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Abstract

A tournament T = (V, A) is arc-traceable if for each arc zy € A,
zy lies on a directed path containing all the vertices of V, ie., a
hamiltonian path. In this paper we give two extremal results related
to arc-traceability in tournaments. First, we show that a non-arc-
traceable tournament T which is m-arc-strong must have at least
2™+1 1 4m —3 vertices, and we construct an example that shows that
this result is best possible. Next, we consider the maximum number
of arcs in a strong tournament that are not part of any hamilto-
nian path. We use the structure of non-arc-traceable tournaments to
prove that no strong tournament contains more than ?2‘—gmt§ arcs
that are not part of a hamiltonian path, and we give the unique ex-
ample that shows that this bound is best possible.
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1 Introduction

A directed graph (or digraph) D = (V, A) consists a set V of vertices and a
collection A of ordered pairs of vertices called ares. In this paper, we will
always assume that V is finite and that A includes at most one copy of each
arc and that all arcs are ordered pairs of distinct vertices. When working
with more than one digraph or when the context is not clear, the vertex
set and arc set of a digraph will be referred to as V(D) and A(D) and to
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minimize notation an element of A(D) simply as uv. A good reference for
general results on digraphs is the book by Bang-Jensen and Gutin [1]. The
in-neighborhood of a vertex v is the set {u | uv € A} and denoted N~ (v).
The cardinality of the set N~ (v) is the in-degree of v and is denoted d~ (v).
Out-neighborhood and out-degree are defined analogously and we define
6p and 6}, as the minimum values of d~(v) and d*(v) over all vertices
v € V(D). A strong digraph is one in which for any two distinct vertices z
and y, there exists a directed path from z to y. Aset S C V is a cut-set
if the sub-digraph induced on V' \ S is not strong. For a digraph D, D is
k-connected if the size of the smallest cut-set is at least k, and the size of
the smallest cut-set of D is denoted x(D). Analogously, a set S C A is an
arc-cut-set if D' = (V, A\ S) is not strongly connected and a digraph is
m-arc-strong if the smallest arc-cut-set S has |S| > m. We write «'(D) to
represent the size of the smallest arc cut-set for the digraph D. When two
vertices £ and y are given, a set S of arcs or vertices such that there is no
path from z to y in D avoiding S will be called an z, y-separating set.

A tournament is a digraph such that for each two distinct vertices u
and v, exactly one of the arcs uv and vu is present. Alternately, a tour-
nament on n vertices can be thought of as an arbitrary orientation of the
complete undirected graph K,,. Using the latter perspective, it is clear that
every induced subdigraph of a tournament is also a tournament. We will
call such a subdigraph a subtournament and for S C V, we will denote the
subtournament induced on S by T[S]. If V\ § = {v}, we will instead write
T,. The vertices of a tournament T that is not strong can be decomposed
into strong components, and these strong subtournaments form the vertex
set of a transitive tournment. In such a case, we will order the strong com-
ponents from 1 to r such that every vertex in the ith component dominates
every vertex in the jth component for all j > i. We will designate the ith
component by T() and refer to T(!) as the initial strong component of T
and T(") as the terminal strong component.

A digraph D = (V, A) is arc-traceable if for each arc zy € A, zy lies on
a directed path containing all the vertices of V', i.e., a hamiltonian path. If
D is non-arc-traceable there is some arc that is not part of any hamiltonian
path, and any such arc will be called non-traceable. For tournaments, a
relationship between connectivity and arc-traceability is clear; it is easy
to show that every 2-connected tournament is arc-traceable. In [4], the
structure of strong non-arc-traceable tournaments was investigated. The
main result of that work was Theorem 1.1.

Theorem 1.1 (Busch, Jacobson and Reid [4]). IfT is a strong tournament,
and zy € A(T) is not on a hamiltonian path, then:



(i) There ezists a vertez z such that T, is not strong.
(ii) T, has k strong components, k > 4.

(iii) x is in the initial strong component of T,, and y is in the terminal
strong component of T,.

(v) z is dominated by the gnd strong component of T, and z dominates
the (k — 1)“ strong component of T,.

