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Abstract

A weighing matrix W (n, k) of order n with weight k isan n x n
matrix with entries from {0, 1, —1} which satisfies WW7T = kI,.. Such
a matrix is group-developed if its rows and columns can be indexed by
elements of a finite group G so that wy,n = wgy ny for all g, h, and f in
G. Group-developed weighing matrices are a natural generalization
of perfect ternary arrays and Hadamard matrices. They are closely
related to difference sets.

We describe a search for weighing matrices with order 60 and
weight 25, developed over solvable groups. There is one known ex-
ample of a W (60, 25) developed over a nonsolvable group; no solvable
examples are known.

We use techniques from representation theory, including a new
viewpoint on complementary quotient images, to restrict solvable
examples. We describe a computer search strategy which has elimi-
nated two of twelve possible cases. We summarize plans to complete
the search.

1 Introduction

A variety of combinatorial objects are defined as solutions to the matrix
equation: MMT = al + $J, where J denotes the matrix with all entries
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equal to one. Some of these objects can be described as group-developed;
that is, their internal structures are most easily described via multiplication
in a finite group.

Definition 1 (Group Developed Weighing Matrix). A weighing matriz
W(n,k) of order n with weight k is an n x n matriz with entries from
{0,1, -1} such that WWT = kI,,. Such a matriz is group-developed under
a group G if the rows and columns can be indezed so that Wg,h = Wos nys for
allg,h,f € G.

A variety of constructions are known for weighing matrices; a summary
can be found in [11]. A great deal of the research concentrates on the special
case of Hadamard matrices. A recent article by Ang and Ma concentrates
on the special case of symmetric weighing matrices developed over abelian
groups [2].

In this paper, we describe a search for group-developed weighing ma-
trices with order 60 and weight 25. Such matrices are a generalization of
perfect ternary arrays with order 60 and energy 25.

Perfect ternary arrays are of particular interest in communications the-
ory. An r-dimensional ternary array is a s; X s3 X ... X s, array with entries
chosen from {0,1,-1}. Such a ternary array, A, is perfect if its out-of-
phase periodic autocorrelation coefficients are zero. The energy, k, of A is
the number of nonzero entries; its orderis n = IIs;. The correlation proper-
ties imply orthogonality of rows, so A is equivalent to a W (n, k) developed
over the group Z;, x Zs, x --- x Z,, [4].

Group-developed weighing matrices are also closely related to difference
sets. A subset A of a finite group G is called a (v, k, A) difference set if:
IGl = v; A = k; and for each g € G\{e}, the equation g = dd;! has
exactly A solutions (d;,d;) in A x A. The connection between weighing
matrices and difference sets is best described in the language of group rings.

2 Algebraic methods

Assume that G is a finite group and that R is a ring. The corresponding
group ring is RG = {dec(agg); g € R} . We denote the identity by I.
If the polynomial § = 3~ ayg is in RG, then we write 5(-)) = 3" a,g~!. We
extend automorphisms of G linearly to form automorphisms of RG.

Polynomials o and 8 are translates if there exist g,h € G such that
gah = (3. They are equivalent if there is an automorphism ¢, extended
from G, such that ¢(a) is a translate of 3.



We are particularly interested in the integral and rational group rings,
ZG and QG. Elements of these rings are multisets in G if each coefficient
is a nonnegative integer. Multisets with m coefficients equaling 1 and all
other coefficients equaling 0 are called m-sets in G; we identify aset BC G
with the |Bl-set B =Y 1b.

beB

Weighing matrices can be represented as polynomial solutions to the
equation DD(-1) = o + G in some group ring ZG. We identify solutions
by solving corresponding equations in a variety of quotient rings.

Theorem 1. Suppose that W is a weighing matriz W (n, k) developed over
a group G. The matriz W is equivalent to a o disjoint pair of sets P, M
in G such that (P — M)(P — M)(-V) =kI.

For a proof of this theorem, see Arasu and Dillon [4]. Informally, we
note that a group-developed weighing matrix is fully determined by its first
row; that row corresponds to coefficients for the polynomial (P — M) € ZG.

Reference [4] provides fundamental restrictions on such polynomials. If
(P — M) represents a G-developed weighing matrix W(|Gl|, k), then: k = s?
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for some integer s; and {|P|, M|} = { 52, &3k2 s} .

We frequently consider the related multiset D = P—M+G. We assume
D satisfies these restrictions: |P| = ﬁ'zﬁ; M| = !‘%ﬁ‘:; and DDV =
kI + (2VE+n)G.

Suppose that D corresponds to a G-developed weighing matrix W (60, %{')).
In this situation, |P| = 15, |[M| = 10, |D| = 65, and DD-1) = 25 + 70G.
Liebler [13] has identified such a polynomial in the group ring ZAs. We
wish to determine if similar polynomials exist in ZG, where G is solvable.

Difference sets are characterized by similar polynomials. A (v,k,\)
difference set A C G must satisfy AAC-Y = (k — A)I + \G.

