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A )-fold triple system of order v, denoted T'Sx(v) is a collection B of 3-
subsets (called triples or blocks) from a v-set V, such that any|given pair
of elements in V lies in exactly A triples. A one-fold triple system is called
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Abstract

In this paper we investigate exhaustively the cyclically indecom-
posable triple systems TS\(v) for A=2,v <33 and A=3,v < 21
and we identify the decomposable ones. We also construct, by us-
ing Skolem-type and Rosa-type sequences, cyclically indecomposable
two-fold triple systems T'S2(v) for all admissible orders. Further, we
investigate exhaustively all cyclic T'S2(v) that are constructed by
Skolem-type and Rosa-type sequences up to v < 45 for indecompos-
ability.

Introduction

a Steiner triple system ST'S(v).

A T'Sx(v) is simple if it contains no repeated triples. A T'Sx(v) is cyclic,
CT S\ (v) if its automorphism group contains a v-cycle. A T'S)(v) is called
indecomposable if its block set B cannot be partitioned into sets B;,B; of
blocks to form T'Sy,(v) and T'S», (v), where A; + Ao = X with A;,A2 > 1.
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The constructions of triple systems with the properties cyclic, simple
and indecomposable, were studied by many researchers one property at
a time; for example, cyclic triple systems for all As were constructed by
Colbourn and Colbourn [11], simple for A = 2, by Stinson and Wallis [27].
Also, some of these properties were combined in studies; for example, in-
decomposable and simple for all A’s was studied by Archdeacon and Dinitz
(3], while Wang [28], constructed cyclic simple two-fold triple systems for
all admissible orders and Zhang [29] constructed indecomposable simple
(v, 3, A)-BIBDs (for v > 24X — 5).

When v = 0 (mod 3) a cyclic CT'S2(v) must contain each block in
the short orbit {0,v/3,2v/3} (mod v) twice. Provided that these are the
only occurrences of repeated blocks, we will consider the CT'S;(v) to be
simple. In [22], the second and third authors constructed cyclic, simple
and indecomposable two-fold triple systems for all admissible orders. They
also introduced the notion of cyclically indecomposable triple systems. A
CTS»(v) is called cyclically indecomposable if its block set B cannot be
partitioned into sets B;,B; of blocks to form CTS),(v) and CTS),(v),
where A\; + A2 = A, A, A2 > 1. In [14] the first author computed the
number of indecomposable non-isomorphic BIBD(v, k, ) for k < 5,v < 13
and A < 6.

In this paper, we investigate the cyclically indecomposable triple sys-
tems. We construct two-fold cyclically indecomposable triple systems,
CT'S;(v), for all admissible orders. We also check exhaustively the triple
systems CTSy(v) for A = 2, v < 33 and A = 3,v < 21 that are cycli-
cally indecomposable and we determine if they actually are decomposable
(to non cyclic) or not. The structure of some non-cyclic decompositions is
examined. In addition, we investigate exhaustively all CT'S>(v) that are
constructed by Skolem-type and Rosa-type sequences up to v < 45.

Up till now the only known examples for triple systems, that are cycli-
cally indecomposable but decomposable, was CT'S3(9). But we found many
new examples; the smallest for A = 3 is this CT'S3(15).

Example 1.1 The Base blocks are: {0,1,2}, {0,1,4}, {0,2,6}, {0,2,8},
{0,3,8}, {0,3,10}, {0,4,10} (modl5). This system can not be decom-
posed to two cyclic CTS(15)s but it can be decomposed to two non cyclic
sub-systems:

1) STS(15) : {0,1,2}, {3,4,5}, {6,7,8}, {9,10,11}, {12,13,14}, {2, 3,6},
{5,6,9}, {8,9,12}, {0,11,12}, {0,3,14}, {2,4,8}, {5,7,11}, {8,10,14},
{2,11,13}, {1,5,14}, {1,3,9}, {4,6,12}, {0,7,9}, {3,10,12}, {0,6,13},
{1,4,11}, {2,5,12}, {4,7,14}, {0,5,8}, {2,7,10}, {3,8,11}, {5,10,13},
{6,11,14}, {1,8,13}, {2,9,14}, {0,4,10}, {3,7,13}, {1,6,10}, {4,9,13},
{1,7,12}

2) T$(15) : {1,2,3}, {2,3,4}, {4,5,6}, {5,6,7}, {7,8,9}, {8,9,10},
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{10,11,12}, {11,12,13}, {0,13,14}, {0,1,14}, {0,1,4}, {1,2,5}, {3,4,7},
{4,5,8}, {6,7,10}, {7,8,11}, {9,10,13}, {10,11,14}, {1,12,13},
{2,13,14}, {0,2,6}, {1,3,7}, {3,5,9}, {4,6,10}, {6,8,12}, {7,9,13},
{0,9,11}, {1,10,12}, {3,12,14}, {0,4,13}, {0,2,8}, {2,4,10}, {3,5,11},
{5,7,13}, {6,8,14}, {1,8,10}, {2,9,11}, {4,11,13}, {5,12,14}, {1,7,14},
{0,3,8}, {1,4,9}, {2,5,10}, {3,6,11}, {4,7,12}, {5,8,13}, {6,9,14},
{0,7,10}, {1,8,11}, {2,9,12}, {3,10,13}, {4,11,14}, {0,5,12}, {1,6,13},
{2,7,14}, {0,3,10}, {3,6,13}, {1,6,9}, {4,9,12}, {0,7,12}, {1,5,11},
{2,6,12}, {4,8,14}, {0,5,9}, {2,7,11}, {3,8,12}, {5,10,14}, {0,6,11},
{2,8,13}, {3,9,14}.