In Section 2, we consider the relationship between arc-connectivity and
arc-traceability. For any positive integer m, we construct an m-arc-strong
tournament that is not arc-traceable, and we show that this tournament is
minimal with respect to the number of vertices. In Section 3, we consider
tournaments which contain many non-traceable arcs. We use the structure
of non-arc-traceable tournaments to show that at most % of the arcs
of a strong tournament are not on a hamiltonian path, and note that as a
result of an example given in [3], this result is best possible.

2 Non-arc-traceable m-arc-strong tournaments

As a consequence of Theorem 1.1, for any non-traceable arc zy in a strong
tournament T, there exists a y, z-separating set of vertices of size 1 (the
vertex z in the Theorem). We begin this section by showing that a similar
result for a y, z-separating set of arcs is impossible. In particular, we show
that for any m > 0 there exists a strong tournament T that has a non-
traceable arc zy with m arc disjoint paths from y to z. As an example, in
the tournament in Figure 1, xy is not on any hamiltonian path, and there
exist 2 arc disjoint paths from y to z.

For an arbitrary m, we construct a strong tournament by reversing the
arcs of a set of m arc disjoint paths in a transitive tournament of order
9m+1 11 Let T be a transitive tournament or order 2™+! +1 with vertices

Figure 1: A tournament with non-traceable arc zy and two arc disjoint paths
from y to x. All arcs not-shown are from left to right.



labeled v, ..., v, (so n = 2™+1) such that d~(v;) = i. Now, consider the
paths
P; = vou(2:)V(2.2)VU(3.2i) - - - » U, fOr 1 < <m.

We reverse the arcs in each of these paths to obtain the tournament T,
and will refer to the reversed path P; as U;. Note that vy is on each U;,
and thus for any ¢ < 3 < j, every path from v; to v; must contain vg. We
also note that vovyv3. .. vp—5Up—3vn—1U) is 2 hamiltonian cycle, and hence
Tim) is strong. Additionally, it is easy to see that Tjy, is isomorphic to it’s
reversal under the isomorphism ¢(v;) = v,—;. Finally, observe that we can
view the construction of Tjn, ) recursively; take two copies of T, sharing
a single vertex (v, from one copy, and vy in the other copy) and reverse the
2-path P, 1. This recursive perspective permits straightforward induction
arguments, as we shall see throughout this section.

Lemma 2.1. The arc vov, with n = 2™*! is not on any hamiltonian path
of the tournament Ty,).

Proof. For m =1, T, is a strong tournament on 5 vertices, and it is easy
to verify that vgv, is not on any hamiltonian path of Tj;;. Now, assume
the result for m and consider the tournament Tj;, ). Let P be a path of
maximal length in T}, 1) containing the arc vovo, with 2n = 2m+2_ If this
path does not include the vertex v,, then no hamiltonian path includes
the arc voup, and the result holds. So assume that P includes v,, and as
Tim+1) is isomorphic to its reversal, without loss of generality assume that
v, follows the arc vgvy, on P. Let v, be the terminal vertex of P and v;
the initial vertex of P. Since v, separates v, from v, for each a < n < b,
every vertex between v; and vg on P must have index j < n. Similarly,
every vertex between vs, and v, on P must have index j > n and every
vertex following v, must have index j < n. Thus, all the vertices of P
with index j < n are contained in the subpaths v;...vp and v, ...v:. We
now consider the combined sequence of vertices Q = v;,...,V9,VUn,...,Vt.
Each of the vertices in this sequence has index 7 < n, and every pair of
consecutive vertices other than vouy, are joined by an arc of Tj;4y). Since
v € A(Tjm)), We can use the recursive perspective described earlier and
think of this sequence as a path of T},). Since the path @ contains the arc
vUnvp, the induction hypothesis implies that this can not be a hamiltonian
path of Tj,,}, and so there is a vertex v,, a < n, that is not in the sequence
Q. But since the sequence @ contains every vertex of P with index j < n,
the vertex v, is not included in the original path P. Consequently, the
longest path containing the arc vova, is not hamiltonian, and vovs, is non-
traceable in Ty q)- O



Thus, for any m, we can construct a tournament with 2m+1 4.1 vertices
with a non-traceable arc 2y such that there exist m arc disjoint paths from
y to . Next, we show that 2™+! + 1 is the minimal number of vertices
among strong tournaments with this property.