2.1 Quotjent images

To identify interesting polynomials over solvable groups, we utilize projec-
tions into quotient groups. Assume that NG and that 7 : G — G/N is the
usual projection, 7(g) = gN. If D € ZG satisfies DD-?) = al + G, then

m(D) satisfies the analogous equation: m(D)m(D)(-!) = oI + B|N|(G/N).
In particular, if D=P-M+Gis equivalent to a weighing matrix
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W (n, k), then (D) satisfies

7(D)m(D1) = kI + (2VE + n)|N|(G/N). 1)

We define a W (n, k) quotient image to be any reasonable solution of this

equation. Specifically, a multiset § = Z (amm) satisfying equation (1)
meG/N

is a W(n, k) G/N quotient image if )" am = n+ vk and a,, < 2|N| for each

m. We refer to the coefficients ap, of a quotient image as G/N intersection

numbers. Difference sets admit similar definitions.

Suppose that N <« K < G and that G admits a weighing matrix. A
quotient image must exist in G/K. If N 4G, then quotient images exist in
G/N and in (G/N)/(K/N) 2 G/K. Formally, each invariant series of G
generates a corresponding sequence of quotient images.

Twelve of the thirteen groups with order 60 are solvable. The solvable
groups admit normal subgroups of order 5, implying quotient groups with
order 12.

Proposition 1. If a weighing matriz W(60,25) exists in a solvable group,
then a W(60,25) quotient image ezists in a group of order 12.

2.2 Matrix representations of groups

A representation of degree p is a homomorphism from a group to the multi-
plicative group of (p x p) complex matrices. A representation of degree 1 is
a character. We extend representations linearly, forming homomorphisms
from group rings to rings of complex matrices.

Assume § represents a W(n, k) quotient image in a quotient group H;
that is, it satisfies equation (1). Let ¢ be a representation of degree d > 1;
equation (1) becomes:

$(8)$(6V) = kI + (2vVE + n)I—I’;—|¢(ﬁ). 2)

If ¢ is a nontrivial irreducible representation, then ¢(fI ? = 0. Consequently,
any quotient image obeys the restrictions ¢(8)¢(8\~) = k¢(I) for every
nontrivial irreducible representation, and xo(6) = n + vk for the trivial
representation.
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2.3 Decompositions of group rings

The rational group ring of a finite group, H, is semisimple. Consequently,
QH is a direct sum of minimal 2-sided ideals, called simple components.
In order to utilize this decomposition, we treat quotient images in H as
elements of QH which happen to have integral coefficients.

If H is abelian, then each simple component is generated by a central
primitive idempotent, E;. Therefore, quotient images in H decompose as:
§ = Y 6,F;, where §; is a polynomial in the ideal (E;). The idempotents
are sums over equivalence classes of irreducible characters:

{E.-}={ > G me(g‘ D)g

XmE<X:i> 9€EG
Characters in the class (x;) are called components of E;.
If H is non-abelian, we split QH into commutative and non-commutative

components. Assume that H' is the commutator (derlved) subgroup of H,
and define the idempotent polynomial epyr = vl H, L,

Proposition 2 (Proposition 3.6.11 in [15)). If RH is a semisimple group
algebra, then RH = RHey: &® RH(1 — ey/), where Ry = R(H/H') is the
sum of all commutative simple components of RH, and RH(1 —ey:) is the
sum of all the others.

A quotient image in H splits as § = dpep: + 6;(1 — ey+). We determine
§ by identifying abelian quotient images &y € Q(H/H') and corresponding
orthogonal polynomials §; in QH (1 — eg-). In section 2.4, we describe tech-
niques for identifying 8y as a sum of idempotents. To identify 4;, we use
induced matrix representations.

Assume H’ has a linear character T, and that the cosets of H' in H are
{H'zo,H'zy,...,H'z,}. The representation of H induced by T is:

T(zohzp') ... T(zohxz,')
rw=| i i |
T(zphzg') ... T(zphz;?)
where T(a:;h:z‘l) =0if (:z:,ha:’l) ¢ H’. If T is a nonprincipal irreducible

character, then T* maps § to T? (61)1 (Lemma 3.1, [6]). We identify the non-
abelian component §, by applying equation (2) to induced representations.
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2.4 Restrictions on abelian quotient images

Assume § is a W(n, k) quotient image in an abelian group H. Expand § as a

linear combination of idempotents, § = ), J; E;. Suppose x; is an irreducible

character. If x; is a component of E;, then x;(E;) = 1; otherwise, x;(E;) =

0. Therefore, x;(4) = ZXj(éi)xj(E‘i) = x;(0;). We conclude that x;(d) is
i

an algebraic integer in Z[(;] for some j%* root of unity, (;. As § is a quotient
image, equation (2) determines the magnitude x;(6). This approach is
based on work by Iiams [12], Liebler [14], and others. For more details, see
references [5), [6] and [8].

Proposition 3 (Magnitude of coefficients). If § = ) &E; is a W(n,k)
weighing matriz in an abelian group H, then xo(8) = xo(d0) = n+ Vk, and,
for each nontrivial irreducible character xm, |Xm(6m)| = |Xm(8)] = VE.

Thus, the search for an abelian quotient image is equivalent to a search
for coefficients from Z[(,,], m dividing |H|, with magnitude v/%. Translation
of multisets corresponds to translation of x,, (6:») by roots of unity. In other
words, if d = xm(0m), then X;n(90) = xm(9)d. As dd = k, (d) divides (k); it
is sufficient to factor the ideal (k) over Q[(]. Details of this approach, and
the relevant ideal factorizations, are discussed in [6]. We proceed directly
to the computation of small quotient images.