In 1957, T. Skolem [26] , when studying Steiner triple systems, con-
sidered the possibility of distributing the numbers 1,2,...,27 in n pairs
(ar,b,) such that b, —a, = r for r = 1,2,...,n. For example, for n = 4,
the pairs (1, 2), (5, 7), (3, 6), and (4, 8) will be such a partition. Later, this
partition was written as a sequence; the previous partition can be written
as 1,1,3,4,2,3,2,4, which is now known as a Skolem sequence of order 4.

Formally, a Skolem sequence of order n is a sequence S =
(81,82, ..-,82,) Of 2n integers that satisfy the following conditions:

(1) Forevery k € {1,2,...,n} there exist exactly two elements s;, 3; such
that s; = s; = k.

(2) Ifsi=sj=k,i<j,thenj—i=k.

An extended Skolem sequence of order n is a sequence ES =
(s1,82,...,82n+1) Of 2n + 1 integers that satisfy conditions (1), (2), and:

(3) There is exactly one i € {1,...,2n + 1} such that s; = 0.

The s; = 0 is also known as the hook (*) of the sequence, if s, = 0,
then the sequence is called a hooked Skolem sequence. If s,,; = 0, for
n =0,3( mod 4) then the sequence is called a Rosa sequence and if sp41 =
San+1 =0, for n = 1,2( mod 4) then the sequence is called a hooked Rosa
sequence. It is known that the necessary conditions for the existence of
{(hooked) (extended) Skolem sequences are sufficient and also for (hooked)
Rosa sequences.

Theorem 1.2 [Skolem] [26] A Skolem seguence of order n ezists if
and only if n =0,1( mod 4).

[O’Keefe] [19] A hooked Skolem sequence of order n exzists if and only
ifn=2,3( mod 4).

[Abrham & Kotzig][2] An extended Skolem sequence of order n exists
for alln.
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[Baker] [5] An extended Skolem sequence of order n erists for all posi-
tions i of the hook, if and only ifi is odd and n = 0,1( mod 4) or i is even
andn = 2,3( mod 4).

[Rosa] [24] A Rosa sequence of order n ezists if and only if n = 0, 3(
mod 4) and a hooked Rosa sequence of order n erists if and onlyifn=1,2(
mod 4).

The existence of a (hooked) Skolem sequence of order n implies the
existence of a cyclic STS(6n + 1) [8,12], and the existence of a (hooked)
Rosa sequence implies the existence of a cyclic STS(6n + 3) [24].

For example, the extended Skolem sequence (or Rosa sequence)

of order 4; 1,1,3,4,0,3,2,4,2 gives rise to the pairs (ap,b.),r =
1,...,4,{(1,2),(7,9),
(3,6), (4,8)} which gives the base blocks {0,,b; +4} (or {0, a; +4, b; +4}),
i =1,...,4({0,1,6}, {0,2,13},{0, 3,10}, {0,4,12})( mod 27). With the
addition of the base block {0,9,18})( mod 27), we get the base blocks of
an STS(27).

An m-fold Skolem sequence of order n is a sequence mS =
(51,52, ..,52mn) with the following condition:

(1)' For every k € {1,2,...,n} there exist m disjoint pairs (3, + k), 3,1+
ke {1,...,2mn} such that s; = s;,x = k.

An m-fold estended Skolem sequence of order n is a sequence mES =
(81,82,...,82mn+1) with property (1), as well as the condition (2) there
exists exactly one s; = 0,1 < i < 2mn + 1. If sy, = 0, the extended
sequence is called an m-fold hooked Skolem sequence.

In [4], [5], it is shown that the necessary conditions are sufficient for the
existence of m-fold (hooked) (extended) Skolem sequences.

Theorem 1.3 An m-fold Skolem sequence of order n exists if and only if
(1) n=0,1( mod 4), or
(2) n =2,3( mod 4) and m even,

and a hooked m-fold Skolem sequence of order n exists if and only if n = 2
or 3( mod 4) and m is odd.

Theorem 1.4 Let m,n,k be positive integers. There exists an ertended
m-fold Skolem sequence of order n with s; = 0 if and only if one of the
Jollowing conditions hold:

(1) n =0 or 1( mod 4), and k is odd;
(2) n =2 or 3( mod 4), m is even and k is odd;
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(8) n =2 or 3( mod 4),m is odd and k is even.

For example, 2,3,2,2,3,2,1,1, , 1,1,3 is a 2-fold Skolem sequence
of order 3 and 2,2,2,2,2,0,2,1,1,1,1,1,1 is a 3-fold extended Skolem
sequence of order 2.

A sequence 2T = (3,3, ..., t4n+2) is & two-fold Rosa sequence of order n if:
i) for every k € {1,2,...,n} there exist 2 disjoint pairs (i,i + k), where
t,i+ke€{l,2,..4n+2}, such that ¢t; = ¢,y = k.

ii) tnt1 = l3nt2 = 0.

