Clique algorithms for finding
substructures in generalized
quadrangles

Miroslava Cimrékova, Veerle Fack*
Research Group Combinatorial Algorithms and Algorithmic Graph Theory!
Department of Applied Mathematics and Computer Science,
Ghent University, Krijgslaan 281-S9, B-8000 Ghent, Belgium,
Miroslava.CajkovaQUGent.be, Veerle.FackdUGent.be

Abstract

The search for special substructures in combinatorial objects that
have a lot of symmetry, such as searching for maximal partial ovoids
or spreads in generalized quadrangles, can often be translated to a
well-known algorithmic problem, such as a maximum clique problem
in a graph. These problems are typically NP-hard. However, using
standard backtracking strategies together with pruning techniques
based on problem specific properties, it is possible to obtain non-
trivial results which are mathematically interesting. In some cases
also heuristic techniques can lead to interesting results. In this pa-
per we describe some techniques as well as new results obtained for
maximal partial ovoids and spreads in generalized quadrangles.

1 Preliminaries

We denote an undirected graph by G = (V,E), where V is the set of
vertices and E is the set of edges. Two vertices are said to be adjacent
if they are connected by an edge. A clique is a set of pairwise adjacent
vertices; an independent set is a set of pairwise non-adjacent vertices. A
clique in a graph G is an independent set in its complement G. A mazimal
clique is a clique that is not contained in a larger clique. A mazimum
cligue is a clique of maximum cardinality in the graph. Maximal and
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maximum independent sets are defined similarly. The algorithmic problems
of searching for maximum cliques or independent sets are well known to be
NP-hard [8].

A (finite) generalized quadrangle (GQ) is an incidence structure S =
(P, B,I), in which P and B are disjoint (non-empty) sets of objects, called
points and lines respectively, and for which I is a point-line incidence re-
lation satisfying the following axioms: (i) each point is incident with ¢ + 1
lines (¢ > 1) and two distinct points are incident with at most one line;
(ii) each line is incident with s + 1 points (s > 1) and two distinct lines
are incident with at most one point; (iii) if x is a point and L is a line
not incident with z, then there is a unique pair (y, M) € P x B for which
zIM1IyIL. For the theory of generalized quadrangles we refer to [18].

The integers s and t are the parameters of the generalized quadrangle S,
which is said to have order (s,t); if s = ¢, S is said to have order s. Gen-
eralized quadrangles with s > 1 and ¢ > 1 are called thick. Interchanging
points and lines in S yields a generalized quadrangle SP of order (¢, s),
which is called the dual of S.

Two points z and y of P are called collinear (z ~ y) if there is a line L
in B incident with both. Dually, two lines L and M are called concurrent
if there is a point z in P incident with both. For z € P denote z+ = {y €
P ||y ~ z} and note that z € z1. The trace of a pair (z, y) of distinct points
is defined as z- Ny and is denoted by {z,y}+. We get |{z,y}t|=s+1
or t + 1 according to = ~ y or = y. More generally, if A4 is an arbitrary
subset of P, we define AL as A+ = N{z* || z € A}. For z # y the span of
the pair (z,y) is defined as {z,y}** = {u € P ||u€ 2%, Vz e zL nyt}).
The pair of points (z,y) is called regular if z ~ y,  # y, or if z » y and
{z,y}++| =t + 1. The point z is regular provided (z,y) is regular for all
yeEPy#uz

An ovoid of S is a set O of points of P such that each line of B is incident
with a unique point of O. Equivalently, an ovoid is a set of st + 1 pairwise
non-collinear points. A partial ovoid (sometimes also called cap) is a set
of points of P such that each line of B is incident with at most one point
of O, i.e. a set of pairwise non-collinear points. Dually, a spread of S is a
set R of lines of B such that each point of P is incident with a unique line
of R or, equivalently, a set of st+ 1 pairwise non-concurrent lines; note that
a spread partitions the point set into classes of collinear points. A partial
spread of S is a set R of lines of B such that each point of P is incident
with at most one line of R, i.e. a set of pairwise non-concurrent lines. A
(partial) spread in S is a (partial) ovoid in SP. A partial ovoid (or spread)
is called mazimal or complete if it is not contained in a larger partial ovoid
(or spread). Two (partial) ovoids (or spreads) are called equivalent if there
is an automorphism of S that transforms one into the other.

