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Abstract Let G be a graph with vertex set V(G) and edge set E(G). A labeling
f: V(G) = Z, induces an edge labeling f* : E(G) — Z, defined by f*(xy) = f(x)
+ f(y), for each edge xy € E(G). Fori € Z,, let vi(i) = card{v € V(G) : f(v) =i}
and e((i) = card{e € E(G) : f*(e) = i}. A labeling f of a graph G is said to be
friendly if | v{0) — v{(1) 1 < 1. The friendly index set of the graph G, FI(G), is
defined as (le0) — e (1)l : the vertex labeling f is friendly}. This is a
generalization of graph cordiality. We introduce a graph construction called the
root-union, and investigate when gaps exist in the friendly index sets of root-
unions of stars by cycles.
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1. Introduction

Let G be a graph with vertex set V(G) and edge set E(G). Let A be an
abelian group. A labeling f: V(G) — A induces an edge labeling f* : E(G) — A
defined by f*(xy) = f(x) + f(y), for each edge xy € E(G). For each i € A, let
v(i) = card{v € V(G): f(v) = i} and e{i) = card{e € E(G) : f*(e) =i}. Let c(f)
= (c;) be the matrix indexed by (i, j) € A X A, such that ¢;; = ledi) —e(j) . A
labeling f of a graph G is said to be A-friendly if | v{(i) — v((j) I< 1 forall (i, j)
A X A. If c(f) is a (0, 1)-matrix for an A-friendly labeling f, then f is said to be
A-cordial.
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The notion of A-cordial labelings was first introduced by Hovey [10], who
generalized the concept of cordial graphs of Cahit [2]. Cahit considered A = Z,

and he proved the following: every tree is cordial; K, is cordial if and only if n <
3; Kin is cordial for all m and n; the wheel W, is cordial if and only if n# 3
(mod 4); C, is cordial if and only if n # 2 (mod 4); and an Eulerian graph is not
cordial if its size is congruent to 2 (mod 4). Benson and Lee [1] found a large
class of cordial regular windmill graphs that include the friendship graphs as a
subclass.

Lee and Liu [12] investigated cordial complete k-partite graphs. Kuo, Chang
and Kwong [11] determined all m and n for which mK, is cordial. In 1989, the
second author, Ho and Shee [9] completely characterized cordial generalized
Petersen graphs. Ho, Lee and Shee [8] investigated the construction of cordial
graphs by Cartesian product and composition. Seoud and Abdel [18] proved
certain cylinder graphs are cordial. Several constructions of cordial graphs were
proposed in [17, 18, 19, 20, 21). For more details of known results and open
problems on cordial graphs, see [4, 7].

In this paper, we will exclusively focus on A = Z,, and drop the reference to
the group. When the context is clear, we will also drop the subscript f. In [6]
the following concept was introduced.

Definition. The friendly index set FI(G) of a graph G is defined as {le{0) —
e(1)l : the vertex labeling f is friendly}.

Note that if 0 or 1 is in FI(G), then G is cordial. Thus the concept of friendly
index sets could be viewed as a generalization of cordiality. Cairnie and
Edwards [5] have determined the computational complexity of cordial labeling
and Z,-cordial labeling. They proved that to decide whether a graph admits a
cordial labeling is NP-complete. Even the restricted problem of deciding
whether a connected graph of diameter 2 has a cordial labeling is NP-complete.
Thus in general it is difficult to determine the friendly index sets of graphs.

In [13, 14, 15, 16] the friendly index sets of a few classes of graphs,
including complete bipartite graphs and cycles, are determined. The following
result was established.

Theorem 1.1. For any graph with q edges, the friendly index set FI(G) < {0, 2,
4,...,q}ifqiseven, and FI(G) c (1,3, ..., q} if q is odd.

Example 1. Figure 1 illustrates the friendly index set of the cycle Cg with two
parallel chords FI(PC(8, 2)) = {0, 2, 4, 6}.
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Example 2. FI(K;3) = {1,9) and FI(C3 X K;) = {1, 3, 5}.
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Figure 2,
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In [13] it was shown that
Theorem 1.2. The friendly index set of a cycle is given as follows:
(i) FI(C,,) = {0, 4,8, ..., 2n} if n is even.
FI(Cy) = {2, 6, 10, ..., 2n} if n is odd.
(i) FI(Cyu)={1,3,5,...,2n-1}.

In [13], the authors proposed the following
Conjecture. The numbers in FI(T) for any tree T form an arithmetic
progression.

We observed the same phenomenon for cycles and cycles with parallel
chords. In [16], we showed that for a cycle with an arbitrary non-empty set of
parallel chords, the values in its friendly index set form an arithmetic
progression with common difference 2. If the chords are not parallel, the
numbers in the friendly index set might not form an arithmetic progression. See
[15] on the friendly index sets of M&bius ladders.

2. Root-union of stars by a cycle, with center as root

For a (p, q)-graph G and a graph H with a root v, we introduce the following
root-union of (H, v) by G construction as follows:

Take p copies of (H, v). For each copy, identify its root with a vertex of G.
We denote this graph by G ® (H, v), and drop the reference to v if the context is
clear.

In this section we consider the friendly index set of the root-union of stars by
a cycle, where the center of the star is the root.

