shrikhande (6] define
a complete set of MNOLS(2m) to be a set of t MNOLS(2m) where t = m+1,
if m is odd and where t = m, if m is even. Other than for m = 1 or 2,
complete sets of MNOLS(2m) seem difficult to construct. In [4], Pasles and
Raghavarao proved the following result with the help of a computer.

Theorem 2.2 (/4]) A complete set of 4 MNOLS(6) do not ezist.

The closest approximation to 4 MOLS(6) they got is displayed below
without all the commas and brackets.
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0134 | 4310 | 2503
2415 | 0253 | 3140
4251 | 5142 | 0325 .
3520 | 2035 | 1452 | 0341 .
1302 | 1524 | 4031 . 0413 .
1043 | 3401 | 5214 . . 0532

However, if the cells are filled in a different order, the following approxima-
tion to a set of 4 MNOLS(6) can be obtained.

0143 | 12564 | 2305 | 3410 | 4521 | 5032
4215 | 5320 | 0431 | 1542 | 2053 | 3104
3502 | 4013 | 5124 | 0235 | 1340 | 2451
1034 | 2145 | 3250 | 4301 | 5412 | 0523

No more cells of the superposed Latin square can be filled in with 4-
tuples. Also note that column i + 1 is obtained from column 3 by adding
1 mod 6 to every entry. This motivates the following definition by Raghavarao,
Shrikhande and Shrikhande [6]. A (t,2m)-difference set is a set of 2m t-
tuples in which the ordered differences modulo 2m between elements in
two positions form no 0-difference, two m- differences and every other dif-
ference appears once. A set of ¢ MNOLS(2m) can be developed from a
(t,2m) difference set by putting the difference set in the first column (each
t-tuple in a different cell) and obtaining each subsequent column from the
previous column by adding 1 mod 2m to each entry of the cells in the pre-
vious column. The difference set { (0,1), (1,3), (3,2), (2,0) } was used to
generate the 2 MNOLS(4) stated in the Section 1. Alternatively, the differ-
ence set can also be put in the first row and developed along the rows. To
save space we will present the difference sets as rows and put the elements
from each component of the ¢-tuple in a different row of our tables. So
the 2 MNOLS(4) from the Section 1 could have been developed from the
following difference set which would be presented under this scheme as:

0|11(3]|2
1(3[2]0

We now state and prove an easy result.
Theorem 2.3 There exists 2 MNOLS(2m) for all m.

Proof. Tt is easy to check that the following is a (2,2m)-difference set.

011(213|4... | m1 |m|m+1][...]2m-1
11351719 2m-1 | 0 2 vee | 2m-2
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Although there are many ways to obtain (2,2m)-difference sets, it is
not easy to provide a systematic way for constructing a (3,2m)-difference
set, for any m. In the next section, we give some computer constructions
of difference sets.

3 Computer Results

In this section, we try to find some ¢ MNOLS(2m) for small m. We will
be searching for the number of different (¢, 2m)-difference sets for each m.
However, since a difference set can be manipulated to get many different
difference sets, we need to define what it means for two difference sets to
be isomorphic . Two difference sets are isomorphic if one can be obtained
from the other with the following operations: 1) rearranging the order of all
t-tuples simultaneously, 2) rearranging the rows (assuming the difference
set is put in the first column), 3) multiply all elements in all ¢-tuples of
the difference set by a where ged(a,2m) = 1, or 4) add a constant to all
elements in all t-tuples of the difference set.

Clearly, there is one non-isomorphic set of 2 MNOLS(2). It can be
generated from the following (2, 2)-difference set: {(0,1),(1,0)}. There is
one non-isomorphic (2, 4)-difference set which has already been displayed.
In [6], they provide a Latin square that could be generated from a (3, 6)-
difference set. We did a computer search for others and obtained the fol-
lowing lemma.

Lemma 3.1 There is one non-isomorphic (3, 6)-difference set which is

0112345
1{3|s5]ol2|4
slol4)1]|5]2

There are no (4,6)-difference sets.

Note that the 6 3-tuples come from 2 sets, {0,1,3} and {2,4,5}. How-
ever, we were not able to generalize this idea. Again, in [6], they found an
example of 3 MNOLS(8) that could be generated from a (3, 8)-difference
set.

Lemma 3.2 There is one non-isomorphic (3, 8)-difference set which is
011213141567
1lols|7l6l3]| 2|4
4|5 8|loj2)7|1]|6
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and there are no (4, 8)-difference sets.
At this point the computer becomes indispensable.

