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Abstract

In this paper we first present new proofs, much shorter and much
simpler than can be found elsewhere, of two facts about Hypercubes:
that for the d-dimensional Hypercube, there exists sets of paths by
which any permutation routing task may be accomplished in at most
2d — 1 steps without queueing and, when d is even, there exists an
edge decomposition of the Hypercube into precisely d/2 edge-disjoint
Hamiltonian cycles. The permutation routing paths are computed
off-line. Whether or not these paths may be computed by an on-
line parallel algorithm in O(d)-time has long been an open question.
We conclude by speculating on whether the use of a Hamiltonian
decomposition of the Hypercube might lead to such an algorithm.

1 Introduction

The great importance of the Hypercube as an interconnection network for
parallel computers has stimulated a great deal of research into its structural
properties [7] and its ability to support efficient parallel routing algorithms.
Routing issues are reviewed in [6, 9] and we outline these in Section 4.
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Some current proofs of hypercubic properties and related algorithmics are,
however, in a form that begs refinement and simplification. For example,
the fact that the d-dimensional Hypercube has sets of paths by which any
permutation routing task may be accomplished in at most 2d — 1 steps
without queueing is normally established by a lengthy proof involving the
Benes network (e.g. in [9]). In Section 2 we show that a much simpler and
direct proof of this fact is possible.

The problem of permutation routing on an interconnection network is
the problem of sending one (constant length) message from each processor
(Hypercube node) in such a way that each processor receives one message.
In any one instance, the initial address and final address of the messages
define a permutation of the node labels and an algorithm should work for
any permutation. The algorithm we describe in Section 2 is determines,
off-line, which set of paths may be used for any prescribed permutation.
Vécking [13] recently introduced faster routing algorithms, however, these
are randomised algorithms whereas our algorithm is deterministic.

Similarly, it seems to be well-known fact that every Hypercube with even
degree has an exact decomposition into edge-disjoint Hamiltonian cycles.
There does not appear, however, to be an ezplicit proof of this fact in the
literature. The fact does follow from the consideration of the Hamiltonian
decomposition of general graphs [1). These considerations are far more
complicated that they need to be for the special case of Hypercubes.

In Section 3 we describe a proof, specifically tailored to Hypercubes of
even degree, that an edge-disjoint Hamiltonian decomposition is possible.
In Section 4, we speculate on how such a decomposition of the Hypercube
might be employed to provide an improved on-line deterministic algorithm
for the permutation routing problem.

Recall that a Hypercube is a graph with n = 2% nodes, where d is a non-
negative integer called the dimension of the Hypercube. If the nodes are
labeled in binary from 0 to n — 1, then there is an edge between two nodes
if and only if their labels differ in precisely one binary bit. If an edge joins
two nodes whose addresses differ in their i*® bit, then the edge is said to
belong to the it* dimension. We consider the edges of the Hypercube to be
bi-directional, such that two messages may be swapped between adjacent
nodes in one parallel step.

2 Permutation Routing on the Hypercube

In this section we provide a simple proof of the following theorem.

Theorem 1 For any one-to-one mapping of n=2¢ (constant length) inputs
to n outputs on a d-dimensional Hypercube, all of the n inputs can be routed
in parallel to their destinations in at most 2d — 1 steps without queueing.
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Proof The proof is by induction on the dimension d of the Hypercube.
When d = 1 the Hypercube consists of a single edge which connects two
processor sites. In this case at most one routing step is required to deliver
the messages and so we have a basis for our induction.

For the induction Hypothesis, assume that the theorem is true for all
Hypercubes with dimension less than d > 1. We now prove the inductive
step that the theorem must also be true for the Hypercube Hy of dimension
d. We consider Hy as two copies of Hy_; connected by edges of the d**
dimension. Figure 1 illustrates this. Each node is also associated with a
package to be routed (in general) to another node. If we suppress the deh
bit of both the node and destination addresses of the packages, we see that
for each binary address from 0 to (n/2) — 1, Hy has exactly two nodes
with identical addresses (one at either end of an edge of dimension d) and
two packages with identical destination addresses. We now show, by the
following off-line computation, that in one parallel step and using only edges
of the d** dimension, we can route all packages so that each copy of Hy—
contains exactly one package with any one destination address.