Lemma 2.1. For any friendly vertex labeling of C, ® St(m), where n is even
and m is odd, the induced edge labeling has an even e(1) and an even e(0).
Proof. Since the graph has (m + 1)n vertices, v(0) = v(1) = (m + 1)n/2. Assume
that k of the vertices on C, are lableled 1, and thus the other (n — k) vertices are
labeled 0. Now consider the vertices with degree 1. Note that km of them are
adjacent to a 1-vertex. Assume that j of these km pendant vertices are labeled 1.
Then the other (km — j) vertices are labeled 0. Now note that the other (n — k)m
pendant vertices are adjacent to a O-vertex. Since v(1) = (m + 1)n/2, there are
(m+ 1)n/2 — k —j of them labeled 1, with the remaining (n — k)m — (m + 1)n/2 +
k + j labeled 0. Thus, for these pendant edges, there are (m + 1)n/2 -~k — j + km
—-j=(m+ Dn/2+ (m- 1)k -2jlabeled l,and j+ (n—-k)m—-(m+ Dn/2 +k +
=2j + (m - 1)n/2 — (m — 1)k labeled 0. Since n is even and m is odd, both of
these numbers are even.

From [13], the cycle C, must have an even number of edges labeled 1. Since
n is even, C, must also have an even number of edges labeled 0.

Note. The first paragraph of the above proof only requires that (m + 1)n be
even. Its arguments and symbols will be repeatedly used in this section.
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Lemma 2.2. If n is even and m is odd, then FI(C, ® St(m)) can only contain
multiples of 4.

Proof. From the Lemma 2.1, let e(1) = 2i. Then e(0) = (m + 1)n - 2i, and e(1) -
€(0) = 2i - (m + 1)n + 2i = 4i — (m + 1)n, where both terms are multiples of 4.

Theorem 2.1. If n is even and m is odd, then FI(C, ® St(m)) = {0, 4,8, ..., (m
+ I)n}.

Proof. By Theorem 1.1, FI(C, ® St(m)) < {0, 2, 4,6, 8, ... , (m + )n}. By
Lemma 2.2, only multiples of 4 can be in the friendly index set. Thus FI(C, ®
St(m)) < {0, 4, 8, ..., (m + 1)n}. It suffices to show that all these values are
attainable.

Label the vertices of C, alternately by 0’s and 1°’s. All pendant vertices
adjacent to a 1-vertex are labeled 0, and all pendant vertices adjacent to a 0-
vertex are labeled 1. This vertex labeling is obviously friendly with all edges
labeled 1. Thus e(1) —e(0) = (m + 1)n.

In the above labeling, there are mn/2 pendant vertices labeled 0 and mn/2
pendant vertices labeled 1. Pair them into mn/2 pairs, and interchange the labels
of each pair successively. After each interchange, there are two additional 0-
edges, decreasing the value of e(1) — e(0) by 4. Thus e(1) —e(0) = (m + 1)n—4i,
where i =0, 1, 2, ..., mn/2, showing that all the values in the set are attainable.

Example 3. Figure 3 shows that C;® St(3) has friendly index set {0, 4, 8, 12,
16}.
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Lemma 2.3. For any friendly vertex labeling of C, ® St(m), where n is odd and
m is even, e(0) 2 m/2 and e(1) =2 m/2.

Proof. Note that the number of vertices = the number of edges = (m + I)n is an
odd number. Assume that k of the vertices on C, are labeled 1, and thus the
other (n — k) vertices are labeled 0. Since changing all vertex labels to their
complements maintains friendliness and the values of both e(0) and e(1), we
may assume that the cycle C, has more 0O-vertices than 1-vertices, i.e.,, k £ (n -
1)/2.

Now consider the vertices with degree 1. Note that km of them are adjacent
to a 1-vertex. Assume that j of these km pendant vertices are labeled 1. Note
that j £ km < (n - 1)m/2. Then the other (km - j) vertices are labeled 0. Now
note that the other (n — k)m pendant vertices are adjacent to a O-vertex. Since
v(1) = (m + 1)n/2 £ V4, there are (m + 1)n/2 £ V2 — k — j of them labeled 1, with
the remaining (n — k)m ~ ((m + 1)n/2 + %2 - k ~ j) labeled 0. Thus, e(1) 2 (m +
In2+¥-k-j2(m+Dn2-Y2-k-j2(m+ Dn2-%2-(n-1)/2-(n-
D2 = (m + 1)/2 - Y2 = m/2, proving half of the Lemma.
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Now the number of pendant edges with a 0-edge label is j + (n — k)m — ((m +
Dn2x¥-k-22j+(m-1n2-(m-Dk-%22j+ (m-1)n/2 - (m - 1)(n
-D2-%22+(m-1)2-%=2j+m/2—-12m/2 - 1. Since n is odd, not all
the edges of C, can be labeled 1, i.e., at least one edge of C, is labeled 0. Thus
e(0) 2 m/2, finishing the proof.

Note. When m = 0, the graph is a cycle. Theorems 1.2 gives its friendly index
set.

Theorem 2.2. If n is odd and m = 2 is even, then FI(C, ® St(m)) = {1, 3,5, ...,
(m+ )n—-m)j.