3 Small quotient images

Our procedure is to collect (up to equivalence) all W (60, 25) quotient images
in small groups, then correlate them to determine polynomials represent-
ing weighing matrices. In this section, we compute several small quotient
images. We also summarize the other relevant small quotient images; de-
tails can be found at website http://math.bd.psu.edu/faculty/becker or at
website http://www.cosc.brocku.ca/staff/houghten .

We consider a quotient image, 4, in the cyclic group Z4 = (z : z* = e).
The ring QZ,4 splits as a direct sum of simple components (Eg)®(E2)D(E4),
generated by the idempotents: Eg = %[l + 2z + 22 + 28] = }[1,1,1,1];
E, = -}I[l, -1,1, -—1]; and By = %[2,0, -2, 0] Thus, § = 6o Eg+ 02 E2+04E;.

From Proposition 3, we know that: d = n + vk = 65; x2(d2) equals
5 or -5; and x4(64) € Z[i] with magnitude 5. The ideal (5) factors over
Z[i] as (5) = (3 + 42)(3 — 4¢), so we assume x4(d4) is a simple multiple of
X1 (3 + 4d) or x7'(3 + 4i3). Consequently, § = 65Eq + 5E; + 04E4, where
2™64 € {5,3 + 42,3 + 423},
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Table 1: W(60,25) quotient images in small groups

I_Group Quotient image polynomial
[ Z3 = (2) 35 + 30z
| Z3 = (z) 25 + 20z + 202°
Zy = (2) 20 + 15z + 15z° + 152°
19+ 172 + 1622 + 1323
Zy x Ly = (z,y) 20 + 15z + 15y + 15zy
Zs = (z) 17+ 122 + 122% + 122° + 122°
9+ 14z + 1422 + 142° + 1424
Zg = (2) 15 +10(z + 2° + 2° + 2% + 2°)
ZIO = (Z) 54 GZm
8(22%) + 62(22) -5
TZyo — 52
524+52<22>+7< 22>

" As there is a group automorphism exchanging z and 23, we assume §
is equivalent to a polynomial in which 2™é; € {5,3 + 4z}. Evaluating §
with the possible values of §; and 44, we find only two inequivalent integral
polynomials.

Proposition 4. Up to equivalence, the only W(60,25) quotient images in
Zy =< z > are 20 + 15z + 152% + 152% and 19 + 17z + 162 + 1325,

Similar calculations determine quotient images in other small abelian
groups. A theorem by Dillon [9] shows that every quotient image in a
dihedral group can be derived from a quotient image in the cyclic group of
the same order. There is, for example, a unique D, quotient image; it is
analogous to one of the two Z4 quotient images.

Table 1 contains a listing of all inequivalent W(n, k) in a selection of
small groups. Note that each quotient image has the form w(ﬁ -M )+ r@,
where 7 represents the order of some normal subgroup. The inequivalent
quotient images in the cyclic group of order 20 appear in Table 2. An
exposition of the corresponding calculations, in the context of difference
sets, appears in reference [1].

In section 2.3, we saw that quotient images in a nonabelian group G
split as § = dpegr + 61(1 — egr). Reference [6] describes computation of
difference set quotient images with this decomposition. Specifically, it de-
scribes computation of the nonabelian component 4; by applying equation
(2) to induced representations. That paper also describes the correlation
of 8y and &;. Here, we simply summarize the results for groups of order 12.
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Table 2: W(60,25) quotient images in Zyg = (z,y: z* = y° = 1)

Solution Quotient image polynomial
1. (2 +3(z)){y) -
2. (3z +4)(1 + 22)({y) — 1) + (3 + 5z + z3)
3. [3+4z + 422 +32%)(y? + ¥°) + [4 + = + 32% + 12%] + ...
~~-+[5+3a:+2x2+4w3](y+y4)
4. [4+5:v+3:z: +5x3]+[3+3:1:+4x +223)(y2 + %) +...
4[5 + 2z + 222 + 32%)(y + y%)
5. [2 4 3z + 22 +3x3]+[4+2x+4a: + 423y +3) +...
-+ [5+ 4z + 322 + 22%)(y + %)
6. 6+3x+5z2+3z3]+[4+4x+2z2+2w3](y+y“)+---
s+ [3 4+ 22 + 322 + 423) (32 + 3°)

There are only two inequivalent W (60, 25) A4 quotient images: 5+ 5A4;
and 9 4 5(12)(34) + 5(13)(24) + 6(14)(23) + [6 + 4(12)(34) + 6(13)(24) +
4(14)(23)](123) + [4 + 4(12)(34) + 6(13)(24) + 6(14)(23)](123)2. The other
groups of order 12 admit presentations of the form {(z,%), where z has order
6. We group the corresponding quotient images in Proposition 5.