In [8) it was shown that:

Theorem 1.5 There erists a two-fold Rosa sequence of order n if and only
ifn>2

A Langford sequence of order n and defect d is a sequence L =
(11,12, ..., I25) of 2n integers satisfying the conditions:
1) for every k € {d,d + 1,...,d + n — 1} there exist exactly two elements
l,',lj € L such that [; = lj =k,
2)ifli=1;=ki<j thenj—-i=k.
The extended Langford sequences are defined in a similar manner to that of
the extended Skolem sequences. For more details about (extended) Lang-
ford sequences the reader may consult [6, 10].

2 Constructing Simple Two-Fold Triple Sys-
tems

We will use the following constructions for CT'S»(v) from Skolem sequences:

Construction 2.1 (Rees, Shalaby, Sharary, [23]) Let 28§ =
(s1,82,...,84n) be a two-fold Skolem sequence of order n. Then the
set of triples {{0,7,b, + n},{0,r,dr + n} : 7 = 1,2...,n} form the base
blocks for a CTS3(6n + 1) (where as usual (a,,b,) and (c,,d;) are the
pairs of positions in 28 for which b, —a, =d, — ¢, =r,r =1,2,...,n).

Construction 2.2 (Rees, Shalaby, Sharary, [28]) Let 2T =
(t1,t2,...,tant+2) be a two-fold Rosa sequence of order n. (In partic-
ular, tay1 = tang2 = 0). The set of triples {{0,r,b, + n},{0,7,d, +n} :
r = 1,2...,n} form the base blocks for a cyclic two-fold 3-GDD of type
32"+1 (whose groups are given by {0,2n + 1,4n + 2}( mod 6n + 3)) which
in turn gives rise to a CT'Sy(6n + 3). (Again (a,,b,) and (c,,d,) are the
pairs of positions in 2T for which by —a, =d, — ¢, = 1,7 =1,2,...,n).
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Construction 2.3 (Rees, Shalaby, [22]) Let S = (s1,82,...,52,) be a
Skolem sequence of order n and let {(a,,b,) : v = 1,2,...,n} be the pairs
of positions in S for which b, — a, = r. Then the set {r,a, + n,b, + n}
partitions the set {1,2,...,3n} into n triples (a,b,c) such that a + b = ¢(
mod 3n+1). Hence the set of triples {{0,r,b,+n} : 7 = 1,2...,n} form the
base blocks for a cyclic two-fold triple system CTS2(3n +1). For ezample,

n=1 11 (1,2,3)= {0,1,3}( mod 4)
n=4 11342324 (1,5,6) (2,9,11) (3,7,10) (4,8,12)
= {0,1,6} {0,2,11} {0,3,10} {0,4,12} ( mod 13)

Construction 2.4 (Rees, Shalaby [29] Let T = (t1,t2,...,tn41) be a
Rosa sequence of order n. (In particular, t,, = 0), and let {(ar,b,)}
be the set of positions in T for which b, —a, =r,r =1,2,...,n. Then the
set {r,a,+n+1,b.+n+1} partitions the set {1,2,...,3n+2}\{n+1,2n+2}
into n triples (a,b,c) such that a +b = ¢( mod 3n + 3). Hence the set of
triples {{0,7,b, + n+ 1} : 7 =1,2...,n} form the base blocks for a cyclic
two-fold 3-GDD of type 3"*! (whose groups are given by {0,n+1,2n +2}(
mod 3n + 3)) which in turn gives rise to a CTSy(3n + 3). For example,

n=3 1130232 (1,5,6) (2,9,11)(3,7,10)
= {0,1,6} {0,2,11} {0, 3,10} (with 2 copies of {0,4,8}) ( mod 12)
Theorem 2.5 (Rees, Shalaby (22])
(i) The CTS-;(v)s produced by. Constructions 2.1 and 2.8 are simple.
(it) The GDDs produced by Constructions 2.2 and 2.4 are simple.

3 Cyclically Indecomposable Two-Fold
Triple Systems

We will make use of the following results.

Lemma 3.1 (Rees, Shalaby [22]) If 25 = (s1,52,...,54n) 15 a two-fold
Skolem sequence of order n and the pairs (a,,by),(cr,d,) contain among
them a pair (z,yr) where T, + y, = 4n + 1 then the corresponding
CTSy(6n + 1) (arising out of Construction 2.1) is indecomposable.

Lemma 3.2 (Rees, Shalaby [22]) If 2T = (t1,t2,...,tan+2) is a two-fold
Rosa sequence of order n and the pairs (a,, b.), (¢r,d,) contain among them
a pair (z,,y,) where z, +y, = 4n+3 then the corresponding CTSy(6n+ 3)
(arising out of Construction 2.2) is indecomposable.

108



Lemma 3.3 (Rees, Shalaby [22]) If S = (s1,82,...,824) i3 a Skolem se-
quence of order n in which sgn—1 = 82n = 1, then the corresponding
CTS3(3n + 1) (arising out of Construction 2.3) is indecomposable.

Lemma 3.4 (Rees, Shalaby [22]) If T = (t1,%2,...,t2n4+1) i @ Rosa se-
quence of order n in which t2, = tan41 = 1, then the corresponding
CTS;(3n + 3) (arising out of Construction 2.4) is indecomposable.