With a generalized quadrangle S a so-called collinearity graph or point
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graph Gs can be associated as follows: the points of P correspond to the
vertices of Gs and two vertices are adjacent if and only if the corresponding
points are collinear. The graph Gg is a strongly regular graph with param-
etersv =(s+1)(st+1), k=s(t+1), A=s-1, u =1t + 1. Considering
the point graph, an ovoid of S is a maximum independent set of size st +1
in Gg, or equivalently, a maximum clique in its complement Gs. A spread
of S is a maximum independent set of size st + 1 in the collinearity graph
Ggp of SP. Maximal partial ovoids and spreads are maximal independent
sets in Gs or Ggop.

In this paper we present algorithms for finding a largest maximal partial
ovoid or spread in a generalized quadrangle, for exploring the spectrum of
sizes for which maximal partial ovoids or spreads exist, and for classifying
up to equivalence all maximal partial ovoids or spreads of a certain size in
a generalized quadrangle. Results will be given for some of the classical
generalized quadrangles (with g a power of a prime):

The quadrics Q(4,9) and Q(5,9): Let Q(4,q) resp. @~ (5,4) be a non-
singular quadric of projective index 1 in the projective space PG(4, q)
resp. PG(5,q). Then the points of the quadric together with the
lines of the quadric form a generalized quadrangle with parameters
(s,t) = (q, q) resp. (q,q>). Every Q(4,q) has ovoids; for g even it has
spreads and for q odd it does not. Q~(5,q) always has spreads, but
it never has ovoids.

The symplectic generalized quadrangle W(q): The points of PG(3, g),
together with the totally isotropic lines with respect to a symplec-
tic polarity, form a generalized quadrangle with parameters (s,t) =
(q,9). Note that W (q) is isomorphic to the dual of Q(4,g). Moreover
Q(4,q), or W(q), is selfdual iff g is even. W(q) has ovoids for g even
and has no ovoids for ¢ odd; it always has spreads.

The Hermitian varieties H(3,q%) and H(4,¢?): Let H be a nonsingu-
lar Hermitian variety of the projective space PG(3, ¢?) resp. PG(4, ¢3).
Then the points of H together with the lines on H form a general-
ized quadrangle with parameters (s,t) = (g2, q) resp. (¢%,¢°). Note
that H(3,q?) is isomorphic to the dual of Q~(5,q). H(3,q%) has
ovoids and has no spreads. H(4, ¢?) has no ovoids and H(4, 4) has no
spreads [3). Whether H(4,¢?) has spreads for ¢ > 2 is still an open
problem.

The paper is organized as follows. Section 2 describes exhaustive search
algorithms, where we use standard clique searching algorithms and add
pruning strategies based on specific properties of the generalized quadran-
gle. This approach leads to exact answers concerning e.g. the size of the
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largest maximal partial ovoid or spread, or the classification of all maximal
partial ovoids and spreads of a given size. Another approach, described in
Section 3, is based on heuristic techniques and turns out to be very effec-
tive for exploring the spectrum of sizes for which maximal partial ovoids
or spreads exist. In Section 4 we illustrate the effect of the proposed tech-
niques and present some results obtained by our computer searches. These
include new exact values improving on earlier theoretical bounds for the
size of the largest maximal partial ovoids and spreads, as well as their com-
plete classification up to equivalence, and new values for the spectra of sizes
for which maximal partial ovoids and spreads exist.

2 Exhaustive search algorithms

2.1 Standard backtracking and pruning methods

The basic form of most published algorithms (e.g. [4]) for the maximal
or maximum clique problem is a backtracking search which tries in every
recursion step to extend a partial clique by adding the vertices of a set A
of allowed remaining vertices in a systematic way. When reaching a point
where the set A is empty, a new maximal clique has been found.

Pruning strategies are used to avoid going through every single clique
of the graph. Typically this consists in a bounding function which gives an
upper bound on the number of vertices that can still be added to the current
partial clique. E.g. when searching for maximum cliques, a straightforward
idea is to backtrack when the set A becomes so small that even if all its
vertices could be added to form a clique, the size of that clique would not
exceed the size of the largest clique found so far; in that case the bound is
simply |A|. Other pruning strategies involve vertex colorings. In a vertex
coloring adjacent vertices must be assigned different colors, so if a graph
or an induced subgraph can be colored with ¢ colors, then the graph or
subgraph cannot contain a clique of size ¢ + 1; in this case the bound is
the number of colors used to color the vertices of A. In practice a fixed
coloring of the original graph is used, since determining a coloring for the
induced subgraph (A) each time usually is too expensive.