Figure 1: H; represented as two copies of Hg_1

Let (m;, m;) represent an edge of the d** dimension where the left node
of this edge contains a package with destination address m; and the right
node contains a package addressed to m;, where 7 and j represent addresses.
Notice that ¢ and j are not necessarily distinct. Consider every edge of the
dt® dimension, for which ¢ and j are distinct, in the following sequence. Let
the first edge be (m;, m;). Now choose the next edge to be the other edge
containing m;, within our notation this will be either (m;, m) or (m, m;).
In the former case leave packages where they are and in the latter case swap
the messages.
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The subsequence of edges chosen is now ((m;,m;), (mj,mg)). If i = k,
we choose a new edge arbitrarily and start a new subsequence otherwise we
continue the current subsequence by considering the other edge containing
my in the same way that the edge (m;, m;) was considered. In this way,
after all edges have been considered, we will have ensured that each copy
of Hy_; contains exactly one package with any one destination address and
we will have achieved our objective.

In one parallel routing step we have now reduced our initial problem to
two smaller instances of the permutation routing problem on Hypercubes
of dimension d — 1. By the inductive hypothesis, these problems can be
solved in 2(d — 1) — 1 parallel steps. After their solution, we now simply
restore the d** bit of the node and destination addresses. Now any package
will be either at its destination or at the node adjacent to its destination
along the edge of dimension d. Thus after one more parallel routing step
every message will be at its destination.

The total number of parallel routing steps for any permutation routing
problem on Hj is therefore 1 + (2(d — 1) — 1) + 1 which is 2d — 1. This
completes the proof of the number of steps claimed by the algorithm. Since
each routing step consists of a number of (parallel) package swaps on edges
forming a subset of a perfect matching of Hy, it follows that no queueing
will occur when routing packages in parallel to the destinations. m]

Baumslag and Annexstein (3], also give a similar proof that, for all
Cartesian product networks, any permutation routing task can be achieved
in at most 2d-1 steps without queueing. Since the Hypercube is also a
Cartesian product network, their proof also applies to Hypercubes. We
still believe, however, that for the specific case of Hypercubes, our proof is
simpler and may be more suitable in pedagogic settings.

3 Hamiltonian Decomposition of Hypercubes

In this section we prove that, for even d, there exists a decomposition of
H, into d/2 edge-disjoint Hamiltonian cycles. That this is true follows
from general results on Hamiltonian decomposition of graphs and involves
extended and unnecessarily tedious proofs (see {1, 2, 5]) for the Hypercube.
A direct short proof for Hypercubes has not previously appeared in the
literature. Theorem 2 contains our proof which proceeds by induction on
the dimension of the Hypercube. Before presenting that theorem, we need
to establish Lemmas 1 and 2.

The Cartesian product G x G of two graphs G = v, E) and G =
(V',E') is defined to be the graph with vertex set V(G) x V(G') and with
an edge between (z;,y;) and (z;,y;) whenever (z; = z; and (vi,y;) € E')
or (y; = y; and (zi,z;) € E).
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Lemma 1 and Lemma 2 are simplifications of two results of Kotzig (8]
and in what follows C,, denotes the cycle of length n.

Lemma 1 For even m and n, the edge set of the Cartesian product of Cp,
and Cy, can be partitioned into two edge disjoint Hamiltonian cycles.

Proof The proof is by induction on the cycle lengths. We take the basis
for the induction to be C4 x Cy4. This decomposition is shown in Figure 2.

X

Figure 2: Decomposition of Cy x C; into two Hamiltonian cycles

Inductively assume that G = Cpr—2 x C, can be decomposed into two
Hamiltonian cycles, C! and C2. We now show that G’ = Cr, X C, can
be decomposed into two Hamiltonian cycles, C!" and C?. Let V(G) =
{vijl1 <i<n,1<j<m—2}and V(G') = {y] J|1<'¢<'n,l<g<m}
G consists of an n x (m — 2) grid of vertices. Each row of m — 2 vertices
is exactly one copy of Cr,—2 and each column of n vertices is exactly one
copy of C,, (see Figure 3).