Proposition 5 Present the groups of order 12 (except A,) as follows:
Qi2 =< z,y : zb —y —y:z:3—:1:ya:-e> ZsxZy=<zy:2=y%=
e> Dip=<zy:x8=y’=aVz=e> andZy =< z,y: 25 =y?2~ 1 =
z¥z~! = e > . Up to equivalence, the only quotient images of weighing
matrices W(60,25) in these groups are the following:

Table 3, Case 1 : Qw, Z]g, Dlg, and Zﬁ X Zz;
Table 3, Case 2 : Q12 and Z2;
Table 8, Case 3 : Q2.

Table 3: Order 12 quotients

b Quotient image in H = (z,y)

1 5+5H

2a 7+5:1:+5w2+3:c"+5:L'“+5a:5+y(4+7:1:+4:c2+6a:"+8:1:4+6x5)
2b | 7+ 5z + 522 + 33 + 52* + 525 + y(5 + 9z + 512 + 523 + 62* + 5aB)

3a | 6+ 9z + 4z° + 42° + 62% + 62° +y(5+6a:+4a:2+5:1:3+4:c4+6x3)
3b | 7+ 5z + 822 + 3z% + 5% + 7z + y(6 + 6z + 522 + 423 + 4a* + 52°)
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4 Computation of large quotient images

In this section, we describe computer-based methods for correlating small
quotient images to identify weighing matrices. We describe a detailed search
for W(60, 25) weighing matrices in two groups, and describe plans to con-
tinue the search in the other solvable groups of order 60. Complementary
quotient images provide the algebraic structure for our correlations.

4.1 Complementary quotient images

If G is an internal direct product of N by H, then G/N = H and G/H =
N. Informally, we view G as an external product of its quotient groups
(G = G/H x G/N). A related statement is true for semidirect products.
The core of H is the largest G—normal subgroup of H. If G &2 N x H,
then G is also isomorphic to some subgroup of H x G/core(H). A proof
of this claim appears in reference [7]. We view H and G/core(H) as the
most important homomorphic images of G. They contain complementary
quotient images of combinatorial structures in G.

Corollary 1. If a finite semidirect product, G = N x H, contains a group-
developed weighing matriz, then correlation of complementary quotient im-
ages in H and G/core(H) partially identifies the matriz.

4.2 Direct products

For a direct product, G = N x H, the cross-referencing process is relatively
easy. We distribute the coefficients of § € ZG across a |N| x |H| matrix,
where rows are indexed by elements of N and columns are indexed by
elements of H.

Suppose N = Zs = (z) and H is a group of order 12, H =< z,y: 28 =
1> . Label entries in a 5 x 12 matrix to correspond with the 60 elements.

e z ... = Yy yr ... yx°

z zz 2z® 2y zyx ... zyxd
22 22z ... 222% 2%y 2Pyz ... Z%y2®
22 2Bz ... Bd By Byx ... 28yzd
2 2z ... 22 Py Zyz ... Zysd

The first column is indexed by elements of N. The remaining columns are
indexed by elements in cosets of N. The first row is indexed by elements
of H, while the remaining rows reflect cosets of H.
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Now distribute the coefficients of § € ZG to corresponding positions in
the matrix. Let 7 be the projection 7 : ZG — ZG/N. We view m(6) as
a polynomial in the variables zN,z?N,...,yz®N. The coefficients of (J)
equal the corresponding column-sums of our matrix. Similarly, a projection
onto ZG/H produces a polynomial in ZG/H = ZN; its coefficients are row-
sums in the matrix.

If § represents a weighing matrix W (60, 25), then the row- and column-
sums of our 5 x 12 matrix are coefficients from complementary quotient:
images in N and H, respectively. We present a matrix for N x H =
Zs x Q12 = (z) x (z,y) as Table 4. From Table 1 we know the possible Zs
quotient images, and from Proposition 5 we know the possible Q,7 images.

For convenience, we express quotient images as vectors with reduced co-
cfficients. We order the Zs coefficients as [e, 2, 22, 23, 2*]. We then compute
vectors of possible row-sums by subtracting 122; from Zs quotient images.
For example, the quotient image 9 + 14z + 1422 + 142° + 1424 from Table
1 appears as R2 = [-3,2,2,2,2] in Table 4.

Similarly, the Q2 quotient image 7 + 5z + 522 + 3z3 + 5z* + 5z° + y(4+
7z + 422 + 62° + 8z* + 62°) from Proposition 5, reduced by 5012, produces
the vector of column sums C2a = [2,0,0,-2,0,0,-1,2,—1,1,3,1]. The
other possible column sums are displayed in Table 5.

Table 4: Row sums for Zs X Q2.

Ri1|R2}| 1 2 ... 6 7 8 ces 12
5 [-3fe =z ... =z° y yz ... yz°
0| 2|2z 2z ... 2z°% 2y =2yz ... yzb
0| 2 |22 22z ... 2%2% 2% 2yx ... Z%ya
0] 2 (|22 2%z ... 2%2% 28y 28yx ... 2y
0] 2 [[2* 2% ... 2%% 2%y 2%z ... 2%2S
Table 5: Column sums for Zg x Q3.
column][1 2 3 4 5 6 7 8 9 10 11 12]
C1 50 0 0 00 0O O 0 o0 o0 o0
C2a 20 0 -200 -1 2 -1 1 3 1
C2b 20 0 -200 0 4 0 0 1 0
C3a 14 -1 -111 0 1 -1 0 -11
C3b 20 3 -202 1 1 0 -1 -1 0

A number of assumptions, reflecting equivalence of weighing matrices,
are incorporated in these tables. As the order of our factor subgroups
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are relatively prime, we consider equivalence with respect to N and H
separately. We translate N = Zs quotient images (row sums) by a group
element of order 5. Effectively, we choose our favorite number for the first
row sum. Repeated application of the Zs automorphism o : z — 22 brings
any other desired row into the second position.