Lemma 2.2. Let T be a strong tournament containing a non-traceable arc
zy such that there exist m arc disjoint paths from y to x. Then T has order
k>2m+l 41,

Proof. Again, the proof is by induction. For m = 1, the result is obtained
by observing that the unique strong tournaments on 3 and 4 vertices are
arc-traceable. Next, assume the result for m and consider the smallest
strong tournament T, with non-traceable arc zy and m + 1 arc disjoint
paths from y to z. Let k be the order of T and assume that k < 2™*+2 4+ 1.

As zy is non-traceable, T must have the structure given by Theorem 1.1.
Furthermore, the minimality of T implies that T, has exactly four strong
components, and that the second and third components both consist of a
single vertex. Let X be the set of vertices in the first and second strong
components of T;, and Y = V(T;) \ X. Clearly, either |X| < 2™+! or
|Y| < 2™+!. Without loss of generality, assume |X| < 2™*! and consider
the tournament T[X U {z}]. If 2z € A(T[X U {z}]), then reverse this arc
to form the tournament 7”. Otherwise, simply let T/ = T[X U {z}]. Since
z is on every path from y to z, and there are m + 1 arc disjoint paths from
y to z, there also exist m + 1 arc disjoint paths from z to z in T and at
most one of these contains the arc zz (if it is an arc of T). Thus, there
are at least m arc disjoint paths from z to z in T”. Clearly, T’ is strong
and has fewer than 2™+! 4 1 vertices, and so by the induction hypothesis,
zz is on some hamiltonian path of this tournament. Let P be such a
hamiltonian path, and split P into two smaller paths P, consisting of all
the vertices up to and including =z and P,, consisting of all the vertices
of P that follow z. The structure of T’ and the assumption that zy is
non-traceable guarantees that both P, and P, are paths of order at least
1. The only vertex of T’ on neither P, or P; is z, so each vertex of X is
on either P; or P;. Next, the structure of T requires that T'[Y U {2}] must
be strong, so let C be a hamiltonian cycle of this tournament and let Q;
be the subpath of C from y to z, inclusive, and Q, the subpath of C from
the vertex immediately succeeding z to the vertex immediately preceding y.
We allow for the possibility that Q2 may have order 0. Thus, every vertex
of Y U {z} is on either Q; or Q2. We now construct H = P,Q1P,Q2, and
we note that the vertex preceding z on this path is a vertex of @, and so
H does not use the arc of T from z to z. We claim that H is a hamiltonian
path of T. First, the terminal vertex of P) is z and the initial vertex of



Q1 is y, and zy € A(T) by assumption. Next, the terminal vertex of @, is
z, and the initial vertex of P is the vertex immediately following z on P.
Lastly, the terminal vertex of P, is a vertex of X, while the initial vertex
of @2 (if any) is a vertex of Y, and X dominates Y. So, H is indeed a
path of T. Finally, H includes all of X and Y as well as the vertex z, so
H is a hamiltonian path including the arc zy. But zy is non-traceable,
contradicting our assumption that k < 2m+2 41, O

The previous results apply to a particular arc zy and as a result we make
no claim about the number of arc disjoint paths between every two distinct
vertices. In fact, for each m, Tjn,) contains a vertex of in-degree 1 (v;) as
well as a vertex of out-degree 1 (v,—; where n = 2™+1), so we have yet
to produce even a 2-arc-strong tournament that is not arc-traceable. We
now seek to construct such an m-arc-strong non-arc-traceable tournament.
Doing so requires only a minor variation on the construction of Tj,).

Specifically, let V' = V(T|))\{v1,vn-1} and let Z; and Z,,_; be disjoint
sets of size 2m — 1 with V' N Z; = @ for i = 1,n — 1. We define the
tournament T} ; of order 2™*! + 4m — 3 with vertex set V' U Z; U Z,_,
by letting Ty, [Z;] be a regular tournament for i = 1,n — 1 (so within
this subtournament every vertex has in-degree and out-degree m — 1), and
T[’m] [V'U{z1, 2z1-1}] = Tjm) for every z; € Z; and 2,1 € Z,_1. Essentially,
we are replacing the vertices vy and v, of T}y, With regular tournaments
on the sets Z; and Z,_;.

Lemma 2.3. T['m] is m-arc-strong.

Proof. It suffices to show that vo both reaches and is reached by every
other vertex of T[’ml using m arc disjoint walks. The result then follows by

Menger’s Theorem {5] since any arc-cut-set separating vo and a vertex v
must include at least one arc from each walk.