When discussing cyclic m-fold triple systems, there is a weaker notion of
indecomposability that is sometimes useful to consider. We defined in the
introduction a cyclic m-fold triple system to be cyclically indecomposable if
it does not contain a cyclic m’-fold triple system for any 0 < m’ < m. In our
context, where m = 2, a two-fold cyclic triple system CTSz(v) is cyclically
indecomposable if it does not contain a cyclic STS(v) as a subsystem (the
complement of which would of course be a second cyclic ST'S(v)).

Thus, let 25 = (s1, 82, - .-, 84n) be a two-fold Skolem sequence of order
n and suppose that we can write 25 as a vector sum 2S5 = §; + S of
sequences Sy = (s},83,...,84,),S2 = (s3,8%,...,52,), (whence 25 = (s} +
s?,s3 + s3,...,s}, + s3,), each one of which satisfies the following two
properties:

(1) For each k € {1,2,...,n} there are exactly two elements s{, s§ € Sa
such that s =sf =kandj—i=k.

(2) For each 1 < i < 2n exactly one of s{, s, _;,, is equal to 0.

Among the pairs {a, b.), (¢, d,) arising from 2S5 via Construction 2.1 we
choose only those pairs that correspond to non-zero entries in S;. Since
there are 2n non-zero entries in S; we will therefore have a set of n difference
triples, each of the form (r,a, +n,b, +n) or (6n+1—r,d, +n,c-+n), over
Zgn+1- Now because of Property (1), it follows that for each k = 1,2,...,n,
exactly one of k,6n + 1 — k will appear as a difference among these n
difference triples, and because of Property (2), the same will be true for each
k=n+1,n+2,...,3n. Therefore, the set {{0,r,y. +n}:r=1,2,...,n}
of base blocks arising out of these n difference triples will generate a cyclic
ST S(6n+ 1), whence the CT'S,(6n + 1) arising from the original sequence
28S is cyclically decomposable.

On the other hand, suppose that we have a two-fold Skolem sequence
25 = (s1,82,...,84n) where the CT'S3(6n + 1) arising via Construction
2.1 is cyclically decomposable, that is, contains a cyclic STS(6n + 1) as a
subsystem. Then among the 2n base blocks for the CTS2(6n + 1) there
are n of them which generate the cyclic STS(6n + 1); let these base blocks
be {0,7r,y, + n} for r =1,2,...,n. Then for each k = 1,2,..., 3n, exactly
one of k,6n + 1 — k will appear as a difference among the corresponding n
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difference triples, each of the form (r,a, +n,b. +n) or (6n+1 — r,d, +
n, ¢ +n). Now construct a sequence S; = (s},s3,...,sl,) as follows. For
each k = 1,2,...,n, if (k,ax +n, b +n) is one of the foregoing n difference
triples, then set s;, = s}, = k; otherwise (6n + 1 — k,dj. + n,cx + n) is
one of the n difference triples and we set s}, = s} = k. Set all remaining
s} equal to 0. Now S; clearly satisfies Property (1) above. With regards
to Property (2), suppose that s} = k for some 1 < i < 2n. Then the
difference i+n appears among the n difference triples, whence the difference
67+ 1 — (i + n) = 5n — i + 1 does not. Hence s},_,,, = 0. On the other
hand, if s} = 0, then the difference i + n does not appear among the n
difference triples and so the difference 6n + 1 — (i + n) = 5n — i + 1 must
so appear, whence s}, _;., =k € {1,2,...,n}. Thus S; satisfies Property
(2) above. Now let S, be the vector difference S, = S — S;. Then we have
S = 81 + S where each S, satisfies Properties (1) and (2) above. The
foregoing discussion now gives us the following.

Theorem 3.5 Let 2S = (s1,52,...,84n) be a two-fold Skolem sequence of
order n. Then the two-fold cyclic triple system CTSy(6n + 1), arising out
of Construction 2.1, is cyclically indecomposable if and only if 2S cannot
be written as a vector sum 25 = S) +S,, where each S, satisfies Properties
(1) and (2) above.

Theorem 3.5 has an obvious analogue for CT'Sz(6n + 3)s:

Theorem 3.6 Let 2T = (t1,12,...,t4n+2) be a two-fold Rosa sequence of
order n. Then the two-fold cyclic triple system CTS2(6n + 3), arising out
of Construction 2.2 is cyclically indecomposable if and only if 2T cannot be
written as a vector sum 2T = T 4+ T3, where each T, satisfies the following
two properties:

(1) For each k € {1,2,...,n} there are ezactly two elements 815 € Ty
such that tf =tf =k and j—i=k.

(2) t5i1 =18n42 =0 and, for eachi € {1,2,...,2n+ 1}\{n+ 1} ezactly
one of t7,tg .. 3 is equal to 0.

_Thus, for example, the two-fold Skolem sequences of order n > 2 con-
structed in [[23], Theorem 2.2] all give rise to cyclically indecomposable
two-fold triple systems of order 6n + 1:

Theorem 3.7 Letn > 2 and let 0, be the largest odd integer not exceeding
n and let E, be the largest even integer not exceeding n. Then let 25 =
(EnsEn — 2,...,4,2,Ep,2,4,...,E,,E, — 2,...,4,2,E,,2,4,...,E, —
2,0,,0, - 2,...,3,1,1,8,...,0, — 2,0,,0,,0, — 2,...,3,1,1,3,...,0, —
2,0n). Then 2S yields (via Construction 2.1) a cyclically indecomposable
two-fold cyclic triple system CTSy(6n + 1).
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Proof.