Lemma 3.3 There is one non-isomorphic (4,10)-difference set which is

011231 4]|5]6[7]8]9
1|3l 7|o|8l4|9|2]6]|5
2|8l1|6|lol9|7|5]|3]|4
715(4|8|9(3|2]6|1]0

and there are no (5,10)-difference sets.

Lemma 3.4 There is more than one non-isomorphic (4, 12)-difference set.
The following is a (4,12)-difference set.

0y 11 2} 3814|585 6|7|8]19110|11
110 4| 6191111102513 | 8] 7
4191111013y 7| 0|8]6 2| 1]|5
7110 5| 9|81 1| 4]|16|2111| 3] 0

and there are no (5,12)-difference sets.
At this point we only look for (3, 2m)-difference sets for 2m > 14.
Lemma 3.5 There are (3,2m)-difference sets for 6 < 2m < 20.

Proof. We need only list the difference sets for 2m = 14,16, 18 and 20.

2m =14
011] 2 3|4 5 6
1104 (6|8 |11]13
216|13[10|11( 4 |12
7 (8]19f(10|11]12] 13
1212|151 3191|7110
3|9|1710]|51 1] 8
2m =16
011123 ]| 4]|5]6]|7
11315 719]|11]13}15
216|011 114| 1| 5 |13
819 J10|l11]12]|13(14}15
012|146 8]|]10[12]14
12110 3 | 8 |15§ 4| 9| 7
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2m =18

0(1|12] 3] 4|5]|6]|71]S8
113579 (1111315117
2|1017(12|15] 1 ]4114]11
911011112113 )14 |15 16|17
0| 2|46 | 811012114 |16
3116 8 |13|17| 5|10 6|9
2m = 20
0j112(3 (4| 5|]6)7|8]°9
113579 (11113}115(17]19
210|7(14)171 1 |18} 8 (15113
10(11|112|13(14({15(16]17 |18 | 19
0{2 (468110121416 18
196 (101611} 5|43 ]12| 9

4 Theoretical Constructions

We now give two recursive construction for NMOLS. First we clarify some
notation. If A = (a; ;) and if b is an integer then, A + b = (a;; + b) and
nA = (n*a; ;). The first construction is of the direct product type.

Theorem 4.1 Suppose there exists
1. s MNOLS(2m),
2. s MOLS(n),
3. s MOLS(2m)

Then there exists s MNOLS(2mn).

Proof. Let By, ..., B, be the s MOLS(n) based on the set {0,1,...,n — 1},
and without loss of generality, we assume that the first row of each of
these MOLS is (0,1,...,n — 1). Let A;,...,A,; be s MNOLS(2m) based
on the set {0,1,...,2m —1}. Let Ci,...,C, be the s MOLS(2m) based on
the set § = {0,1,...,2m — 1}. To construct the desired s MNOLS(2mn)
Ly, Ls,...,L,, we replace each element in the B;’s with a Latin square as
follows. Foreach 1 < k < s, replace Bi(1, j) by nAx+Bx(1,7) (mod 2mn),
where 1 < j < n—1and for each 1 < k < s replace By(%, ) by nCr+ Bk (%, 7)
(mod 2mn), where2<i<n-land1<j<n-1.

Since P {0+i,n+4,2044,...,(2m=1)n+i} = {0,1,...,2mn -1},
the L;’s are Latin squares. Consider the pair (i, mn + i) mod 2mn coming
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from two of the Latin squares, say L, and L, where 1 < p < g < s
Let i = i, modn. This pair comes from the subsquares nA, + i, and
nAq +1, that were used to replace By(1,in) = i, and By(1,4,) = i,. Since
the original MNOLS(2m) have the pair ((i — i,)/n,m + (i — i,)/n) twice,
nAp + i, and nA, + i, have the pair (i,mn + i) twice. This uses up all
the (7,7) pairs in L, and L, so there are no (3, ) pairs in the superposition
of L, and L,. All other pairs appear once because MOLS and MNOLS
were used. Therefore the s Latin squares Ly, Lo, ..., L, of order 2m are s
MNOLS(2m). 0

The following result is an immediate consequence of Theorem 4.1, where
N(n) denotes the cardinality of the largest set of MOLS(n), and N*(n)
denotes the cardinality of the largest set of MNOLS(n).

Corollary 4.2 For positive integers m,n, N*(2mn) > min{N(n), N*(2m),
N(2m)}.