Therefore, we assume that the row sums (in order) of the Zg x Q12
coefficient matrix are R1 or R2 in Table 4. We define the weight of a vector
to be the number of 1’s which it contains. The automorphism « allows us
to assume row 2 contains at least as many 1’s as each of the following rows;
that is, we can assume wt(row2) > wi(rows,...,row5).

The order of column sums is fixed, as we made a number of simplifying
assumptions while determining the Q12 quotient images. If the column
sums are all distinct, we can make no further assumptions. If, however,
they are repeated, we utilize automorphisms which fix the column sums,
but not the actual columns.

Recall that the column sums are ordered [e,z,...,2%y,yz,...,yz%).
There are six distinct automorphisms of @2 which fix columns 1 through
6, while moving each of columns 7. . .12 to column 7. There is also an auto-
morphism which exchanges columns 2 and 6, while fixing columns 7...12.
The vector C1, which contains many zeroes, is fixed by each of these au-
tomorphisms. Therefore, when considering case 1, we make assumptions
about column weights while fixing the column sums. Specifically, we assume
that wt(col 2) > wt(col 6) and that wt(col 7) > wt(cols 8, ...,12).

Vector C2a is fixed by fewer automorphisms, so we make fewer assump-
tions about column weights when considering case 2a. Conclusions about
cases 1, 2a, 2b, 3a, and 3b of Proposition 5 are summarized in Table 6.

Similar arguments apply to matrices developed over direct products
Zsx H, with H € {Z,2, Q12, D12, Z3 xZg}. Table 6 summarizes the allowable
column weight assumptions in 5 x 12 coefficient matrices for these groups.

4.3 Stripings of quotient images

We wish to determine all entries of a 5 x 12 matrix M, which represents
a possible weighing matrix in G = N x H = {z) x (z,y). In principle,
complementary quotient images in N and H should be sufficient to initiate a
computer search. Many groups, however, admit additional quotient groups
which further restrict the search space.

Such restrictions take the form of partial row-sums in M. We refer to
partial rows as rowlets; a collection of restrictions on rowlets is a striping
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Table 6: Column assumptions in Zs x H coefficient matrix
| H | Case | Automorphims " Implied simplifications |

Zyy 1 All wt(C 2) > wit(C 6)
- wt(C 7) > wt(C 10).
2a, 2b No valid assumptions.
Q12 1 All wt(C 2) > wt(C 6)
wt(C 7) > wi(C 8,...,12).
22,2b |z -z y - yz? wt(C 2) > wit(C 6)
3a, 3b No valid assumptions.
Dyz 1 All wi(C 2) > wt(C 6)
wi(C 7) > wi(C 8,...,12).
2a,2b | z = 271,y — yz? This case is impossible.
[ Z2 x Zg 1 All wi(C 2) > wt(C 6)
wt(C 7) > wt(C 10).

of M. We illustrate this approach for specific groups. The details reflect
group structure calculations performed with GAP [10]. We occasionally
refer to groups by their identifier in the GAP library “Small Groups.”

4.3.1 Stripings of Z5 x Q1

Suppose M contains coefficients of a W(60,25) weighing matrix in G =
Zs x Q2 = (2) x (z,y). Possible row- and column-sums of M appea.red in
Tables 4 and 5; these were based on the presentation Qi3 =< z,y : 2% =
¥ =192 = :63 z¥ = z=! > . Suppose we project G onto the quotient
group T' = G/(x) = Z0. Informally, we map z to the identity, producing
T = (z) x (y : y> = 1). Applied to a weighing matrix, the projection
produces a Zjo quotient image. Applied to M, the projection combines
entries which were previously distinguished by differing powers of . The
following rowlet sums {m;} must be the coefficients of a Z,o quotient image:

my = My +Maa+Mas+ Mg+ Mg+ Mg (3)
my = M7+ Mg+ Mg+ M 0+ M+ M2 (4)
m3g = M1+ Mo+ Mps+ M+ Mys+ Mg (5)
: (6)

mie = Ms7+ Msg+ Mg+ Ms 10+ Ms 11+ Ms12 (7

The projection of G onto G/(z?) = Z3p produces a Zyp quotient image.
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For each row ¢ in M, these partial row sums equal Zgg intersection numbers:

rig = M1+ M3+ Mg (8)
ri2 = M2+ Mis+ Mg 9)
riz = M7+ Mo+ M;n (10)
ria = Mg+ M0+ M2 (11)

We call this a striping of M. It restricts the rowlet-sums arising from Z,o
quotient images by introducing information from Zy quotient images.

4.3.2 Stripings of Z5 x Djo

Next, we assume that M contains coefficients of a weighing matrix devel-
opedover G=ZsxDip=<z2>x<z,y: 28 =92 =12y =z~ > .
As our presentation of G parallels the presentation of Zs x (2 in section
4.2, the structure of M is identical to Table 4. The possible row sums are
reduced vectors representing Zs quotient images; they are the vectors Rl
and R2 in Table 4.