Proof. By Theorem 1.1, FI(C, ® St(m)) c {1, 3, ..., (m + 1)n}. By Lemma
2.3, le(1) = e(@)) < (m+ Dn-m/2 - m/2 = (m + 1)n —m. It suffices to show that
all these values are attainable.

Label the vertices of C, alternately by 0’s and 1’s, starting and ending with 0.
Call the last vertex c,. For all vertices of cycle but c,, if its label is x, label all its
adjacent pendant vertices (1 - x). For the last vertex c, of the cycle, label m/2 of
its pendant vertices 0, and the other m/2 of its pendant vertices 1. This is a
vertex-friendly labeling. Note thate(1)=(n-1) + (n - 1)m + m/2 and e(0) = 1
+ m/2, giving e(1) — e(0) = (m + 1)n — m — 2. In this labeling, there are (n —
1)m/2 pendant O-vertices adjacent to a 1-vertex of C, and (n — 1)m/2 pendant 1-
vertices adjacent to a O-vertex of C, other than c,. Pair them into (n — 1)m/2
pairs, and interchange the labels of each pair successively. After each
interchange, there are two additional 0-edges, decreasing the value of (1) — e(0)
by 4. Thuse(l)-e(0)=(m+ I)n-m—2—-4i, wherei=0, 1,2, ..., (n— Dm/2.

Now do the same procedure as in the previous paragraph, except that for the
last vertex ¢, of the cycle, label (m/2 + 1) of its pendant vertices 1, and the other
(Y2 - 1) of its pendant vertices 0. This is still a vertex-friendly labeling. Note
thate()=(n—=1)+(n-1m+m?2+ 1 and e0) = 1 + m/2 — 1, giving e(1) -
e(0) = (m + I)n —m. Again, the same interchanges will give e(1) — e(0) = (m +
Dn-m-4i, wherei=0,1,2,...,(n- )m/2.

Example 4. Figure 4 shows that FI(C; ® St(2)) =(1, 3,5, 7).
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Lemma 2.4. Consider any friendly vertex labeling of C, ® St(m), where n is
even. If half of the vertices of C, are labeled 0, then e(0) and e(1) are both even.
Proof. We use the notation in the proof of Lemma 2.1. Note that k = n/2 under
our assumption here. The cycle C, has an even number of 1-edges and hence an
even number of 0-edges. The number of pendant 1-edges is (m + 1)n/2 + (m —
Dk -2j=(m+ /2 + (m - 1)n/2 — 2j = mn — 2j, an even number The number
of pendant 0-edges is 2j, also an even number.

Lemma 2.5. Consider any friendly vertex labeling of C, ® St(m), where n is
even. Ife(l)is odd, thene(l)2m+ 1ande(0)2m+ 1.

Proof. Again we use the notation in the proof of Lemma 2.1. By Lemma 2.4,
we know that k # n/2. Since changing all vertex labels to their complements
maintains friendliness and the values of both e(0) and e(1), we may assume that
the cycle C, has more O-vertices than 1-vertices, i.e., k <Sn/2—-1. Thenj<km<
(n/2 — 1)m. From k # n/2, we also note that the edges of C, cannot all be labeled
1, because that would require the vertex labels to alternate between 0’s and 1’s.
Since n is even, there must be at least two edges in C, labeled 0.

104



From the proof of Lemma 2.1, the number of pendant 1-edges = (m + 1)n/2 -
k—j2(@m+ Dn2-(0/2-1)~ (w2 - 1)m=m+ 1. The number of pendant 0-
edgesis2j+(m—-Dn2 - (m~Dk=2j+(m-1)n/2-k)22j+(m-1)=2m-
1. Then e(0) = the number of pendant 0-edges + the number of 0-edges in C, 2
m-1D+2=m+1.

Note. When m = 0, the graph is a cycle. Theorems 1.2 gives its friendly index
set.

Theorem 2.3. If n and m are both even, m 2 2, then FI(C, ® St(m)) = {(m +
n,(m+Dn-4, (m+Dn-8,... }u{(m+ Dn-2(m+1),(m+ I)n-2(m +
ND-4,(m+1n-2(m+1)~-8, ... },ie,{0,2,4,...,(m+ )n-2m} U {(m+
Dn-2m+4,(m+ n-2m+38, ..., (m+ )n}.

Proof. The first set in the statement of the Theorem has both e(0) and e(1) even,
while the second set has both e(0) and e(1) odd. By Theorem 1.1, FI(C, ®
Sttm)) = {0, 2, ..., (m+ 1)n}. By Lemma 2.5, if e(1) is odd, then le(1) - e(0)| £
(m+ In—m+1)—(m+1)=(m+ Dn-2(m+ 1). It suffices to show that all
these values are attainable.

Label the vertices of C, alternately by 0’s and 1’s. All pendant vertices
adjacent to a 1-vertex are labeled O, and all pendant vertices adjacent to a 0-
vertex are labeled 1. This vertex labeling is obviously friendly with all edges
labeled 1. Thus e(1) — e(0) = (m + n. In this labeling, there are mn/2 pendant
vertices labeled 0 and mn/2 pendant vertices labeled 1. Pair them into mn/2
pairs, and interchange the labels of each pair successively. After each
interchange, there are two additional 0-edges, decreasing the value of e(1) — e(0)
by 4. Thus e(1) - e(0) = (m+ 1)n—4i, wherei=0, 1,2, ..., mn/2, showing that
all the values in the first set are attainable.