Example 4.3 Using our computer results along with the tables in Colbourn
and Dinitz (2], we can get the following two results that we will need later.
Since there exists 3 MOLS(4), 3 MNOLS(8) and 8 MOLS(8), then there ez-
ists 3 MNOLS(32). Similarly, since there exists 3 MOLS(4), 3 MNOLS(16)
and 3 MOLS(16), then there exists 3 MNOLS(64).

Using the fact [2] that for any n > 11 there exists 3 MOLS(n), and that
there are 3 MNOLS(8) and 3 MOLS(8), Theorem 4.1 implies the following
result.

Theorem 4.4 If n > 11, then there exists 3 MNOLS(8n) .

We would like to prove the existence of 3 MNOLS(2m) for all 2m larger
than some small number, but to do this we need another recursive con-
struction which is similar to the Bose-Shrikhande-Parker construction 1]
for MOLS. This will require some definitions which we now do.

Let K be a set of postive integers. A group divisible design of order v
(K-GDD) is a triple (V, G, B), where V is a finite set of cardinality v, G is
a partition of V into parts(groups) whose sizes lie in G and B is a family of
subsets (blocks) of V which satisfy : 1) If B € B, then |B| € K, 2) Every
pair of distinct elements of ¥V occurs in 1 block or 1 group but not both, and
3) |G| > 1. If there are a; groups of size g;,7 = 1,2...s, then the K-GDD
is of type g7',93°%,...,9%".

A t IMOLS(n) is a set of t MOLS(n) with the property that each Latin
square is idempotent, i.e. the i row and i** column entry of the Latin
square is .
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Theorem 4.5 Suppose there ezists a group divisible design K-GDD of
type 97°,95%,-..,9% Suppose also that for any group of size g; there are
s MNOLS(g;) and for any block of size k € K there are s IMOLS(k), then
there are s MNOLS(Y";_, ai * g; = 2h)

Proof. We will construct the desired s Latin squares of order 2h super-
posed. Let the rows and columns of this square be indexed by the elements
0,1,...,2h and for the moment assume the square is empty. The groups of
the GDD must all be of even size since there are MNOLS of that size. So
it is possible to relabel the g; = 2m; elements of each group in the GDD as
follows: {b1,ba,...,bm,h +b1,h+ba,...,h+ by} C Zy,. This relabeling
can be done for all groups simultaneously maintaining the property that the
groups must partition V. Consider a particular group of size 2m;. Map the
elements of this group onto the elements of the MNOLS(2m;) in such a way
that the elements of difference h are mapped onto elements with difference
m. Then replace the elements of the MNOLS(2m;) with the elements of
the groups and superpose the latin squares of order 2m;. In that subma-
trix of the square of order 2h picked out by the elements of the group, we
will put the s superposed relabeled MNOLS(2m;). This will be done for
each group. Consider a particular block of size n. Map the elements of this
block onto the elements of the IMOLS(n). Then replace the elements of the
IMOLS(n) with the elements of the block and superpose the Latin squares
of order n. Now delete the main diagonal elements. In that submatrix of
the square of order 2k picked out by the elements of the block, we will
put the s superposed relabeled IMOLS(n) missing the main diagonal. This
will be done for each block. We claim the result is a set of s superposed
MNOLS(2h).

Clearly, each element appears exactly once in any row and in any col-
umn. Because of the way we relabeled the elements of the groups and the
fact that we use the MNOLS on the submatrices picked out by the group
elements, any pair of elements with difference h from the distinct Latin
squares of order 2h appear twice. Since the MNOLS do not have (i,%)
pairs and we deleted the main diagonal from the idempotent Latin squares
(which contain the (¢,%) pairs, there are no (i,) pairs in the superposed
Latin squares of order 2h. All other pairs in the superposed Latin squares
of order 2h occur once as all other pairs in the superposed subsquares occur
once. O