There is only one possible vector of column sums; the vector C1 =
[5,0,...,0] corresponds to the unique D)2 quotient image in Proposition 5.

Frequently, a group admits several isomorphic quotients via different
projections. These yield inequivalent stripings of the coefficient matrix
M. For the present group, the stripings of M reflect three distinct normal
subgroups of order 6.

As with Zg x Q,2, the projection G/ < z >= Z;o produces rowlets
satisfying (in some order) equations (3) through (7).

The normal subgroup generated by yz and yz3 provides another quo-
tient group isomorphic to Z,o. Applying the corresponding projection to
M, we find that positions e, z?, 2%, yz,yz® and yz° must be combined in
each row. We have the following partial row sums for each row :

a1 = M)+ M3+ M;s+ M;g+ M0+ M2 (12)
a2 = M2+ M4+ Mg+ M7+ Mg+ M (13)
This is a striping of M; it imposes additional restrictions on rowlet sums.
Finally, the normal subgroup (z%,y) generates a striping with these
partial row sums:

bin = M1+ M3+ M5+ M7+ Mo+ M1 (14)
Mo+ M s+ Mg+ Mg+ M 10+ Mo (15)

bi,2
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4.4 Semidirect products

Suppose G is a semidirect product, G = N x H, and contains a weighing
matrix W(60,25). Consequently, N is a normal subgroup with order 5,
while H is not normal in G. In this case, we cannot assume that row sums
of M reflect quotient images in a group G/H.

Instead, we consider complementary quotient images in G/N =2 H and
G/core(H). We illustrate this approach with a specific example: G =
Zs » Qe =< z,z,y:2° =28 =1, =282V =271 2P =21 W =22 > .

Assume that N = (z) and H = (z,y); the core of H is then (z2) =
Z3. The quotient groups G/N and G/core(H) are isomorphic to Q5 and
GAP small group [20,3], respectively. We view Q12 intersection numbers as
column-sums in M. We view (20, 3] intersection numbers as twenty partial
row sum in that matrix. In fact, we re-use the matrix striping developed
for Zs x Q12 in section 4.3.1. The partial sums simply represent a different
order-20 quotient image.

There is one critical difference between searches for weighing matrices
in N x H and in N x H. When H is not normal, we must be very careful
that assumptions about orderings of rowlets do not contradict assumptions
about orderings of column sums. In direct product searches, the structure
of G/H = N quotient images and row-sums provide more assumptions
about row-sums and rowlet orders.

5 Implementation of computer searches

We have completed computer searches for weighing matrices W (60, 25) de-
veloped over several groups. The organization of those searches followed
the theoretical development above. Brief summaries of these searches and
their results are given below.

In each group G = N x H, we search for a polynomial ¢ in ZG which
can be developed as a weighing matrix. We distribute polynomial co-
efficients across a 5 x 12 matrix according to appropriate rowlet sums
and stripings. Once we determine a matrix M satisfying those restric-
tions, we view it as the first row of a potential 60 x 60 weighing ma-
trix W. Specifically, we label the rows and columns of W in the order
le,z,...,2%y,...,yz% z...,2y2", ..., 2%yx5] and set the first entry in col-
umn g equal to the corresponding element in M. We then set each entry
wg,s equal to we go-1, completing the group-developed matrix. We test
the resulting matrix by direct multiplication; a valid weighing matrix must
satisfy WW7T = 251,
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5.1 Search for weighing matrices in Zs x (12

Suppose a weighing matrix W = W(60, 25) exists in the group Zs x Q2.
The first row of W is generated by a 5 x 12 matrix M; all other rows of W
arc (known) permutations of this first row. The matrix M must satisfy:

e each entry is 0, +1, or —1;
e the total number of 1’s is 15 and the total number of —1’s is 10;
e the row sums are (in order) either R1 or R2 as specified in Table 4;

e the column sums are (in order) either C1, C2a, C2b, C3a or C3b as
specified in Table 5;

e row 2 contains at least as many 1’s as each of rows 3, 4, and 5;

e for cases C1, C2a and C2b, column 2 contains at least as many 1’s
as column 6;

o for case C1, column 7 contains at least as many 1’s as each of columns
8 through 12; and

e restrictions imposed by our striping of M in section 4.3.1.

We consider the last point in detail.

The rowlet sums defined by equations (3) through (7) must be some
permutation a Z;p quotient image (reduced by 62-1\0). The closely re-
lated full row-sums represent Zz quotient images, and have a fixed or-
der. If the vector of row-sums is R1 = [5,0,0,0,0], then the rowlet sums
[m1, ma2,...,mio) are some permutation of either [5,0,0,0,0,0,0,0,0,0] or
(4,1,-1,1,-1,1,-1,1,-1,1]. Only a few of these permutations are ac-
ceptable. For example, if the row sum is R1 = [5,0,0,0,0], then the
only possible pairs (m;,m3) are (5,0), (0,5), (4,1) or (1,4). Similar re-
strictions apply to pairs from the remaining rows. If the Zg image is
R2 = [-3,2,2,2,2], then the rowlet sums are some permutation of either
(-3,0,2,0,2,0,2,0,2,0] or [-4,1,1,1,1,1,1,1,1,1].