Start with the same labeling as that in the previous paragraph, except that the
last vertex of the cycle, say c,, is labeled O, i.e., the first, last and second last
vertices of the cycle are labeled 0. For each vertex of the cycle other than c,, if
its label is x, label all its pendant vertices 1 — x. For c,, label one of its pendant
vertices 1, and the other (m — 1) pendant vertices 0. This vertex labeling is
friendly, withe(l) =(n-2)+ (n—)m+1=(m+ I)n-m-1,and e(0) =2 +
(m-1)=m+ 1. Thuse(l) -e(0) = (m+ 1)n - 2(m + 1). Similar interchanges
of pendant vertex labels give e(1) —e(0) = (m + 1)n — 2(m + 1) — 4i, where i =0,
1, 2, ..., m(n — 2)/2, showing that all the values in the second set are
attainable.

Example 5. Figure 5 shows that FI(Cs ® St(2)) = {0, 2, 4, 6, §, 10, 12, 14, 18}.
We note that 16 is missing in the friendly index set.
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Lemma 2.6. Consider any friendly vertex labeling of C, ® St(m), where m and
n are both odd. Then e(0) 2 (m + 1)/2 and e(1) 2 (m + 1)/2.

Proof. Again we use the notation in the proof of Lemma 2.1, noting that (m +
Dn is even. Since changing all vertex labels to their complements maintains
friendliness and the values of both e(0) and e(1), we may assume that the cycle
C, has more O-vertices than 1-vertices, i.e., k < (n—1)/2. Then j<km < (n -
Dm/2.

From the proof of Lemma 2.1, the number of pendant 1-edges = (m + 1)n/2 -
k—j2(m+ /2 - (n - 1)/2 - (n - Dm/2 = (m + 1)/2, proving half of this
Lemma.

The number of pendant 0-edges is 2j + (m — Dn/2 — (m — Dk = 2j + (m —
Dn/2 -(m-—1)(n-1)/2=2j+ (m-1)/2 2 (m- 1)/2. Since n is odd, not all the
edges of C, can be labeled 1, i.e., at least one edge of C, is labeled 0. Then e(0)
2m-1)2+1=(m+ 1)/2. .

Lemma 2.7. Take any two values in FI(C, ® St(m)), where m and n are both
odd. Their difference is a multiple of 4.

Proof. In C,, there must be an even number of edges labeled 1, and thus an odd
number of edges labeled 0. Again use the notation in the proof of Lemma 2.1.
The number of pendant edges labeled 0 is 2j + (m - 1)0/2 — (m — 1)k = ((m -
1)/2)(n - 2k) = ((m - 1)/2)n (mod 2). Thus whether e(0) in C, @ St(m) is odd or
even is completely determined by m and n, and whatever it is, e(1) must have
the same parity. Then e(1) - e(0) = e(1) + (0) — 2e(0) = (m + 1)n - 2¢(0). The
sum or difference of any two such values must be = 0 (mod 4).

Theorem 2.4. If n and m are both odd, then FI(C, ® St(m)) = {0, 4,8, ... ,(m+
D(n-1}.

Proof. By Theorem 1.1, FI(C, ® St(m)) c {0, 2, ... , (m + 1)n}. By Lemma
26, (D -e®I<m+In-m+D2-(m+1)2=m+ 1)n—(m+ 1)
Combining this with Lemma 2.7, we see that FI(C, ® St(m)) ¢ {(m + 1)n — (m
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+1),(m+ Dn-(m+1)-4,(m+ 1)n-38, ... }, or FI(C, ® St(m)) c {(m + 1)n
-m+1)-2,(m+Dn-(m+1)-6,(m+ )n-10, ... }. Thus it suffices to
show that all the values in the first set are attainable.

Label the vertices of the cycle alternately by 0's and 1’s, starting and ending
with 0. Since n is odd, the last vertex of the cycle, say c,, is labeled 0. For all
vertices of the cycle but c,,, if its label is x, label all its adjacent pendant vertices
(1 - x). For the last vertex c; of the cycle, label (m + 1)/2 of its pendant vertices
1, and the other (m - 1)/2 of its pendant vertices 0. This is a vertex-friendly
labeling, withe(l)=(n-1)+(n-Dm+ (m+ 1)2=(n-1)(m+ 1) + (m + 1)/2,
ande(0)=1+(m-1)/2. Thuse(l)-e(@)=m-1)(m+1)=(m+ I)n—(m+
1). At this point, we know that the second set in the previous paragraph is not
possible.