First consider any vertex v € Z,_; and let N~ (u)NZn-1 = {u1,...,Um-1}
Then, W; = vou;u for 1 < i < m—1 and W,,, = vpu are m arc disjoint walks
from vp to u. Additionally, for any vertex v ¢ Z,_;, we can choose m dis-
tinct vertices wy, . .., wn, from Z; and form m arc-disjoint walks W; = vow;v
for 1 <1< m from vg to v.

To show that vy is reached by every other vertex by m arc disjoint
walks, we use the m arc-disjoint paths Uy, ...Un of Tjy) as defined at the
beginning of this section. Clearly, Uy,...,U,, are arc disjoint paths from
Un to vp. To show that vp is reached by every vertex of w € Z; by m arc
disjoint walks, let N*(w) N 2Z; = {wy,... wm-1} and let W; = ww;U; for



1<i<m-1and W, = wlU,,. For v ¢ Z; U {v,}, choose m distinct
vertices uj,...Un, from Z,_; and then W; = vu;U; for 1 £ ¢ < m are
arc-disjoint walks from v to vp. a

Lemma 2.4. The arc vov, with n = 2™+ of T[’m] is non-traceable.

Proof. Assume the result is false, so there is some hamiltonian path H of
T[’m] that contains the arc vov,,. Since N~ (u) \ Z, = {vo} for any u € Z,,
every path ending at a vertex of Z, is either a path of T[Z,], or includes an
arc vow for some w € Z;. Since H cannot be a path of the latter type, every
subpath of H ending at a vertex of Z; is a path of T[Z;] and hence the
first 2m — 1 vertices of H are precisely the vertices in the set Z;. Similarly,
every subpath of H beginning at a vertex of Z,,_, is a path of T[Z,-,} and
hence the last 2m — 1 vertices of H are precisely the vertices in Z,_;. Let
21 be the last vertex of Z; on H, and let z,_; be the first vertex of Z,_;
on H. Then the subpath of H from 2; to z, — 1 is a hamiltonian path of

[’,in] [V’ U {21, zn-1}] = T} containing the arc vovn, contradicting Lemmél.

Finally, we conclude this section with a proof that T['m] has the fewest
vertices among all non-arc-traceable m-arc-strong tournaments.

Theorem 2.1. If T is a non-arc-traceable m-arc-strong tournament, then
T has order k > 2™+ + 4m — 3.

Proof. For m = 1, the result is immediate by observing that all strong
tournaments are 1-arc-strong and that 21+! — 4(1) — 3 = 5 is the size of
the smallest non-arc-traceable strong tournament. So we can assume that
m > 2. Let zy be a non-traceable arc of T. Define S; as the initial strong
component of T; and S, as the terminal strong component of T,,. Note that
¢S, and y ¢ S;. As T is m-arc-strong, every vertex of T has in- and
out-degree at least m, and thus each vertex of T}, has in- and out-degree at
least m — 1 for any v € V(T). Thus, 67, > m —1 and Ji >m—1 and
consequently both |Sz| > 2m — 1 and |Sy| > 2m — 1.

Next, we claim that S; N S, = 0. This follows from the fact that (7%),
is not strong (if it is, then we can find a hamiltonian path beginning or
ending with the arc zy), and the observation that S; is contained in the
initial strong component of (T%),, and Sy, is contained in the terminal strong
component of (Tz),.

Lastly, observe that no path from y to z can use any vertex of Sz U Sy,
as every path from y to S, must contain the vertex z, and dually every



path from S, to = must contain y. Thus we can form a tournament 7” by
replacing the entire set S; with a single vertex u, and replacing the entire
set S, with a single vertex u, without disturbing any path from y to z.
Thus, there remain m arc disjoint paths from y to z in 7'. Furthermore,
if we let z dominate u, and let u, dominate y, then T” is strong. By a
similar argument to the one used in Lemma 2.4, any hamiltonian path of T”
containing the arc zy can be extended to a hamiltonian path of T containing
this arc. As zy is not on any hamiltonian path of T by assumption, it is
therefore not on any hamiltonian path of 7. By Lemma 2.2, T’ has at
least 2™+1 41 vertices and so T has at least (21 +1) -2+ 2(2m—1) =
2m+1 4 4m — 3 vertices. O