Recently Ostergard [17] presented a new maximum clique algorithm
that allows to introduce a new pruning strategy. Let v1,v2,...,U, be an
ordering of the vertices of the graph, let S; = {v;,...,v,} and let ¢(3)
denote the size of the largest clique in S;. For any 1 < i < n — 1, either
¢(é) = e(i+1) or ¢(i) = ¢(i+1) + 1. Moreover c(i) = c(i+1) +1 if and only
if there is a clique of size ¢(¢ + 1) +1 in S; that contains v;. The algorithm
starts with ¢(n) = 1 and computes ¢(é), i = n —1,...,1 by searching for
such a clique. Finally the size of a maximum clique is given by c(1). The
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values of c(i) can be used for pruning the search as follows. Searching for a
clique of size larger than s, the search can be pruned if j + ¢(¢) < s, where
7 denotes the size of the current partial clique and ¢ is the index of the next
vertex v; to be added to the current partial clique.

Next to these standard clique finding algorithms we can use additional
pruning strategies which take into account the special structure of the
collinearity graph or the incidence structure of a generalized quadrangle.
The rest of this section will discuss such specific techniques.

2.2 Isomorph rejection

Since the classical generalized quadrangles have automorphism groups that
act transitively on the pairs of non-collinear points, every (partial) ovoid
is equivalent to a (partial) ovoid containing a given pair of non-collinear
points. Hence in the clique finding algorithm we can restrict the search to
cliques containing a certain fixed edge. This reduces the search space with
a factor of O(vk'’), where v = (s + 1)(st + 1) is the number of points of S
and k' = s%t is the number of points not collinear with an arbitrary point.
In some cases it is possible to fix even more pairwise adjacent vertices,
e.g. for the generalized quadrangle @~ (5,q) 3 vertices can be fixed. This
straightforward approach of fixing a certain number of vertices is already
a very effective way to reduce the search space.

More advanced isomorph-rejection techniques, such as the techniques
described in [22], allow to reduce the search space even further. Having
determined in a step of the search process the set stabilizer of the current
partial clique in the automorphism group of the quadrangle, it suffices to
try only one point of each orbit of the stabilizer for extending the current
partial clique in the next recursive steps instead of trying to add all vertices
of the allowed set. An existing software package, such as nauty [12], can
be used to compute the set stabilizer and its orbits.

2.3 Spread coloring

When using a coloring bound in a maximum clique algorithm, one is faced
with the problem that determining the chromatic number of a graph is
also an NP-hard problem. However, an upper bound for the chromatic
number can also be used as a coloring bound. Hence an approximation
algorithm, often a simple greedy algorithm, is used to obtain a reasonable
upper bound for the chromatic number. But in the case of generalized
quadrangles theoretical arguments lead to good — even optimal ~ colorings
for some types of generalized quadrangles.

For instance, classical constructions for ovoids in Q(4, g) are known [18].
Since Q(4, q) is isomorphic to the dual of W(g), the points of an ovoid
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in Q(4, g) correspond to the lines of a spread in W (g), hence to a partition-
ing of the vertices of Gw(q) into classes of pairwise non-adjacent vertices.
In other words, this is a partitioning of Gw(q) into color classes which can
be used for pruning in a maximum clique algorithm. It is obvious that
this construction uses st + 1 colors to color the graph. In the same way
a coloring with st + 1 colors for GQ (s, z) can be obtained from classical
constructions of ovoids in its dual H(3,¢*) [18].

It is easy to see that the obtained vertex coloring is optimal, i.e. uses
a minimum number of colors. This can be proven as follows. From the
geometry of the generalized quadrangles it follows that the points of a
line in the generalized quadrangle form a clique of maximum size in the
collinearity graph Gs. Indeed, the points of a line are pairwise collinear
and hence the corresponding vertices form a clique of size s+ 1, while a set
of more than s + 1 pairwise collinear points would require a triangle in the
generalized quadrangle, which is not allowed. Hence a color class in the
graph G5 has size at most s + 1. Since there are (s + 1)(st + 1) vertices,
at least st + 1 colors are needed to color Gs. The coloring obtained as
described above uses exactly this number of colors and thus is an optimal
coloring,.