In this labeling, there are m(n — 1)/2 pendant vertices labeled 0 and m(n —
1)/2 pendant vertices labeled 1 that are adjacent to vertices of the cycle other
than c,. Pair them into m(n — 1)/2 pairs, and interchange the labels of each pair
successively.  After each interchange, there are two additional 0-edges,
decreasing the value of e(1) —e(0) by 4. Thuse(1)-e(0)=(m+ I)n-(m+ 1) -
4i, wherei=0, 1, 2, ..., m(n - 1)/2. If m = 1, the least possible value of e(1) -
e(@is(1+ Dn—-(1+1)-4(I(n-1)/2)=0. If m 2 3, the least possible value of
e(N)-e@is(m+ 1)n-(m+1)-2m(n-1)= m+n-mn-1<0. Thus FI(C,
®St(m)) = {(m+ Dn—-(m+1),(m+ Dn-(m+1)-4,(m+ 1)n-8, ...,0}.

Example 6. Figure 6 shows that FI(C; ® St(1)) = {0, 4}.

le(1)-e(0) =4 fe(1)-¢(0)|=0

Figure 6.

Example 7. Figure 7 shows that FI(Cs ® St(3)) = {0, 4, 8, 12, 16}.
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3. Root-union of stars by a cycle, with a leaf as root

In this section, we consider the friendly index set of the root-union of stars by
a cycle, where a leaf of the star is the root. To distinguish these graphs from
those in Section 2, we use the notation C, ® (St(m), x,). We will call an edge
joining a vertex on the cycle to the center of a star a bridge, since it bridges the
cycle C, and a star St(m).

The arguments to be used are similar to, though a little more complicated
than, those in Section 2. We number our results corresponding to those in
Section 2. We will see that, except in the case when m and n are both even, the
general results are essentially the same as those in the previous section.

Note that since there is a leaf, we must have m = 1. If m = 1, we can use the
results in Section 2. So we will assume that m 2 2.

Lemma 3.1. For any friendly vertex labeling of C, ® (St(m), x,), where n is
even and m is odd, the induced edge labeling has an even e(1) and an even e(0).
Proof. Since the graph has (m + 1)n vertices, v(0) = v(1) = (m + 1)n/2. Assume
that h of the vertices on C, are lableled 1, and thus the other (n — h) vertices are
labeled 0. Consider the 1-vertices on the cycle C,. Assume that i of them are
adjacent to a 1-vertex (the center) of a star, and (h — i) of them are adjacent to a
O-vertex (the center) of a star. Consider the O-vertices on the cycle C,. Assume
that j of them are adjacent to a 1-vertex (the center) of a star, and (n ~ h — j) of
them are adjacent to a 0-vertex (the center) of a star. Now consider the vertices
with degree 1. Note that (i + j)(m ~ 1) of them are adjacent to a 1-vertex.
Assume that k of these (i + j)(m — 1) pendant vertices are labeled 1. Then the
other ((i + j)(m — 1) — k) vertices are labeled 0. Now note that the other (n — i —
j)(m — 1) pendant vertices are adjacent to a 0-vertex. Since v(1) = (m + 1)n/2,
there are ((m + 1)n/2 — h — i — j — k) of them labeled 1, with the remaining (n — i
=pm-1)~=((m+Dn2-h-i-j-k)=(m-)n2-n—-(i+j)m~2)+h+k
labeled 0. Thus, besides the edges of the cycle C,, there are (m + 1)n/2 + (i +
P(m=1) - 2i - 2k labeled 1, and (m — 1)n/2 - (i + j)(m — 1) + 2i + 2k labeled 0.
Since n is even and m is odd, both of these numbers are even.

From [13], the cycle C, must have an even number of edges labeled 1. Since
n is even, C, must also have an even number of edges labeled 0.

Note. The first paragraph of the above proof only requires that (m + 1)n be
even. Its arguments and symbols will be repeatedly used in this section.

Lemma 3.2. If n is even and m is odd, then FI(C, ® (St(m), x,)) can only

contain multiples of 4,
Proof. This proof is similar to that of Lemma 2.2.

Theorem 3.1. If nis even and m 2 3 is odd, then FI(C, ® (St(m), x,)) = {0, 4, 8,
ooy (m+ Dn}.
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Proof. By Theorem 1.1, FI(C, ® (St(m), x))) < {0, 2,4, 6, 8, ... , (m + I)n}.
By Lemma 3.2, only multiples of 4 can be in the friendly index set. Thus FI(C,
® (St(m), x;)) = {0,4, 8, ..., (m+ )n}. It suffices to show that all these values
are attainable.

Label the vertices of C, alternately by 0’s and 1’s. Label the centers of the
stars so that all the bridges have induced label 1. All pendant vertices adjacent
to a l-vertex are labeled 0, and all pendant vertices adjacent to a 0-vertex are
labeled 1. This vertex labeling is obviously friendly with all edges labeled 1.
Thus e(1) - e(0) = (m+ 1)n.

In the above labeling, there are (m — 1)n/2 pendant vertices labeled 0 and (m
— Dn/2 pendant vertices labeled 1. Pair them into (m — 1)n/2 pairs, and
interchange the labels of each pair successively. After each interchange, there
are two additional 0-edges, decreasing the value of e(1) — ¢(0) by 4. Thus e(1) -
e(0) =(m + 1)n - 4i, where i = 0, 1, 2, ... , (m - 1)n/2, showing that all the
values in the set are attainable.