Suppose first that n is even, and that 25§ = §; + S2. Without loss of
generality, we may suppose that s} = E, = n and s},_,,l = n. But then
we would have s}, ., = s, =0and 83,1y, = 83, = 0, whence S,
will not contain 0, = n — 1, a contradiction. Hence 2S # S; + S2 and the
corresponding CT'S,(6n + 1) is cyclically indecomposable.

Now suppose that n is odd. If n = 3, then the corresponding sequence
is 28 =(2,2,2,2,3,1,1,3,3, 1,1, 3), which gives rise to an indecomposable
CTS2(19) (apply Lemma 3.1 with 2, = 6 and y; = 7) which is of course
cyclically indecomposable. For n > 5, we suppose that 28 = §; + Sa.
Without loss of generality, we may suppose that s] = E, = n — 1 and
sp =n—1. Now this forces sj,_141 = Sin = 0 and 83, ()11 = 5341 =0,
whence s}, =0and s},_; =0. Butthens}, 5..,=sl,, =E,-2=n-3
and s}m_“n_l)“ = s} = E, —2 = n—3. This means that S, must contain
all four copies of the number n — 3, a contradiction. Hence 2S # S; + S;
and again the corresponding CT'Sa(6n + 1) is cyclically indecomposable.

O

Remark 3.8 With regards n = 1 and 2 in relation to Theorem 8.7,
the only two-fold Skolem sequence of order 1 is (1111), which gives
rise to the cyclic CTSy(7) whose base blocks are {0,1,3} and {0,1,5},
each of which generates a (cyclic) STS(7). On the other hand, there
are two two-fold Skolem sequences of order 2, namely (11112222) and
(11222211). Now the CTS,(13) arising from (11112222) has as its base
blocks {0,1,4},{0,1,6},{0,2,9} and {0,2,10}, no pair of which generates
an STS(13); hence this CTS2(13) is cyclically indecomposable. But the
sequence (11222211) can be written as Sy + S2, where S; = (11202000)
and S» = (00020211) whence the corresponding CTS»(13) (whose base
blocks are {0,1,4}, {0,1,10},{0,2, 7}, and {0,2,8}) is cyclically decompos-
able into the two STS(13)s generated, respectively, by {{0,1,4},{0,2,7}}
and {{0,1,10}, {0, 2,8}}.

In a similar fashion, the two-fold Rosa sequences of order n > 3 con-
structed in [9, Theorem 3.4] all give rise to cyclically indecomposable two-
fold triple systems of order 6n + 3:

Theorem 3.9 (i) Let n be even, n > 4, and let 2T = (n — 1,n —
3...,3,1,13,....n-3,n-10,n,n—-2,...,4,2,n,2,4,...,n,n —
2,...,4,2,n,2,4,...,n—2,0,n-1,n-3,...,3,1,1,3,...,n—3,n—-1).
Then 2T yields (via Construction 2.2) a cyclically indecomposable
two-fold cyclic triple system CTSz(6n + 3).

(ii) Let n be odd, n > 3, and let 2T = (11202232330311) if
n = 3, 2T = (3113502325341154042524) if n = 5, 2T =
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(531135703523275641174606427246) if n = 7; if n = 1 ( mod 4)
andn 29, then take 2T = (n—2,n—4,...,1,1,3,...,n—=2,n,0,n —
4,n-2,n-8,n-86,...,[572325397],...,n—4,n-6,n,n—-2,n—1,n—

-3,...,4,1,1,n,4,6,...,n—1,0,n—-1,n-3,...,2,n,2,4,...,n — 1),
while if n = 3 ( mod 4) and n > 11, then take 2T to be the foregoing
sequence, with the subsequence [572325397] replaced by [793523275).
Then 2T yields (via Construction 2.2) a cyclically indecomposable
two-fold cyclic triple system CTS(6n + 3).

Proof.

(i) Suppose that 2T = T1 + T3. Without loss of generality, we may
suppose that t. , = t}, ., = n. But then t4"_(n 243 = ting1 =0
and t4n_(2n +2)+3 = tiny1 = 0; this means that Ty will not contain
n — 2, a contradiction. Hence 2T # T, + T; and the corresponding
CTS;(6n + 3) is cyclically indecomposable.

(ii) Let n > 7 and suppose that 2T = T} 4+ T5. Without loss of genera.hty,
we may suppose that t] =n—2, whereupon tins2 =0andsotl, .=
0. NOWt3n+3—0=>t3,,+1 —n-1=>t2n+2—n—l=>t2n+1 =0=
b3 = 0=t (nigps =tin =n -3t 3 =n-3=1t} =
0 = t}, = 0. Thus, we have t},,; = 0 and t} = 0, a contradiction.
Hence 2T # Ti +T> and the corresponding CT'S2(6n +3) is cyclically
indecomposable.

We leave the verification for n = 3 and n = 5 as an exercise for the
reader.