3 The maximal number of non-traceable arcs
in a strong tournament

We now turn our attention to tournaments with many non-traceable arcs.
Let T be the transitive tournament on the set V = {vp,...vp—1} where
d~(v;) = i. It then follows that v;v; € Aif and only if i < j. It is well known
that this tournament has a unique hamiltonian path, and hence it follows
immediately that there are (3) — (n — 1) = 22=3842 non-traceable arcs in
the transitive tournament of order n. Since every tournament contains a
hamiltonian path, this is also clearly maximal. Strong tournaments, how-
ever, contain many distinct hamiltonian paths. Recently, Busch (2] showed
that a strong tournament of order n has at least 5*3* distinct hamiltonian
paths, improving a result of Moon [6]. This seems to suggest that strong
tournaments have few non-traceable arcs. This is not the case, however.
For any odd n, let Tyax be the tournament obtained from a transitive n-
tournament by reversing the arcs v;_v; for each even i, 2 < i < n—1. This
tournament is an example of an upset tournament, a tournament which can
be obtained from the transitive tournament by reversing the arcs in a sin-
gle path from the vertex with in-degree zero to the vertex with out-degree
zero. In (3], arc-traceable upset tournaments were characterized, and Thax
was shown to have -"—2%"*—3 non-traceable arcs. Further, it was shown that
this tournament was maximal among all upset tournaments with respect
to the number of non-traceable arcs. We now extend this result and prove
that all strong n-tournaments have at most this number of non-traceable
arcs. Once again, we use the structure of non-arc-traceable tournaments
given by Theorem 1.1. However, we note that the structure described in
Theorem 1.1 is necessary, but not sufficient for a tournament to be non-arc-
traceable. We begin by developing additional structure that is required of
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non-arc-traceable tournaments, and using that structure to identify other
non-traceable arcs in a tournament 7" with at least one non-traceable arc
zy. Recall that T, is the subtournament T — z and T is the ith strong
component of this tournament.

Lemma 3.1. Let T be a strong tournament with some vertez z € V(T)
such that T, has k > 4 strong components. Further, let V(Tz(z)) dominate 2
and let z dominate V(Tz(k'l)) inT. Forz e V(Tz(l)) andy € V(Tz(k)), zy
is part of some hamiltonian path if and only if (i) the vertices of T can
be partitioned by paths Py, Q, where Py begins at a vertex dominated by z

and Q, ends at = or (ii) the vertices of T can be partitioned by paths Py,
Qi where Q. begins at y and P, ends at a vertex that dominates z.

Proof. We prove the sufficiency of condition (i), as condition (ii) is equiva-
lent to condition (i) in the reversal of T. Assume that condition (i) holds.
Let P; be a hamiltonian path of T}i) for 2 < i< k-1, and let Qi be
any path in T* from y to a vertex that dominates z. Finally, let P, be
a hamiltonian path of T \ V(Qk). Then H = Q,Qc2P,P,P,... Ps is a
hamiltonian path of T containing the arc zy.

For the converse, choose z € V(T,(l)) and y € V(Tz(k)) and assume the
arc zry is traceable in T. Let H be a hamiltonian path of T containing
the arc zy. First, observe that H contains at most one other arc uv with
u € V(Tz(l)) and v ¢ V(TY), as z must lie between any two such arcs on
H. If H does not contain another arc with this property, then the initial
vertex of H must be a vertex of Tz(z). In this case, the portion of the path
H that lies in Tz(l) is a hamiltonian path of the subtournament Tz(l) that
begins at a vertex dominated by z and ends at z. Removing any arc of
this subpath yields two paths that satisfy condition (i). So, we may assume
that H contains an arc uv # zy with u € TV and v ¢ TV, In this case,
the portion of H that lies in TV consists of two vertex disjoint paths, P,
and Q; (assume that P; precedes @, on H). If zy precedes uv on H, then
P, ends at = and the vertex immediately preceding @; on H must be z,
and so condition (i) is satisfied. If uv precedes zy on H, then there must
be an arc u'v' with v/ ¢ V(T$) and v’ € V(TE®) such that u'v’ precedes
zy on H. In the reversal of T', we find that yz precedes v'u’ on the reversal
of H, and condition (i) is satisfied in the reversal of T. Thus, condition (ii)
is satisfied in T'. a

‘We note that a corollary of this result gives a sufficient condition for non-
arc-traceability in strong tournaments. The results from Section 2 clearly
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show that the converse of the following corollary is false.