1 2 3 o3 »2

Figure 3: Cn—2 X Cp,
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G’ can be generated by removing the edges (Vi m—3 , ¥i,m—2) in each of
the cycles of Cr_2 in G. Insert two new copies of C, into this space and
label the columns j’ and j”. Now replace the missing edges to complete
the cycles.

For each edge that was removed from each copy of C,_2, add the edges
(vi;m-3 , vijv) and (v;j» , vim-2). Now connect each pair of these added
edges in the following way. If there has been an edge removed on row ¢ and
an edge removed on row ¢ + 1, then connect the two new edges on row i
by adding an edge from (v; ;s , v;j~). Otherwise continue to add edges of
the form (v, , vi41,57) and (v; j# , vig1,5#) (read all values of i modulo n)
until the row 7 + = has a removed edge where an edge (vz—1,j7 , Vz—-1,~)
is added to complete the cycle. This can be illustrated as follows.

=3 3' 3* m=2 =3 3¢ 1° m-2

Figure 4: Extending a cycle of C,,_2 x C, to give a cycle of C, x C,,

The result is the two Hamiltonian cycles of Cy,, x C,, as required. m]
In fact the Cartesian product of C,, and C, is decomposable into two

Hamiltonian cycles whatever the positive integer values of m and = [2, 5.

For our purposes, we need only establish the Lemma for m and n even.

Lemma 2 The Cartesian product of a graph G (which is decomposable into
2 Hemiltonian cycles) and a single cycle is decomposable into 3 Hamiltonian
cycles.

Proof This proof is a simplification of that found in [2] and proceeds by
induction on the number of edges in the cycles. As a basis for our induction
we use the Cartesian product of Hy (decomposed into two cycles) and the
single cycle Cy4. Figure 5 shows how Hy can be decomposed into two edge
disjoint Hamiltonian cycles [5)].
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Figure 5: Edge decomposition of Hy into two Hamiltonian cycles

the Cartesian product of Hy x Cy is

Using this decomposition of Hy,

illustrated in Figure 6.

Figure 6: The Cartesian product of H; x Cj

The blue edges represent copies of one of the cycles in Hy, and the red

edges represent the other cycle. The dashed edges are copies of Cjy.

The first step is to number the vertices of H, around one of the cycles
from 1 to 16 starting at some arbitrary point (see Figure 5). The cycle that

remains has two vertices connected to the node labeled ‘1’.

vertices a and b, where a < b. In the example, a

Name these

6 and b = 12.

151



Construct a Hamiltonian cycle of Hg in the following way.

e Make 4 copies of the unnumbered cycle Hy (call them A, B, C, D)

¢ Remove the edges (1, a) from each copy A, B, C, D

o Remove the edges (1, b) from each copy except the first and the last
e Add the edges (Al, B1), (B1, C1), (C1, D1)

e Add the edges (Aa, Ba) , (Bb, Cb) , (Ca, Da)

The notation (A1,B1) represents an edge between vertex 1 in graph A
and vertex 1 in graph B. The resulting graph is a cycle and looks as follows:

Figure 7: A complete cycle

Then remove this complete cycle from the graph product. The rest of
the graph product consists of a grid of sixteen columns of four vertices and
is shown in Figure 8.

A
B
el
Bt a b 16

Figure 8: Remainder of graph product with one cycle removed
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The next step is to remove columns of four vertices from the remainder
of the graph product (two columns at time) in such a way to ensure: (3
the value of a is reduced to 4; (i) the value of b is reduced to 6; and (i)
the length of the product graph is reduced to total of 8 vertices.

The node that is labeled ‘1’ was chosen arbitrarily. Consider the binary
representation of the nodes of the Hypercube. The chosen node can, with-
out loss of generality, represent node 0000. This node in Hy is connected
to four other nodes, namely 0001, 0010, 0100 and 1000. Choosing any pair
of these nodes to be connected to node 0000 to form a cycle, 00601 and 1000
say, leaves the other pair to form the other cycle. The minimum distance
between any 2 of these four nodes is two. The numbering of one of these
cycles from 1, 2, ..., 16, gives minimum and maximum values for the nodes
a and b.