2.4 Forcing vertices using look-ahead

In some situations the pruning in a clique finding algorithm in a collinear-
ity graph can be improved by using the information about the incidence
structure of the generalized quadrangle as well as the graph. For instance,
when classifying the ovoids in a generalized quadrangle or when checking
whether a generalized quadrangle has an ovoid, the following idea proves
to be useful. -

Consider a step in the recursive process where the current partial ovoid
gives rise to a line for which only one point still belongs to the allowed
set A. If that point is not added to the current partial ovoid, then the
resulting partial ovoid can never be extended to an ovoid, so we can prune
these possibilities and force the point to be added to the current partial
ovoid.

2.5 Pruning based on span and trace properties

The following theorem describes a relationship between an ovoid and the
trace and span of a regular pair of points in a generalized quadrangle of
order s.

Theorem 2.1 ([18]) Let S be a generalized quadrangle of order s, having
a regular pair (z,y) of non-collinear points. If O is an ovoid of S, then
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0N {z,y}+4], 10N {=,y}*| € {0,2}, and |O N ({z,y}* U {z,y}*)| = 2.
If the GQ S of order s, s # 1, contains an ovoid O and a regular point z
not on O, then s is even.

Note that the classical generalized quadrangle W(g), with g even, satisfies
these conditions. Moreover, all points of W(q), g even, are regular.

For a generalized quadrangle satisfying the conditions of Theorem 2.1,
the following observations can be used to prune a recursive process classi-
fying all ovoids. Consider a step in the recursive process. Let A denote the
set of allowed points in this step. Let y denote the point which is added
to the current partial ovoid in this step. Let O’ denote the current partial
ovoid in this step (after adding y), which will be completed to an ovoid O.
Then:

1.ST If there is a point ¢ € (0, such that (z,y) is a regular pair, then we
already have |@' N {z,y}**| = 2 (since z,y € O'). Hence, no other
points from {z,y}** can be used to extend ¢ to an ovoid and we
can prune these possibilities from A.

2.ST If there is a point = € A, such that (z,y) is a regular pair, we proceed
as follows. Since y € O, we have |0 N {z,y}*| = 0, implicating
by Theorem 2.1 that |O N {z,y}**| = 2. Since y € {z,y}'*, two
possibilities remain.

(a) If |O' N {z,y}*+t| = 2, then it can never be extended to an
ovoid by points from {z,y}**. We can prune these possibilities
from A.

(b) Suppose now that @’ U {z,y}** = {y}. Let A’ = An{z,y}*+*.
Assume |A’| = 1. If this single point in A’ is not added to ¢,
then the resulting partial ovoid can never be extended to an
ovoid, so we can force the point to be added to O'.

3.ST If there are two points x,2z € A, such that (z, z) is a regular pair of
non-collinear points, then |0 N {z, z}+*| € {0,2}. We count now the
points of @ contained in {z,z}11. There are three possible cases.

(2) If |0’ N {z, 2}11| = 2, then we conclude, as above, that O’ can
never be extended by points from {z,z}*+, so we can prune
these possibilities from A.

(b) If |O' N {z,z}**| = 1, then |[O N {z,2}*++| = 2. Let A’ =
AN {z,z}*+L. As above, if |A'| = 1, then its single point must
be forced to be added to O'.

(c) Suppose |0’ N{z,z}++| = 0. Denote A, ). = AN{z,2}* and
A{z'z};; = An{z, Z}'L'L. If |A{,,z).1.| = 1, then ¢¥ can never be
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extended by the single point of A{z,z}+ and we can prune this
possibility. If Az ;)+| = 0 and |A{; )21 = 2, then the two
points of Ay, ;)11 are forced to be added to the current partial
ovoid.

3 Non-exhaustive search algorithms

3.1 Heuristic completion strategies

A simple greedy algorithm builds a maximal clique step by step by adding
vertices from a set of allowed vertices until this set is empty.

Several strategies are possible for choosing a vertex to be added in
each step. For instance, adding the vertex that leaves the largest number
of vertices in the allowed set will tend to build large maximal cliques. A
similar strategy, which is inspired by the pruning strategies using colorings,
consists of adding the vertex that leaves the largest number of colors in the
allowed set for the next step; this also results in large maximal cliques. On
the other hand, choosing the vertex that leaves the least number of vertices
or the least number of colors in the set of allowed vertices, is expected to
result in small maximal cliques.