Corollary 3.1. Let T be a strong tournament having the structure given
by Theorem 1.1. If [N*(2)n\V(TV)| =1 and [N~ (z) n\V(TP)| = 1, then
T is not arc-traceable.

Proof. Define vertices = and y as follows: N+(z) N V(Tz(l)) = {z} and
N-)nV(THF) = {y}. Then by Lemma 3.1, zy is non-traceable. O

Lemma 3.2. Let T be a strong tournament having a cut-vertez z. If X =
{z e V(Tz(l)) : the vertices of T{" cannot be partitioned into two paths P
and Q such that P begins at a vertex dominated by z and Q ends at r}, then
|X| < &L wherea = ]V(Tz(l))|. Similarly, |Y| < &L for the analogous set
Y, where b = |V(T{9)|.

Proof. The result is clear if X = @, so assume that X = {zo,z1,...,Zm}. If
IN*t(z)nX| > 1, then assume that z dominates zq. Let P; be a longest path
not containing z; that begins at a vertex dominated by z. As z dominates
To or some vertex z’ ¢ X, P; is a path containing at least one vertex for
eachi, 1 <i<m. Let S; = V(T \V(B,) for 1 < i < m. We claim
first that S; \ {z;} dominates V'(P;). Assume otherwise, and let v be the
last vertex along P; such that v dominates w for some w € S; \ {z;}. If v
is the terminal vertex of P;, then Pyw is a longer path than P; beginning
at a vertex dominated by 2. Otherwise, let v* be the vertex immediately
following v on P;. By the maximality of v, we can replace the arc vvt of
P; with the 2-path vwv* and again obtain a path that begins at a vertex
dominated by z that is longer than P;. Note, since TV is strong, S; must
be reachable from V(P;), and thus some vertex of V(P;) must dominate z;.
Choose such a vertex and call it v;.

Now, let Q; be the longest path of T[S;] that ends at x;, and let U; =
Si\V(Q:). Using P; and Q; and the definition of X, we see that U; # 0
for1 <4 <mand U; C S;\ {z:}, so U; dominates V(P;). By a similar
argument used above, we also note that U; is dominated by each vertex of
V(Q:). Thus, we conclude that V(Q;) \ {z;} dominates both U; and V(7).

Additionally, we observe that the terminal strong component of T[Uj;]
contains no vertex of X and hence U;\ X # 0. To see this, let w be a vertex
in the terminal strong component of T[U;] and let H be any hamiltonian
path of T'[U;] ending at w. Construct the paths Q; H and P;, which partition
the vertices of TS"). The initial vertex of P, is a vertex dominated by z,
and w is the terminal vertex of Q;H. So, w is not in X.
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Finally, we claim that U; N U; = 0 for all i # j. Assume otherwise, and
choose % # j with v € U; N U;. Without loss of generality assume that z;
dominates z;. Since u € U; N U}, and U; NU; dominates V(F;) UV(P;), u
dominates both v; and v;. Similarly, as V(Q;) U V(Q;) dominate U; N Uj,
z; and z; both dominate u. Now, since V(Q,) dominates u, v; ¢ V(Q;),
and hence v; € V(P;)UU;. Also, if z; € Uj, then V(Q;) dominates z;. But
z; is the terminal vertex of Q; and z; dominates z; by assumption. As a
result, we conclude that z; ¢ U;. Further, z; dominates u and U; dominates
V(P;) so z; ¢ V(P;). Thus, z; € V(Q;) \ {z;} and so x; dominates both
U; and V(P;). Since v; € V(P;) U Uj, this requires that z; dominates v;,
contradicting the choice of v; as a vertex of P; that dominates z;.

The above arguments show that U\X # @ for1 <i <mand U;nU; =9
for i # j, which establishes that

(OU") \ X =ilUi\X|2m=|X|—1.

i=1 i=1

Thus, we have a > |X|+m =2m +1=2|X| -1 and so |X| < ¢+

The bound for the set Y is obtained using an identical argument in the
reversal of T'. O

Corollary 3.2. Let T be a strong tournament having the structure given
by Theorem 1.1. The number of non-traceable arcs from T to T is at
most B+ ypere o = |V(TEV)| and b = [V(TIF)).