O

Remark 3.10 With regards n = 1 and 2 in relation to Theorem 3.9, there
is no two-fold Rosa sequence of order 1, while the only two-fold Rosa se-
quence of order 2 is (1102222011), and this sequence can be written as
Ty + T, where T) = (1102020000) and T> = (0000202011). The correspond-
ing CTSy(15) (whose base blocks are {0,1,4},{0, 1,12}, {0,2,8},{0,2,9},
and {0,5,10}, {0,5,10}) is therefore cyclically decomposable into the two
STS(15)s generated, respectively, by {{0,1,4},{0,2,8},{0,5,10}} and
{{0,1,12}, {0,2,9}, {0,5,10}}.

4 Cyclically indecomposable triple systems
that are decomposable

In this section, we will investigate exhaustively the decomposability of
CTS\(v) for A = 2,v < 33 and A = 3,v < 21. To do so, we need some
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more definitions. Let B = {b;, bz, b3} be a block. A translate B+1i,i € Z,
of B is the block B+ i = {by +1,b2 +%,b3 +i} mod v. In a CTS the set
of distinct translates forms a block orbit. An arbitrarily fixed block in a
block orbit is called a base block for this orbit. A base block B is canonical
if it is lexicographically smallest in its block orbit and is said to be short
if B+ i = B for some nonzero ¢ € Z,. To represent a CT'S it suffices to
list all its canonical base blocks. All blocks in one orbit provide the same
(multi) set of differences d(B) = {%(b2 —b1), £(bs —b1), (b3 —b2)} or, if B
is a short block d(B) = {%(b2 — b1)} = {£(v/3)}. Given a block B and an
integer w which is co-prime to v, we define w- B = {wb;, wbs, wbg} mod v.
Two CTS with block sets By, By are equivalent if there exist w, ¢ € Z,, such
that for each canonical base block B; € B; there is some canonical base
block B; € B, with w - By + i = Bs. Non-isomorphic CT'S are clearly in-
equivalent. Unfortunately, the converse is not true in general the smallest
known counterexample being a CT'S2(16), see Brand [7]. Under certain cir-
cumstances one can ensure that inequivalent CT'S are also non-isomorphic,
see Bays [6], Lambossy [17], Pélfy [20], Phelps [21] or Brand [8]. Although
these conditions do not apply for all orders v considered here, we use the
equivalence notation because this is computational less demanding as a
complete isomorphism test. A CTS is said to be canonical if its repre-
sentation by canonical base blocks is lexicographically smallest among the
representation of all CT'S in its equivalence class.

We start our investigations by determining a list with all inequivalent
CTSx(v), for A =2o0r 3, v =1,3 mod 6. Note, that CTSz(v),v = 0,4
mod 6 and CTS3(v),v =5 mod 6 also exist, but are trivially indecom-
posable as there is no STS(v) for v = 0,4,5 mod 6. The list is created
by a backtrack-algorithm, a search technique which builds up partial so-
lutions, exhaustively covering all possibilities in a systematic fashion. For
more information on search techniques used in design theory see for ex-
ample Colbourn [10], Gibbons [13] or Kreher and Stinson [16]. In our
problem the search space for the backtrack consists of all canonical base
blocks, and a partial CTS\(v) representation is a collection of canonical
base blocks with the additional property that every difference d € Z, \ {0}
occurs at most A times among the differences of the base blocks. A partial
CTS with canonical base block representation R is said to be proper if
R is lexicographically smallest among the partial CTS representations in
its equivalence class. The task of our enumeration problem is to find all
proper partial CT'S representations where every difference d occurs exactly
A times among the differences of the base blocks. Using this approach
we constructed all inequivalent, canonical CT'S)(v) for A = 2,v < 31 and
A = 3,v < 21. The number IECTS of inequivalent CTS(v) over Z, is
listed in Tables 1 and 2 and is the same as listed in [1, Table IV.10.79).

In a second step we try to (cyclically) decompose each constructed
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v 7 9 13 15 19 21 25 27 31
IECTS 2 0 9 9 201 175 19543 10841 2532755
IDCTS 0 0 6 5 161 109 18201 10320 2468671

CIDCTS 0 0 6 5 161 109 18201 10320 2468671

Table 1: Decomposability for CTSa(v) with v < 31

v 7 9 13 15 19 21
IECTS 3 4 47 421 13316 212968
IDCTS 1 1 24 355 8839 209825

CIDCTS 1 4 24 400 8840 202578

Table 2: Decomposability for CTS3(v) with v < 21

to deal with loops to obtain the number CIDCT'S of cyclically indecom-
posable CT'S. The results are displayed Tables 1 and 2.

The following observation was helpful to speed up the computations in
the case A = 2 and to get an additional result when v = 33.

Lemma 4.3 A CTSz(v) having a base block B those set of differences
d(B) contains a repeated difference d is indecomposable.

Proof.
As already mentioned, we only need to consider v =1,3 mod 6. Suppose
that B = {z,z+d,z +2d}, then B+d = {z+d,z +2d, z + 3d} contains a
common pair {z + d,z + 2d} with B. Thus, if B is colored red, then B +d
must be colored blue, B +2d red, B+ 3d blue again, and so forth. So for all
i € Z,, the blocks B+2id need to be colored red and the blocks B+ (2i+1)d
need to be colored blue, which is impossible as 2id and (2i + 1)d generate
the same orbit for oddv. O

In Table 3 we present the results where we only considered inequivalent
CT S2(v) without repeated differences (wRD) in the canonical base blocks.
In the case v = 33 we did not create all inequivalent CT'S, just those
without repeated differences so this value is missing in Table 1.