Starting from a maximal clique obtained by one of the above approaches,
a simple restart strategy removes some of the vertices of the clique and
again adds vertices until the clique is maximal. Both the removing and the
adding can be done either randomly or following one of the above heuristics.

3.2 Limited discrepancy search

For cases where exhaustive search is computationally unfeasible, a tech-
nique called limited discrepancy search (LDS), introduced in [10], can be
used to perform a partial exploration of the search space based on a heuris-
tic. The main idea behind LDS is that only a few of the decisions made by
the heuristic are “wrong” in the search for a largest (resp. smallest) clique.
For a solution tree of height d there are only d ways in which the heuristic
could make one wrong decision and (:) ways it could make k. If k is small, a
large (resp. small) clique can be found by systematically searching all paths
in the solution tree that differ from the heuristic path in at most k decision
points or discrepancies. LDS is a backtracking algorithm that searches the
nodes of the solution tree in increasing order of such discrepancies.
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4 Results

In this section we present results obtained by computer searches imple-
menting the techniques described in Sections 2 and 3. All our programs
are written in Java and call nauty [12] using the Java Native Interface
(JNI) for the isomorph pruning. The timing results are obtained on a
1.6Ghz Pentium processor running Linux.

4.1 Effect of forcing vertices using look-ahead

In Tables 1 and 2 we illustrate the effect of forcing vertices when classifying
all non-equivalent ovoids or spreads in a generalized quadrangle or when
proving that no ovoid or spread exists. We give timings for versions of
the program with and without isomorph pruning, and also versions of the
program with and without a final filtering of the generated ovoids in order
to obtain only the non-equivalent ovoids. For each quadrangle we also give
the order |G| of its collinearity graph, the running times of the different
versions and the number #O of ovoids obtained.

We present results for ovoids in the smallest cases of Q(4, g) and H(3, ¢3),
which are known to have ovoids, and for spreads in the case H(4,4) (i.e.
ovoids in H(4,4)?), which are known not to exist [3].

Complete classifications of the ovoids of Q(4,q) and H(3,4?) are not
yet known in general. Recently Ball et al [1] proved that, for ¢ prime,
Q(4,q) has a unique (up to equivalence) ovoid. For @Q(4,8) Penttila and
Praeger [20] proved that there are 2 non-equivalent ovoids; an earlier com-
puter classification was done by Fellegara (7] in 1962. Penttila and Royle [21]
proved by a computer classification that Q(4,9) has 2 non-equivalent ovoids.
Ovoids in @(4, 16) are elliptic quadrics, which was proved by O’Keefe and
Penttila by means of a computer classification [14] and two years later with-
out a computer [15]. In Q(4, 32) ovoids are either elliptic quadrics or Tits
ovoids, a result obtained by O’Keefe, Penttila and Royle [16] with the aid
of a computer. Recently Penttila [19] classified the ovoids in H(3,9) by a
computer search and found that there are 26 non-equivalent ovoids. The
results presented in Tables 1 and 2 confirm these earlier results.

From the Tables it is clear that the approach of forcing vertices is an
effective technique. Its effect is most notable when simply generating all
ovoids without isomorph pruning and without final equivalence check, as
can be seen in the first set of timing columns in Table 1. Of course, when a
large number of ovoids are generated (such as for Q(4,9) and H(3,9)), the
final equivalence check will account for most of the total running time, as
shown in the second set of columns of Table 1. When isomorph pruning is
used, there is still a considerable gain in time when generating the ovoids,
as can be seen in the first set of timing columns in Table 2. Again in
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some cases, e.g. H(3,9), most of the total running time is spent in the

final equivalence check, as can be seen in the second set of timing columns
in Table 2.

No final equivalence check With final equivalence check
Time Time

| GQ |Gl || No forcing | Forcing #O No forcing | Forcing | #0O
Q4,7 400 13 s 1s 21 16 s 4s 1
Q(4,8) 585 1722 s 93 s 532 1865 s 275 8 2
Q(4,9) 820 || 43355 5208 | 14796 588585 | 163908 | 2
(HB9) [ 280 933 s 93s [ 196992 || 49260s | 484358 | 26
[(H(4,4)D | 207 758 4s 0 - — -

Table 1: Effect of forcing vertices using look-ahead when searching
for all ovoids. No isomorph pruning is done.