The striping imposed by Zg intersection numbers takes the form of
four partial sums for each row, defined by equations (8) through (11).
We consider the collection of these partial sums: ([r1,1,r2,1,73,1,74,1,75,1),
[r1,25- - - s75,2)s [r1,35- - - 475,3]s [T1,45- - - 75,4]). The possible values are implied
by Table 2. For example, case 1 in Table 2 contains the quotient image
[(2 + 3(z)){y) — 5]). Subtracting three copies of the complete group, we
obtain the polynomial —3 + 2y + 2y + 2y° + 2y*. Therefore, the collection
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of partial sums is some permutation of ([-3,2,2,2,2], [0,0,0,0,0], [0,0,0,0,0],
[0,0,0,0,0]), giving 5 - 4 = 20 subcases.

Notice that each rowlet sum m; is equal to Tij + Tix, for some j #
k. This reflects the algebraic information that each Zo quotient image
projects onto a unique Zo quotient image. Consequently, we can correlate
intersection numbers, rowlet sums, and row sums. The striping of case
1 in Table 2 is a restriction on the rowlet sums [-3,0,2,0,2,0,2,0,2, 0.
Those rowlet sums describe possible refinements of the row sums R2 =
[-3,2,2,2,2). Note that in this case, the ordering of the numbers r; ; is
unique.

Similarly, subtracting 32; from case 2 in Table 2 yields the polyno-
mial (y+ 3% + 3% +y*) + 22 + 2%(=3 + y + 32 + 13 + y?) — 22°. In this
case, the collection of partial sums is some permutation of (0,1,1,1,1),
[2,0,0,0,0}, [-3,1,1,1,1}, [-2,0,0,0,0]), giving 5 - 4! = 15000 subcases. En-
tries from [0,1,1,1,1] and [-3,1,1,1,1] must belong to the same rowlet, and
entries from (2,0,0,0,0] and [-2,0,0,0,0] to the same rowlet. Furthermore, no
permutations within these sets are possible.

The remaining cases from Table 2 yield the following collections of par-
tial sums. Case 3 yields ([1,0,0,1,-2],[-1,1,1,-1,0],[0,1,1,0,-2],[2,0,0,2,1]). This
is compatible only with rowlet sum [-4,1,1,1,1,1,1,1,1, 1]. For each par-
tial sum [ry ;,...75,), there are 5-3-2 possible permutations. Notice that the
set of permutations of [rl,l, ...75,1) is identical to the set of permutations
of [r1,3,...753). Thus case 3 gives a total of 4 - 3 - 304 = 9720000 sub-
cases. Case 4 yields ([l,0,0,2,2],[2,0,0,-1,-1],[0,1,1,-1,-1],[2,-1,—1,0,0]). This
is compatible only with rowlet sum [4,1,-1,1,-1,1,-1,1, -1, 1]. Simi-
larly, this also gives 12- 30% = 9720000 subcases. Case 5 yields (-1,1,1,2,2],
[0,-1,-1,1,1],{-2,1,1,0,0],{0,1,1,-1,-1]). This is compatible only with rowlet
sum [-3,0,2,0,2,0,2,0,2,0], similarly giving 12 - 30% = 9720000 subcases.
Finally, case 6 yields ([3,1,1,0,0],[0,1,1,-1,-1],[2,—1,—1,0,0],[0,-1,-1,1,1]). This
is compatible only with rowlet sum [5,0,0,0,0,0,0,0,0, 0], similarly giving
12 - 30* subcases. Each striping describes possible restrictions on a unique
set of rowlet sums and thus on a unique set of row sums.

Our backtrack search strategy is as follows. We calculate in advance
each possible sequence of rowlet sums. For each possible rowlet sum, we
generate in advance all possibilities for a rowlet with that sum. We also
generate in advance all acceptable permutations of the partial row sums
7;,; for each possible rowlet sum.

For each possible sequence of rowlet sums and acceptable permutations
of the values {r; ;}, we generate one rowlet at a time from the right-hand
side of M. After generating each rowlet, we verify that the total accumula-
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tions of 1’s and -1's in the matrix do not exceed our maximums. After the
entire right-hand side has been generated, we verify each column sum. If
applicable, we also verify the relative numbers of 1’s in these columns. We
then repeat this process for the left-hand side. As each row is completed,
we verify that the weight of rows 3 through 5 do not exceed the weight of
oW 2.

Using this strategy we generated 57 375 080 matrices satisfying the re-
strictions above. This process took just over 90 days of computing time. We
next unpacked each 5 x 12 matrix into the corresponding 60 x 60 matrix
W and tested the condition WW7T = 25I. After less than 2 days com-
puting time, we found that none of the matrices satisfied this condition.
We conclude that there are no weighing matrices W (60, 25) developed over
Zs x Q2.

5.2 Search for weighing matrices in Z5 x D;;

Next, we describe our search for a weighing matrix W = W(60, 25) devel-
oped over the group Zs x Dj2. There are two notable differences from the
situation described in section 5.1. First, the search for weighing matrices in
Zs x (@12 considered several vectors of column sums; in this new search, only
one vector is possible. Second, stripings of the coefficient matrix M differ
from the previous search; this reflects the differences in group structure.