At this point we need the usual technical lemma.
Lemma 4.6 All even numbers in the range [2"(11) +6,2"(2" — n+5)] can

be written in the form 2"my +2" " 'mo+---+my,_32*+5 where 11 <m; <
2" —n+4, mg,mg3,...,my,_3 are either 0 or 1,and 6 < s < 20 and s even.
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Proof. Clearly the even numbers from 2"(11) + 6 to 2"(11) + 20 can be
expressed in the required form. Then we can add all multiples of 16 from
16 to 27~1 + 272 ... 4 24 = 2™ — 16 onto the even numbers 2*(11) + 6
to 2”(11) + 20 to show that all even numbers from 27(11) + 22 to 27(11) +
2™ 4+ 4 can be expressed in the desired form. We can then add positive
multiples of 2" from 2" to 2"(2" — n — 7) to the numbers 2"(11) + 6 to
2™(11) + 2™ + 4 to show that all even numbers from 2"(11) 4+ 2" + 6 to
2"(11) + 2" + 4+ 2™(2" —n—7) = 2*(2" — n + 5) can be expressed in the
required form. Hence all even numbers from 2"(11) + 6 to 2*(2" — n + 5)
can be expressed in the required form. 0

For a fixed value of n, the n!* range is defined to be the set of all
possible numbers of the form 2"m; + 2" 'mgy + - -+ + mp_32* + s where
11<m £2" ~n+4, mg,m3,...,m,_3 are either 0 or 1,and 6 < s < 20
and s even.

Corollary 4.7 All even numbers equal to or larger than 358 can be written
in the form 2"my + 2" 1my + ... + 24 + s where 11 < m; < 2® —n + 4,
Mg, mg,...,4 are either 0 or 1,and 6 < s < 20, s cven and n > 5.

Proof. If we examine the ranges in Lemma 4.6 we see that the largest
number in the nt* range (i.e. 2*(2" — n + 5) — 16) is larger the smallest
number in the (n + 1)** range (i.e. 2"t!(11) +6) for n > 5. Since the
smallest number in the n®* range, when n = 5 is 358, we get the result.

0

We are now ready for our main Theorem.
Theorem 4.8 If 2m > 358, then there ezist 3 MNOLS(2m).

Proof. By Corollary 4.7, we know that any number equal to or larger than
358 can be written in the form 2"m; + 2"~ 1mg + ... + 2%m,,_3 + s where
11 <my £2"—n+4, mg,m3,...,Mp_3areeitherOor 1,6 < s < 20, s even
and n > 5. As 2" is a prime power, we know that there exist 2” —1 MOLS
(2™). Also in [2], we know how to convert these 2" — 1 MNOLS(2") into
a 2" + 1-GDD of type (2")2"+1. We note that this GDD has the property
that every block intersects every group in exactly one element.

First, we shorten one of the groups to size s, i.e. delete 2" — s elements
from the group and delete these elements whenever they appear in a block.
Second, for 2 < i < n -3, if m; = 0, delete one of the unaltered groups and
its elements entirely from the GDD. Third, for 1 <i<n-3,if m; = 1,
then shorten one of the unaltered groups to 2" ~*+! elements. At this point
there are 2™ — n + 4 unaltered groups. Delete 2" — n + 4 — my of the
unaltered groups entirely from the GDD. This leaves exactly m; unaltered
groups which we leave alone.
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This process produces a K-GDD with m; groups of size 2", at most
2" — n + 3 groups have a size that is a power of two larger than 8 and
one group of size s. Since there exist 3 MNOLS(32), 3 MNOLS(64) (by
Example 4.3) and 3 MNOLS(2m) for 2m = 0 mod 8 (by Theorem 4.4),
there exist 3 MNOLS for the powers of 2 that are sizes of the groups. From
our computer results in Section 3, we also know that there 3 MNOLS(2m),
for 6 < 2m < 20. Since m; > 11, we know that each block intersects at
least 11 groups and hence the blocks have sizes greater than or equal to 11.
So we know that there are 3 IMOLS for all block sizes (see [2]). Now we
apply Theorem 4.5 to get the result. 0

5 Conclusions and Conjectures

We have shown that if 2m > 358, then there exist 3 MNOLS(2m). It is
interesting to compare this particular existence question to the one for 3
MOLS. It is possible to reduce 358 with some work. We conjecture the
following;:

Conjecture 5.1 There exist $ MNOLS(2m) for 2m > 6.

Clearly one could study ¢t MNOLS(2m) for ¢ > 4 and all the other prob-
lems that are mentioned in the MOLS section of Colbourn and Dinitz [2].
Based on our computer results in section 3, we conjecture the following.

Conjecture 5,2 The mazimum t for which a (t,2m)-difference set exists
is [m/4] +1

Another interesting question is the existence of complete set of MNOLS.
Except for 2m = 2,4, there are none known and we know that there is no
complete set of MNOLS(6). It would be interesting to investigate whether
a complete set of MNOLS exists for any value of 2m other than 2, 4.
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