No final equivalence check With final equivalence check
Time Time

GQ |G| No forcing | Forcing | #O ([ No forcing | Forcing | #0O
Q(4,8) 585 13s 3s 12 16 s 68 2
Q(4,9) 820 47 s 58 59 117 s 758 2
Q@4,11) | 1464 7 1725s | 5 7 17528 | 1
H(3,9) 280 6.1s 3.6s 783 225 s | 217s 26
H(4,4)0 | 207 665ms | 474ms | 0 - | - -

Table 2: Effect of forcing vertices using look-ahead when searching
for all ovoids. For the smaller cases isomorph pruning is done on

5 levels, for Q(4,11) and H(3,9) isomorph pruning is done on
7 levels.

4.2 Effect of span and trace pruning

In this section we present results of the three pruning techniques based on
span and trace properties from Section 2.5, for ovoids in W(g), for small
q even. Note that W(q) = Q(4, q) in these cases.

In Table 3 we compare the running time and number of recursive calls
(#c) of the different versions (1.ST, 2.ST and 3.ST) as well as a combination
of all three. For each quadrangle we also list the size |G| of its collinearity
graph. We conclude that, although the first technique is the least effective

regarding the number of recursive calls, it is the best one when comparing
the running time.
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T 1.ST 2.5T 3.5T all together
|Gl || Time #c | Time | #c | Time | #c | Time | #c
85 || 20 ms 7 | 20 ms 6|8ms| 7]8ms]| 5
585 || 1.2s 127 | 2.2s | 81 | 1155 | 66 | 808 | 47
6 | 4369 || 12h | 210° | >24h

=1 00] I

Table 3: Effect of span and trace pruning when searching for all
ovoids in W (g) without final equivalence check. Isomorph pruning
is done on 5 levels.

q | Iso. prun. Final equiv. ch. No ST With 1.ST | #0
8 No No s 578 532
Yes 180 s 110 8 2
Yes No 258 128 20
Yes 6.7 s 5.68 2
16 Yes No > 4 days 12h 8
Yes > 4 days 129 h 1

Table 4: Comparing timing results for W(8) and W(16).

In Table 4 we illustrate the effect of this first version (1.ST) when classi-
fying all non-equivalent ovoids in a generalized quadrangle. We give timings
for versions of the program with and without isomorph pruning, and also
versions of the program with and without a final filtering of the generated
ovoids in order to obtain only the non-equivalent ovoids. We also list the
number #O of ovoids obtained. We give comparisons only for two exam-
ples, W(8) and W(16). Note that the obtained results confirm the earlier
results described in Section 4.1. The running time for ¢ < 8 is too small to
generalize. The generalized quadrangle W(32) with its 33825 vertices is too
large for our computer search. Nevertheless it is clear that the approach of
span and trace pruning is an effective technique.

4.3 Largest maximal partial ovoids

In Table 5 we present some new results obtained by the exhaustive search
algorithms and pruning techniques described in Section 2. For some gen-
eralized quadrangles which are known not to have ovoids we determined
the size of the largest maximal partial ovoid, as well as a complete classifi-
cation of all non-equivalent partial ovoids of that size. For the considered
quadrangles theoretical upper bounds for the size of a partial ovoid are
known (see [6] for a detailed discussion of these bounds), but in all cases
the value found by our computer search improves on the best known theo-
retical bound.
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For each quadrangle Table 5 lists the parameters (s, t), the order |G| of
the corresponding collinearity graph, the value of st + 1 (which would be
the size of the ovoid) and the value of the best known theoretical upper
bound for the size of a maximal partial ovoid . We present the exact value
for the size |(¥'| of the largest partial ovoid or spread found by the program,
as well as the number #0O’ of non-equivalent largest partial ovoids.

| GQ (s,t) [IG] |st+1 | bound [ O] #0"]
W (5) (5,5) | 156 | 26 | 21[23] | 18
W (7) (7,;7) 1400 [ 50 |[437[23] | 33
Q (5,4 [(416) [ 325 65 |37[2] | 25
H(4,4) [(48 165 33 [25(13] | 21
HA4,497 1 (84) [297] 33 [32[3] | 29

D= =N

Table 5: Largest maximal partial ovoids in some generalized quad-
rangles, obtained by exhaustive search.

4.4 Maximal partial ovoids and spreads in H(4,4?%)

In this section we present some new results, found by exhaustive and heuris-
tic searches, for maximal partial ovoids and spreads in the Hermitian variety
H(4,q%). As mentioned before, H(4, g?) is known to have no ovoids, while
the question whether it has spreads remains open, except for the smallest
case H(4,4) [3].