One cycle is of the form 0000, 0001, ..., 1000. This is the cycle that
is numbered 1, 2, ..., 16. In order to connect 0001 to 0100 or 0010 the
minimum distance is two, so the minimum value of a is 4. Node b is
represented by 0100 or 0010 also, which must be of minimum distance 2
from 1000 which gives b a maximum value of 14. The convention of naming
a and b such that a < b means that if the maximum value of b is 14, then
the maximum value of a is 12 and if the minimum value of a is 4 then the
minimum value of b is 6.

This also shows that the values of a and b must always be even. As the
nodes labeled 2 and 16 are represented by even numbers and to connect
either of these two nodes to either of the two other possible a and b nodes,
must involve a distance which is even, means that the values of a and b
must always be even.

By removing numbers of copies of Cj in pairs from between any number
of the following locations: (i) 1 and a; (ié) @ and b; and (i) b and 16, it is
always possible to reach the base case where a = 4, b = 6 and the length
of the graph product is 8.

In the example, the values of a and b are 6 and 12 respectively, therefore
removing the dashed columns in Figure 9 will produce the desired result.

AT 0004111
non nononon non
TV I 1V 1 '
B el o000 alel
el 1 181
111 ™rT T 110
c FET Al Alatat et Al
It A1) T 1!
"ol 1
b s SEBBEE D b o
1 a b 16

Figure 9: Remainder of graph product with one cycle removed
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Observe how the removal of these edges does not affect the cycle already
constructed and also the connecting edges to vertices a and b. Shrink the
remaining edges to generate the graph shown in Figure 10. This graph can
be decomposed into the 2 cycles as shown.

Figure 10: The base case

These two cycles can be extended to the original size of the product of
Hy4 x Cy4 by replacing the same number of columns in the graph that were
removed and returning them to the places that they were taken from. The
method of extending the cycles is the same as that shown for Lemma, 1.
The resulting 2 cycles and the cycle constructed by the method above are
the three Hamiltonian cycles of Hy x Cy.

For any graph G which is decomposable into two cycles, the method
of construction of the first cycle in the product G x C4 remains the same.
When considering the specific case that G is the edge disjoint union of two
Hamiltonian cycles from a Hypercube, the base case that is used for the
construction of the first cycle in the product graph is always attainable due
to the connectivity of the Hypercube described earlier.

Assume that G x C;,—2 can be decomposed into three Hamiltonian cycles
(where G is decomposable into two Hamiltonian cycles). G x C, can be
decomposed into three Hamiltonian cycles. The principle is the same as
that for the base case, except that now, when the first cycle has been
constructed and removed, and the remainder of the graph product reduced,
the resulting graph is shown by Figure 11 and can be decomposed into the
cycles as shown.
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Figure 11: Remove dashed edges to reduce graph product

The vertices between 2 and n—1 can be constructed from multiple copies
of the rows z and y and their incident edges giving products of cycles of
any even length > 4. ]

Theorem 2 The 2d-dimensional Hypercube is decomposable into d edge-
disjoint Hamiltonian cycles.

Proof The proof is by induction on d. As the basis for our inductive
proof we choose d = 2 or d = 3, then Hy and Hg are decomposable into two
and three edge disjoint Hamiltonian cycles respectively as we have already
shown. We assume that the theorem holds for all dimensions less than
2d > 6, and prove the theorem holds for Hoy. We represent the Hypercube
Hjs; in the following way:

Hy x H) where d is even or Hyy1 X Hy—; where d is odd.

In both cases Hyy is the Cartesian product of two smaller Hypercubes
of even dimension. By the induction hypothesis, this satisfies the theorem
and these Hypercubes have Hamiltonian decompositions. In the first case,
where d is even, Hy can be represented as C* |J, C2), ... U, C% and H|
can be represented as C'! |J, C"2|, .. .|J, C'% where C* or C" represents
a Hamiltonian cycle of Hy or H} respectively, and | J, represents the edge
disjoint union of cycles.
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Hjg can therefore be expressed in the following way
€' xehJezx e J...| et x o).