Example 8. Figure 8 shows that FI(C, ® (St(3), x;)) = {0, 4, 8, 12, 16}.
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Lemma 3.3. For any friendly vertex labeling of C, ® (St(m), x,), where n is
odd and m is even, €(0) 2 m/2 and e(1) > m/2.

Proof. Note that the number of vertices = the number of edges = (m + 1)n is an
odd number. We used essentially the same arguments and symbols as in the
proof of Lemma 3.1. Note that changing all vertex labels to their complements
maintains friendliness and the values of both €(0) and e(1), we may assume that
there are more star centers labeled O than 1, ie.,i+j<(n-1)2,and k< (i +
jYm—1) £ (m - 1)(n - 1)/2. By friendliness, v(1) = (m + 1)n/2 + %. Thus,
besides the edges of the cycle C,, the number of 1-edge labels = (m + 1)n/2 + %
+(@{+j)m-1)-2i-2k2(m+ D22 Va+ (i +j)(m—-1)-2i - 23 +j)(m - 1)
=(m+Dn22Y-2i-(+jm-1)2m+n2+%-2i—-(m-~-1)n-1)22
(m+ Dn22¥~(n-1)-(m=~1)(n-1)/22m/2 % + 2 2 m/2, proving half
of the Lemma. Also, besides the edges of the cycle C,, the number of 0-edge
labels 2 (m - /2 =% — (i + j)(m - 1) + 2i + 2k 2 (m - Dn/2 - Y% — (i + j)(m -
Dz(m-Dn2-%2-(m-1)n-1)2=(m-1)/2-%%=m/2—-1. Since nis
odd, not all the edges of C, can have induced label 1, i.e., at least one edge of C,
is labeled 0. Thus e(0) 2 m/2, finishing the proof. 4

Theorem 3.2. If n is odd and m 2 4 is even, then FI(C, ® (St(m), x,)) = {1, 3, 5,
«e. o (Mm+ n—m}.

Proof. By Theorem 1.1, FI(C, ® (St(m), x,)) < {1, 3, ..., (m + I)n}. By
Lemma 3.3, le(1) —e(O) S (m + I)n — m/2 — m/2 = (m + 1)n — m. It suffices to
show that all these values are attainable.

Label the vertices of C, alternately by 0’s and 1’s, starting and ending with 0.
Call the last vertex c,. Label the centers of the stars so that all the bridges have
induced label 1. Call the center of the star adjacent to the vertex c, of the cycle
sp,. For all star centers but s, if its label is x, label all its adjacent pendant
vertices (1 — x). For the last star center s,, label (m/2 — 1) of its pendant vertices
0, and the other m/2 of its pendant vertices 1. This is a vertex-friendly labeling.
Note thate(l)=(n-1)+n+(m-Dn-D+(m2-D)=mn-1)+n+(m2 -
1), and e(0) = 1 + m/2, giving e(1) — e(0) = (m + 1)n — m — 2. In this labeling,
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there are (m — 1)(n — 1)/2 pendant O-vertices adjacent to a star center labeled 1
other than s,, and (m - 1)(n — 1)/2 pendant 1-vertices adjacent to a star center

labeled 0. Pair them into (m — 1)(n — 1)/2 pairs, and interchange the labels of
each pair successively. After each interchange, there are two additional 0-edges,
decreasing the value of e(1) —e(0) by 4. Thuse(l)—e@)=(m+ I)n-m-2~
4i, wherei=0,1,2,...,(m-1Dn-1)2.

Now do the same procedure as in the previous paragraph, except that for the
last star center s,, label m/2 of its pendant vertices 0, and the other (m/2 - 1) of
its pendant vertices 1. This is still a vertex-friendly labeling. Note that e(1) = (n
-D4+n+m=-Dn-D+m2=min-1)+n+m?2,ande(0)=1+m2-1=
m/2, giving e(1) — e(0) = (m + 1)n — m. Again, the same interchanges will give
e(l)-e0)=(m+ I)n —m-4i, wherei=0,1,2, ..., (m-1)(n- 1)2. The
smallest value of e(1) -e(0)is(m+ I)n-m-2(m-1Dn-1)=m+3n-mn -
2. If m=4, this value is 2 - n < 0. If m 2 6, then m < mn/3 and 3n < mn/2,
showing that m + 3n — mn — 2 < 0. Thus the value 1 is attainable.

Example 9. Figure 9 shows that FI(C; ® (St(4), x,))={1,3,5,7,9, 11}.

Xy b Xy

@O %0 jo(1)-e(0=5

Xy 4 Xpp

%13 fe1)-e(0)/=1
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Lemma 3.4. Consider any friendly vertex labeling of C, ® (St(m), x,)), where n
is even. If half of the star centers are labeled 0, then e(0) and e(1) are both even.
Proof. We use the notation in the proof of Lemma 3.1. Note that i + j = n/2
under our assumption here. The cycle C, has an even number of 1-edges and
hence an even number of 0-edges. Besides the edges of C,, the number of 1-
edges is (m+ Dn/2 + (i + j)(m — 1) = 2i — 2k = (m + )n/2 + (m - 1)n/2 — 2i — 2k
= mn - 2i — 2k, and the number of 0-edges is (m — 1)n/2 - (i + j}(m - 1) + 2i +
2k =(m - 1n/2 — (m - 1)n/2 + 2i + 2k = 2i + 2k, both even numbers.