We remark that there is no cyclically indecomposable CTS>(v),v <
33 that is decomposable. But it is worth to notice that some cyclically
decomposable CT'S; also admit a non-cyclic decomposition.

Example 4.4 The CTS2(21) generated by the base blocks
{0,1,3},{0,1,9},
{0,2,5}, {0, 4,10}, {0, 4,12}, {0,5,15},{0,7,14},{0,7,14}  contains a
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v 7 9 13 15 19 21 25 27 31 33
IECTSwRD 2 0 7 8 116 118 11774 6257 1512940 1050764
IDCTSwRD 0 0 4 4 76 52 10432 5736 1448856 992656

CIDCTSwRD 0 0 4 4 76 52 10432 5736 1448856 992656

Table 3: Decomposability for CT'S>(v) without repeated differences with
v <33

cyclic sub-design with base blocks {0,1,3},{0,4,12},{0,5,15}, {0,7,14},
but also contains a non-cyclic triple system which can be
obtained by  developing the  following blocks +3 mod 21:
{0,1,3},{1,2,4}, {2,3,11},{0,2,5}, {2,6,12},

{0,4,12},{1,5,13},{1, 6,16}, {0, 7,14}, {1, 8,15}, {2,9, 16}.

Cyclically indecomposable CT'S3(v) that are decomposable exist for
v =29, 15, 19 or 21, but not for v = 7 or 13. Concerning the structure
of the decompositions we observe that most sub ST'S are generated +3
mod v. So the STS(15) in Example 1.1 can be represented by the blocks
{0,1,2},{2,3,6},
{2,4,8},{1,3,9},{1,4,11},{2,5,12},{0,4,10}, all remaining blocks are
formed by adding 3 modulo 15. On the other hand there are decompo-
sitions which are not that easy to generate.

Example 4.5 The CTS3(9) represented by base blocks {0,1,2}, {0,1,5},
{0,2,4},{0,3,6},{0,3,6},{0,3,6} can be decomposed into a STS(9) and
a TS3(9) in the following way. For the STS(9) take blocks {0,1,2},
{3,5,7}, {6,4,8}, {0,7,8}, {2,3,4}, {1,5,6}, {0,4,5}, {3,1,8}, {6,2,7},
{0,3,6}, {1,4,7}, {2,5,8}, which are not closed under addition with
+3 mod 9. But note that there is also a cyclic sub Steiner triple
system of the CTS3(9) which is generated by developing the blocks
{0,1,2},{2,3,7},{2,4,6},{0,3,6}, {1,4,7}, {2,5,8} +3 mod 9 (the last
3 blocks are short blocks).

With the examples above in mind one might ask whether for all decom-
posable CT'S3(v) there is a decomposition generated +3 mod v. This is
not the case as the unique cyclically indecomposable, but decomposable
CTS53(19) shows.

Example 4.6 The CTS3(19) represented by base blocks {0,1,2}, {0,1,8},
{0,2,4}, {0,3,6}, {0,3,11}, {0,4,10}, {0,4,13}, {0,5,10}, {0,5,12}
contains the following sub STS(9) : {0, 1,2}, {0,17,18}, {2, 3,4}, {4,5,6},
{6,7,8}, {8,9,10}, {10,11,12}, {12,13,14}, {14,15,16}, {5,16,17},
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{1,3,5}, {1,16,18}, {5,7,9}, {9,11,13}, {13,15,17}, {1,4,17}, {4,7,10},
{5,8,11}, {10,13,16}, {11,14,17}, {0,3,11}, {0,8,16}, {1,9,12},
{2,5,13}, {2,10,18}, {3,6,14}, {4,12,15}, {6,9,17}, {7,15,18},
{1,10,14}, {2,6,12}, {2,8,17}, {2,11,15}, {3,7,13}, {3,9, 18}, {3,12,16},
{4,8,14}, {5,14,18}, {8,12,18}, {0,4,13}, {0,6,10}, {0,9,15}, {1,7,11},
{1,6,15}, {2,7,16}, {5,10,15}, {6,11,16}, {7,12,17}, {0,5,12}, {0,7,14},
{1,8,13)}, {2,9,14}, {3,8,15}, {3,10,17}, {4,9,16}, {4,11,18}, {6,13,18}.

5 Cyclically indecomposable two-fold triple
systems constructed from Skolem-type and
Rosa-type sequences

We also investigated exhaustively all CT'S;(v) that are constructed by
Skolem-type and Rosa-type sequences up to v < 45 for indecomposabil-
ity. All Skolem and Rosa sequences used are constructed by Churchill and
Shalaby [9], the listings of the sequences are available from the authors
upon request. The number of sequences considered are presented in the
Appendix in Tables 8 and 9.

We form with Constructions 2.1 to 2.4 for each given sequence the
corresponding CT'S;(v). Following Lemma 4.3 we only need to do this for
CT S,(v) without repeated differences in some base block. T'wo-fold Skolem
and Rosa sequences which provide base blocks with repeated differences are
characterized by Lemma 3.1 and 3.2. We generalize Lemma 3.3 and 3.4 to
identify all Skolem and Rosa sequences which would give base blocks with
repeated differences.

Lemma 5.1 1. If S = (s1,82,...,82n) i3 a Skolem sequence of order n
in which si =2n+1 -1 for somen+1<i<2n or s; = Spy1-i =
n+1-2i for some 1 < i < n/2, then the corresponding CTS2(3n+1)
(arising out of Construction 2.8) is indecomposable.