In our present search, the vector C1 = [5,0,0,0,0,0,0,0,0,0,0,0] is the
only possible list of column sums. Recall that Table 6 allows us limited
assumptions about column weights. We assume that column 2 contains at
least as many 1’s as column 6 and that column 7 contains at least as many
1’s as each of columns 8§, ..., 12.

In this search, rowlet sums and stripings are determined by Z;o quotients
alone, rather than by both Z,o and Zsp quotients. As with Zs x Q12, one Zjg
quotient determines 10 rowlets. These correspond to the left side and right
side of each row in M. The rowlet sums are given by equations (3) through
(7). In section 4.3.2, we described two distinct stripings of Zs x Dja.

The two stripings use Z,( intersection numbers to determine partial row
sums a;,1, @;,2, bi,) and b; 2, as defined in equations (12) through (15). The
sequence of values for a; ; must be some permutation of the allowed Z;o
intersection numbers. Similarly, the values for b; ; must be a permutation
of some vector of Zp intersection numbers.

As in the previous search, the row sums are either R1 = [5,0,0,0, 0} or
R2 = [-3,2,2,2,2). The sequence of rowlet sums for R1 is some per-
mutation of [5,0,0,0,0,0,0,0,0,0] or {4,1,-1,1,-1,1,-1,1,-1,1]; fur-
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thermore, since each row is composed of 2 rowlets, only 2 permutations
of the first of these cases, and 25 = 32 permutations of the second of
these cases, can add up to the correct row sum. Similarly, if the row
sum is R2 then the sequence of rowlet sums is some permutation of ei-
ther [-3,0,2,0,2,0,2,0,2,0] or [-4,1,1,1,1,1,1,1, 1, 1]; again, only 2 + 32
permutations will add up to the correct row sum.

A similar restriction applies to the stripes. Notice that the sum of
the entries in row ¢ of the matrix is not only a;,1 + a;,2 but also b; ) + b; 2.
Thus, we are restncted to the same 2+ 32 allowed permutations for a;1,0;2
(respectively, b; 1,b; 2) as for the rowlet sums. Note that sums of the entries
in the rowlets, sums of the entries in the first striping, and sums of the
entries in the second striping, may admit very different permutations.

We now describe our backtrack search strategy. Combinatorially, it ap-
pears that the problem is simplified. However, from the point of view of
implementation, several aspects are now more difficult. In the previous
search, the “stripes” resulting from the restriction imposed by Z,, were
restricted to a single rowlet. Furthermore, these stripes were very restric-
tive, as they affected only 3 columns. Now our stripes affect 6 columns,
and these 6 columns spread into 2 rowlets. Not only are the stripes less
restrictive, but we must generate an entire row before verifying that entries
in the stripe have the desired sum. In the previous search, we generated
the entire right side of the matrix first, followed by the entire left side. In
this case, that strategy causes the search space to grow too quickly. Our
search strategy is modified as follows.

We calculate in advance each possible sequence of rowlet sums; recall
that this same set of possibilities to be used for two distinct stripings.
For each possible rowlet sum, we generate in advance all possibilities for a
rowlet. For each possible sequence of rowlet sums, each possible sequence
of a;,;, and each possible sequence of b; ;, we generate first the left rowlet
and then the right rowlet of each row in turn. We verify that we have
not exceeded the allowed total numbers of 1’s and -1’s in the matrix after
each rowlet is generated. After row i is complete, we verify the sums of
the entries corresponding to a;1, a;,2,b;1 and b; ;. We compare the weight
of row 2 to each successive row, as it is generated. As the final row is
completed, we verify column sums and relative column weights.

Using this strategy, we found 0 matrices that satisfied the given restric-
tions. This required just over 20 days of computing time on a Pentium-4
2GHz computer. We conclude that there are no weighing matrices W (60, 25)
developed over the group Zs x Ds,.
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6 Conclusion and future plans

This paper outlines a theoretical basis for a computer search; specifically,
a computer search for weighing matrices developed over solvable groups.

We are particularly interested in weighing matrices of order 60 and
weight 25. There are twelve solvable groups of order 60; each of these groups
admits a quotient group of order 12. Therefore, we view weighing matrices
W (60, 25) as polynomials with coefficients distributed over 5 x 12 matrices.
We correlate the group structure with these coefficient matrices, creating
systems of restrictions which we call stripings. These stripings allow us to
narrow our search space with information from quotient images in smaller
groups.

The twelve groups of interest fall into natural clusters, based on similar-
ity of stripings. We demonstrated that the groups Zs x Q.2 and Zs x D,
admit very similar search strategies, and that these searches require the
same basic data. We are currently continuing the search in several groups
with related stripings.

We intend to complete the search in all solvable groups of order 60,
following the theoretical outline in this paper. We believe this is prac-
tical, though development of stripings and search strategies will require
considerable work. Some of the computer searches will require extensive
computational time.

In this paper, we have shown that two solvable groups do not admit
weighing matrices of order 60 and weight 25. We have shown that the
complete search is practical. We have also outlined a search strategy which
is applicable to related combinatorial structures, including perfect ternary
arrays and difference sets.
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