Lemma 3.5. Consider any friendly vertex labeling of C, ® (St(m), x,)), where n
iseven. Ife(l)is odd, thene(l1)2m+ l ande(0) 2m-1.

Proof. Again we use the notation in the proof of Lemma 3.1. By Lemma 3.4,
we know that i + j # n/2. Since changing all vertex labels to their complements
maintains friendliness and the values of both e(0) and e(1), we may assume that
there are more star centers labeled O than 1, ie.,i+j<n/2-1. Thenk < (i +
jYm=1)<(m-1)(n/2 - 1). Besides the edges of the cycle C,, the number of 1-
edge labels=(m+ D2+ (i +j}(m-1)-2i-2k2(m+ D2 + (i +j)(m-1) -
2i-2(i+j)m-1D=(m+ Dn/2 -2i - (i +j)m—-1) =2 (m+ 1)n/2 - 2i - (m -
DO/2-1D2(m+ /2 - (n-2) - (m - 1)(1/2 - 1) = m + 1, proving half of the
Lemma. Also, besides the edges of the cycle C,, the number of 0-edge labels =
m-Dn2-G+j))m-1)+2i+2k2(m-DHn/2-(@{+j)m-1)=(m- )n/2 -
(m - 1)(n/2 — 1) = m - 1, finishing the proof.
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Theorem 3.3. If n and m are both even, m = 4, then FI(C, ® (St(m), x;)) = {(m
+Dn,(m+Dn-4, (m+ Dn-8,... ) U {(m+ Dn-2(m~1), (m+ n-2(m
-D-4,(m+ Dn-2(m-1)-8,... },ie., {0,2,4,...,(m+ Dn-2(m-2)} L
{(m+1n-2(m=2)+4,(m+ )n-2(m-2)+8, ..., (m+ n}.

Proof. The first set in the statement of the Theorem has both e(0) and e(1) even,
while the second set has both e(0) and e(1) odd. By Theorem 1.1, FI(C, ®
(St(m), x)) < {0, 2, ..., (m + 1)n}. By Lemma 3.5, if e(1) is odd, then le(1) —
e@S(m+ Dn—(m-1)—(m-1)=(m+ n-2(m - 1). It suffices to show
that all these values are attainable.

Label the vertices of C,, alternately by 0’s and 1’s. Label the centers of the
stars so that all the bridges have induced label 1. All pendant vertices adjacent
to a 1-vertex are labeled 0, and all pendant vertices adjacent to a O-vertex are
labeled 1. This vertex labeling is obviously friendly with all edges labeled 1.
Thus e(1) — €(0) = (m + 1)n. In this labeling, there are (m — 1)n/2 pendant
vertices labeled 0 and (m — 1)n/2 pendant vertices labeled 1. Pair them into (m -
1)n/2 pairs, and interchange the labels of each pair successively. After each
interchange, there are two additional 0-edges, decreasing the value of e(1) - e(0)
by 4. Thus e(1) - e(0) = (m + 1)n—4i, wherei=0, 1,2, ..., (m - 1)n/2. When
i=(m-1Dn/2, e(1) —e0) = (m+ 1)n - 2(m-1)n= (3 — m)n. This shows that all
the values in the first set are attainable.

Start with the same labeling as that in the previous paragraph. Label the
vertices of C;, alternately by 0’s and 1's. Call the last vertex c,, which is labeled
1. Call the center of the star adjacent to the vertex c, of the cycle s,. Label the
centers of the stars so that all the bridges have induced label 1, except that s, is
labeled 1, so that its bridge has induced label 0. For all star centers except s, if
its label is x, label all its adjacent pendant vertices (1 — x). For the pendant
vertices adjacent to s, label one of them 0 and the other (m - 2) of them 1. This
is a vertex-friendly labeling. Note thate(1)=n+m-1)+(m-D@n-)+1=
(m+ Dn-m+1,and e(0) = 1 + (m—-2)=m - 1, giving e(1) —e(0) = (m + 1)n
—2(m - 1). Besides the pendant vertices adjacent to s, and a star center next to
Sy, there are (m — 1)(n — 2)/2 pendant O-vertices adjacent to a star center labeled
1, and (m - 1)(n — 2)/2 pendant l-vertices adjacent to a star center labeled 0.
Pair them into (m — 1)(n — 2)/2 pairs, and interchange the labels of each pair
successively.  After each interchange, there are two additional O-edges,
decreasing the value of e(1) — e(0) by 4. Thus e(1) — e(0) =(m + 1)n—2(m - 1)
—4i, wherei=0,1,2,...,(m-1)n—-2)2. The smallest value of e(1) — e(0) is
m+Dn-2m-1)-2m-1)(n-2)=2m+3n-mn-2. fm=4andn=4,
this value is 2. If m =4 and n = 6, this value is —-n + 6 <0. If m=6and n 2 4,
then 2m € mn/2 and 3n < mn/2, showing that 2m + 3n — mn — 2 < 0. This shows
that all the values in the second set are attainable.

Example 10. Figure 10 shows that FI(C, ® (St(4), x)) = {0, 2, 4, 6, 8, 10, 12,
14, 16, 20}. We note here that 18 is missing in the friendly index set.
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Figure 10.