2. If T = (t1,ta,-..,ton41) 15 a Rosa segquence of order n in which t; =
n+2—1forsomen+2<i<2n+lorti=tpp1—i=n+1-2i
for some 1 < i < n/f2, then the corresponding CTS>(3n + 3) (arising
out of Construction 2.4) is indecomposable.

Proof.

If s; = 2n+1—i for some n+1 < i < 2n, then Construction 2.3 provides the
base block {0,2n+1—1i,i+n} with difference set {+(2n+1—1i), £(i+n) =
F(@2n +1 —i),+(n + 1 — 24)} that contains d = 2n + 1 — i twice. If
Si = Spy1-i = n+ 1 — 2i for some 1 < i < n/2, then the base block
{0,n+ 1 —2i,2n + 1 — i} providing differences {£+(n + 1 — 2i), £(2n+1 —
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2 3 4 5 6 7
13 19 25 31 37 43
3 12 186 3212 79238 2770026
2 8 146 2992 74916 2692464
2 8 146 2992 74916 2692464

n
v
No. CTS from 2-Skolem seq.
Indecomposable
Cyclically indecomposable

corlam

Table 4: CTS2(v) with v < 43 constructed from two-fold Skolem sequences
(Construction 2.1)

n 2 3 4 5 6 7

v 15 21 27 33 39 45
No. of CTS from 2-Rosaseq. 1 8 50 912 22286 782374
Indecomposable 0 4 44 802 21258 764196
Cyclically indecomposable 0 4 44 802 21258 764196

Table 5: CTS2(v) with v < 45 constructed from two-fold Rosa sequences
(Construction 2.2)

i), x(—n —i) = £(2n + 1 — i)} is obtained from Construction 2.3. Again,
difference d = 2n + 1 — i is repeated. Similarly, Construction 2.4 provides
repeated difference d = 2n+2—i ift; = 2n+2—i for some n+2 <i < 2n+1
ort; =tpy1-i =n+1—2i for some 1 <i < n/2. It is a short exercise to
check that other repeated differences can not occur. [

The CTS2(v) obtained are treated as described in the previous section
in order to decide (cyclically) decomposability. The results are presented
in Tables 4 to 7.

n 4 5 8 9 12 13

v 13 16 25 28 37 40
No. CTS from Skolemseq. 6 10 504 2656 455936 3040560
6
6

Indecomposable 10 481 2656 452123 3040560
Cyclically indecomposable 10 481 2656 452123 3040560

Table 6: CTSa(v) with v < 40 constructed from Skolem sequences (Con-
struction 2.3)
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7 8 11 12
15 24 27 36 39

n 3 4
2 5
2 44 260 33104 203712
2
2

v

No. of CTS from Rosa seq. 2
Indecomposable 2
Cyclically indecomposable 2

—

44 251 33104 202415
44 251 33104 202415

Table 7: CT'S(v) with v < 39 constructed from Rosa sequences (Construc-
tion 2.4)

Order Number of Skolem sequences Number of Rosa sequences

1 1 0

2 0 0

3 0 2

4 6 2

5 10 0

6 0 0

7 0 44

8 504 260
9 2656 0
10 0 0
11 0 33104
12 455936 203712
13 3040560 0

Table 8: Number of Skolem and Rosa sequences of order n < 13

6 Appendix

We give listings of small orders of (2-fold) Skolem and Rosa sequences and

present in Tables 8 and 9 the number of distinct sequences of small order.
Listings of small orders of Skolem sequences:

n= 4: 11423243; 11342324; 41134232; 23243114; 42324311; 34232411

n= 5: 1152423543; 1134532425; 4115423253; 5113453242; 4511435232;

2325341154; 2423543115; 3523245114; 5242354311; 3453242511

Listings of small orders of Rosa sequences:

n= 3: 1130232; 2320311

n=4: 113403242; 242304311

Listings of small orders of 2-fold Skolem sequences

n=1: 1111

n=2: 11112222; 11222211, 22221111

n=3: 111123233232; 113113232232; 112322323113; 112323323211;
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Order Number of 2-fold Skolem seq. Number of 2-fold Rosa seq.

1 1 0

2 3 1

3 12 8

4 186 50

5 3212 912

6 79238 22286
7 2770026 782374
8 127860956 36649766
9 > 5000000000

Table 9: Number of 2-fold Skolem and 2-fold Rosa sequences of order n < 9

311311232232; 311331132222; 311322223113; 311323223211; 222231133113;
232232113113; 232232311311; 232332321111

Listings of small orders of 2-fold Rosa sequences

n=2: 1102222011

n= 3 23203112320311; 23203111130232; 23203311320211;
11302322320311; 11302321130232; 11303323220211; 11202311330232;
11202232330311

7 Conclusion

In this paper we investigated CT'S»(v) for the properties of being indecom-
posable or cyclically indecomposable. On first inspection it seems that for
A = 2 all cyclically indecomposable CTS are also indecomposable. So it
would be of interest to either find a CTS;(v) which is cyclically indecom-
posable but decomposable or to prove that this is impossible. For A = 3
we are interested in the spectrum of those integers v for which there exists
a cyclically indecomposable but decomposable CT'S3(v).
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