Proof. Let B be the set of non-traceable arcs from T t0o T, Let X
(respectively, Y) be the set of vertices such that the vertices of T (re-

spectively, Tz(k)) can not be split into paths P and Q such that P begins at a
vertex dominated by z (respectively, P ends at a vertex dominating z) and
Q ends at a vertex of X (respectively, Q@ begins at a vertex of Y'). Clearly,
by Lemma 3.1, |B| = |X||Y| and by Lemma 3.2, |X||Y| < &tLCD) O

Theorem 3.1. If T is a strong n-tournament, then T has at most "2—'3"—*—3
non-traceable arcs, with equality if and only if T is isomorphic to Tiax.

Proof. For n = 3 or n = 4, there is a unique strong n-tournament, and in
2
either case this tournament is arc-traceable and so has at most ?ﬂé‘iﬂ =
2
0 or L4043 _ % non-traceable arcs, respectively. When n = 3, equality

3
is achieved and this tournament is isomorphic to Tinax.
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For n > 4, assume that T is non-arc-traceable. Let zy be a non-traceable
arc of T, and let T have the structure given by Theorem 1.1. Let A =
V(TV) and B = V(T{M), with a = |A| and b = |B|, and choose u € T<?
andw € TV, If z'y’ is a non-traceable arc of T, neither T —z’ nor T —y/
are strong, and hence z’ and 3’ must both be in the set AUB U {z}. Thus,
z'y’ is either an arc of T[AU{«, z}), an arc of T[BU {w, z}], or an arc from
A to B.

We claim that every arc of T[A U {u, z}] or T[B U {w, z}] that is non-
traceable in T is also non-traceable in this subtournament. Assume that
some arc o is traceable in T[A U {u, z}], and let P be a hamiltonian path
of this tournament containing the arc a. If P ends at a vertex other than
z, then for any hamiltonian path Q of the subtournament induced on the
vertices not on P, PQ is a hamiltonian path of T containing a. On the
other hand, u has out-degree one in this subtournament, so if P ends at z
it must end with the arc uz. If o is not the arc uz, then we can remove
this arc from the end of P to obtain the path P’ ending at u. Then we
can choose a hamiltonian path Q of the subtournament induced on the
remaining vertices of T, that ends in T¢® at a vertex dominating z. We
then combine these paths to form P'Qz, a hamiltonian path of T containing
a. Finally, if @ = uz, then we can choose a hamiltonian path P’ of sz that
begins at a vertex dominated by z, and a path Q that includes all remaining
vertices of T, except u. Since the initial vertex of Q is not in Tz(l), uzP'Q
is a hamiltonian path of T' containing the arc . An identical argument in
the reversal of T establishes the corresponding result for T[B U {w, z}].

As both of the subtournaments T[4 U {u,2}] and T[B U {w, z}] are
strong, we can apply the induction hypothesis, and hence T[4 U {u, z}]
and T[B U {w, z}] have at most @+2)2"g(“+2)+3 and (b+2)2'g(b+2)+3 non-
traceable arcs, with equality if and only if each of these subtogn'nzaments
are isomorphic to Tj,ax. Summing these two values, we obtain “——"%‘—2.

Finally, by Corollary 3.2, there are at most XR(+D non graceable arcs
from A to B. Combining and observing that a + b < n — 3, the number of
non-traceable arcs in T is at most

a4+ -2 ab+a+b+1 (a2 + 2ab + b%) + 2(a + b)
+ -
8 4 8
_ (a+b)2+2(a+b)
- 8
< (n—3)2-§2(n—3)
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n?2—6n+9+2n—-6
- 8
n?—4n+3

8

IA

The proof is complete by noting that in the above equation, equality is
established if and only if n = a+b+3 and the subtournaments T[AU {u, z}}
and T[BU{w, z}] are both upset tournaments isomorphic to the appropriate
size Tmax. From this it follows directly that a and b are both odd, and hence
T also has odd order. Finally, the structure of T{AU{u, z}] and T[BU{w, z}|
guarantee that T is also an upset tournament and isomorphic to Tinax. O

Since a tournament of order n has "22' % arcs, this result shows that as
many as (Eﬁ)lA(T)I = (1 — €)|A(T)| arcs in a strong tournament can be
non-traceable.
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