Lemma 3.6. Consider any friendly vertex labeling of C, ® (St(m), x,), where m
and n are both odd. Then e(0) = (m + 1)/2 and e(1) = (m + 1)/2.

Proof. Again we use the notation in the proof of Lemma 3.1, noting that (m +
Dn is even. Since changing all vertex labels to their complements maintains
friendliness and the values of both e(0) and e(1), we may assume that there are
more star centers labeled O than 1,ie.,i+j<(n-1)/2,andk £ (i +j)(m~- 1) £
(m = 1)(n — 1)/2. Then, besides the edges of the cycle C,, the number of 1-edge
labels = (m+ /2 + (i +j)(m—1)-2i -2k 2 (m + Dn/2 + (i + j){m=1) - 2i -
2 +j)m-1)=(m+ Dn/2-2i-({+j)(m-1)2(m+ Dn/2 - 2i - (m~-1)(n -
DR2z2m+ D/2 —(n-1)-(m- 1)(n-1)/2 = (m + 1)/2, proving half of the
Lemma. Also, besides the edges of the cycle C,, the number of 0-edge labels 2
m-1n2-@G+j))m-1)+2i+2k=2(m-Dn2- (G +j)(m-1)=(m-1)n/2 -
(m - )(n - 1)/2 = (m - 1)/2. Since n is odd, not all the edges of C, can have
induced label 1, i.e., at least one edge of C, is labeled 0. Thus e(0) = (m + 1)/2,
finishing the proof.

Lemma 3.7. Take any two values in FI(C, ® (St(m), x,)), where m and n are
both odd. Their difference is a multiple of 4.

Proof. In C,, there must be an even number of edges labeled 1, and thus an odd
number of edges labeled 0. Again use the notation in the proof of Lemma 3.1.
Besides the edges of C,, the number of 0-edges = (m - )n/2 — (i + j)(m ~ 1) + 2i
+ 2k = (m — Dn/2 (mod 2). Thus whether e(0) in C, ® (St(m), x,) is odd or even
is completely determined by m and n, and whatever it is, e(1) must have the
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same parity. Then e(1) — e(0) = e(1) + e(0) — 2e(0) = (m + 1)n — 2e(0). The sum
or difference of any two such values must be = 0 (mod 4).

Theorem 3.4. If n and m are both odd, then FI(C, ® (St(m), x,)) = {0, 4, 8, ...,
(m+ (n-1))}.

Proof. By Theorem 1.1, FI(C, ® (St(m), x;)) c {0, 2, ... , (m + I)n}. By
Lemma 3.6, le(1) —e(OI< (m+ Dn-(m+ 1)2-(m+ 1)2=(m+ Dn-(m +
1). Combining this with Lemma 3.7, we see that FI(C, ® (St(m), x))) < {(m +
Dn-(m+1),(m+ Dn-(m+1)-4,(m+ 1)n-8, ... }, or FI(C, ® (St(m), x,))
cl{m+Dn-m+1)-2,(m+n~(m+1)-6,(m+ 1)n-10, ... }. Thus it
suffices to show that all the values in the first set are attainable.

Label the vertices of C, alternately by 0’s and 1’s, starting and ending with 0.
Call the last vertex c,. Label the centers of the stars so that all the bridges have
induced label 1. Call the center of the star adjacent to the vertex c, of the cycle
sq. For all star centers but s, if its label is x, label all its adjacent pendant
vertices (1 — x). For the last star center s, label (m — 1)/2 of its pendant vertices
0, and the other (m — 1)/2 of its pendant vertices 1. This is a vertex-friendly
labeling. Note thate(l)=(n-1)+n+(m-Dn-1D)+m-1)2=(m+ n-
mi2-Y%,ande(0)=1+(m—-1)/2=m/2 + !4, giving e(1) —e(0) = (m + 1)n - (m
+ 1). In this labeling, there are (m — 1)(n — 1)/2 pendant Q-vertices adjacent to a
star center labeled 1 other than s;, and (m — 1)(n - 1)/2 pendant 1-vertices
adjacent to a star center labeled 0. Pair them into (m — 1)(n — 1)/2 pairs, and
interchange the labels of each pair successively. After each interchange, there
are two additional 0-edges, decreasing the value of e(1) — e(0) by 4. Thus e(1) -
e@=m+1)n-(m+1)—-4i, wherei=0,1, 2, ..., (m-1)n - 1)/2. The
smallest value of e(1) —e(@)is(m+ Dn—(m+ 1)-2(m- 1D -1)=m+3n-
mn - 3. If m =3, this value is 0. If m 2 5 and n = 3, then m £ mn/3 and 3n <
3mn/5, showing that m + 3n — mn — 3 < 0. This shows that all the values in the
first set are attainable.

Example 11. Figure 11 shows that FI(C; ® (St(5), x))) = {0, 4, 8, 12}.

Ko om Xy
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4. Conclusion

In this paper, we introduced the root-union construction, and investigated the
friendly index set of C, ® St(m). Roughly speaking, about three quarters of
these sets have values in arithmetic progressions while the others have gaps.
The project on finding when gaps exist is still ongoing.
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