For the size of a maximal partial ovoid in H (4, ¢%) there are theoretical
upper bounds by Moorhouse and by Govaerts:

Theorem 4.1 (Moorhouse {13]) If K is a k-cap of a Hermitian variety
in PG(n, ¢%), with ¢ = p" and p prime, then

2 2
k< [(p+n— 1) _ (p+n—2)
n n
Theorem 4.2 (Govaerts [9])) If O' is a partial ovoid of H(4,q%), then
10| < ¢ — (4¢ - 1)/3.

h
+ 1

A lower bound for the size of a maximal partial ovoid in H(4,¢?) is
given by Hirschfeld and Korchméros:

Theorem 4.3 (Hirschfeld and Korchmadros [11]) The size k of a com-
plete cap of a Hermitian variety U, in PG(n, ¢®) satisfies k > ¢* + 1.

140



[ GQ |G| LB | UB | Spectrum found
H@44) | 165 | 5 | 2 | 9,11..17,19,21
H(4,9) 2440 10 | 201 | 28,31,34..97,99..100,105

H(4,16) | 17425 | 17 | 577 | 65,69,73,77,81,85..287,289

Table 6: Spectrum of sizes for maximal partial ovoids of H (4, ¢?),
for small values of g, obtained by exhaustive and/or heuristic
search.

GQ | IG] | st+1 | Spectrum found
H(4,4) 297 33 11,15..29
H(4,9) 6832 244 86,88..162
H(4,16) | 66625 | 1025 | 308,307..494

Table 7: Spectrum of sizes for maximal partial spreads of H (4, ¢2),
for small values of g, obtained by exhaustive and/or heuristic
search.

Hirschfeld and Korchmaéros also construct a complete cap of size g3 + 1 for
any q, which is currently the smallest known complete cap of the Hermitian
variety:

Theorem 4.4 (Hirschfeld and Korchmadros [11]) Let a be a plane of
PG(n, g%) which meets the Hermitian variety Uy, in an non-degenerate Her-
mitian curve Up. Then Uy is a complete cap of Uy of size ¢° + 1.

To the best of our knowledge, no theoretical bounds for the size of
maximal partial spreads in H (4, ¢%) are known.

In Table 6 we give results for maximal partial ovoids in H(4,¢?), while
Table 7 gives results for maximal partial spreads in H(4,g?). Recall that
a (partial) spread in H(4,4¢?) is a (partial) ovoid in H(4,¢%)?. For each
value of ¢ we give the order |G| of the corresponding collinearity graph.
Also listed are the values of the best known lower (LB) and upper (UB)
bound for the size of maximal partial ovoids in H(4,¢?), resp. the value
of st + 1 which would be the size of a spread in H(4,q?). Finally the last
column lists the sizes for which our program found maximal partial ovoids,
resp. spreads, of that given size. The notation a..b means that for all values
in the interval [a, b] a maximal partial ovoid or spread of that size has been
found.

For H(4,4) the largest values found are indeed the size of the largest
maximal partial ovoid, resp. spread; this was confirmed by exhaustive
search, as described above. Exhaustive search also shows that the max-
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imal partial ovoid of size 21 in H(4,4) is unique up to equivalence, while
H (4, 4) has 6 non-equivalent maximal partial spreads of size 29.

Moreover, for maximal partial ovoids in H(4,4), we confirmed by ex-
haustive search that the spectrum found is complete, i.e. exhaustive search
confirmed that no maximal partial ovoids with size less than 9, or with
sizes 10, 18 or 20 exist.

For maximal partial spreads in H(4,4), we confirmed by exhaustive
search that no maximal partial spreads with size less than 11 exist; for
sizes 12, 13, 14 it remains open whether such maximal partial spreads
exist.

Our searches confirm the existence of maximal partial ovoids of size ¢3+
1 in H(4,¢?), for small q. No maximal partial ovoids with size smaller than
g®+1 were found, and for ¢ = 2 exhaustive search excludes the existence of
maximal partial ovoids with size smaller than ¢% + 1 = 9. We also observe
the existence of maximal partial ovoids of size ¢® + 1 + iq for small values
ofi > 1.

For results on other generalized quadrangles, obtained by exhaustive
and heuristic searches, we refer to [5| and [6).
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