Each term is the Cartesian product of two cycles and from Lemma 1,
each of these gives two Hamiltonian cycles of Hoq4 giving a total of % x2=d
cycles.

In the second case, where d is odd, H4—; can be represented as

ctJer(J...lJecs
e e e
and Hgy1 can be represented as
ctje?| ... | Jjo=t | ot
Yo yYety

where C* represents a Hamiltonian cycle of Hy_; and C" represents a
Hamiltonian cycle of Hyy1. Hagq can therefore be expressed as follows.

ctxemJexe?) .. | JeF x| e T x (¢ F | o' F).

The first % terms are the Cartesian product of two cycles, each giving
two Hamiltonian cycles of Hoq, and the final term is the Cartesian product
of a single cycle and the edge disjoint union of two Hamiltonian cycles which,
by Lemma 2, gives us the remaining three Hamiltonian cycles giving a total
of (d—;—" x 2) + 3 = d cycles and so theorem follows. o

4 Open Problems

A lower bound for the running time of permutation routing algorithms on
the Hypercube is O(logn), provided by the diameter of the network. It
is not known at present whether there exists a distributed O(logn)-time
deterministic algorithm for permutation routing on the Hypercube. That
O(log n)-time permutation routing is at all possible was discovered around
1980. The celebrated two-phase randomised routing approach was first
conceived by Valiant and developed by Valiant and Brebner [10, 11, 12].

As far as deterministic permutation routing is concerned, at least for
all practical purposes, the best known algorithms run in O(log? n) time.
Several such algorithms are based upon simulations of the classical sorters
of Batcher including, for example, the bitonic sorter.
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At this time, the fastest known deterministic algorithm for permutation
routing on the Hypercube is due to Cypher and Plaxton [4] which runs
in O(log n(loglogn)?) time or O(logn(loglogn)) time with a substantial
amount of off-line computation. Asymptotically, this is an improvement
over the the O(log?n) algorithms already mentioned, however, because of
the large constants hidden by the notation, Cypher and Plaxton’s algorithm
only becomes competitive for Hypercubes of dimension greater than 20.
The algorithm is extremely intricate but is well described in [9].

There is a continuing strong interest to answer the difficult question
whether an O(logn) time deterministic algorithm exists for permutation
routing on the Hypercube. It is interesting to observe that no impediment
arises from the need to have O(log n) length paths for any permutation such
that, in any given parallel routing step, no two messages occupy the same
edge. Such path scts are established by the off-line algorithm described in
Section 2. It is interesting to ask, as seems likely, whether such sets of paths
might also be established through defining (in each instance) a sequence of
O(d) (directed) Hamiltonian circuits by which, in any one time step, all
messages are sent along one out-edge defined by the circuit. This is dual
to the notion of using edges of matchings which is what the sets of paths
defined by the algorithm of Section 2 employs.

If such sets of paths can be defined in this way, it is then an intriguing
question as to whether the d/2 edge-disjoint Hamiltonian circuits, given
by a decomposition such as that described in Section 3, is a rich enough
set to provide this. There are, of course, an exponentially large number of
different Hamiltonian circuits in any Hypercube, but such a set is likely to
provide too rich a selection for our problem. Notice that the decomposition
into Hamiltonian circuits of Section 3 provides an element of choice in what
Hamiltonian Circuits appear in the decomposition and this selection might
usefully be driven by the particular (permutation) routing problem in hand.

It is likely that the open problems just described will have not too
difficult positive resolutions for permutation routing. If this is so, we will
then be left to resolve the perhaps more difficult questions as to whether
they have on-line O(d) distributed implementations.

We believe that this paper, apart from presenting new short proofs
of hypercubic properties (which will no doubt be of especial benefit in
pedagogic situations), poses some interesting lines of research in terms of
the questions just posed. Such questions can, of course, be easily extended
to more general routing problems (i.e. other than permutation problems)
on the Hypercube.

157



References

(1] B. Alspach, J.C. Bermond and D. Sotteau. Decomposition Into Cycles
I: Hamilton Decompositions. Technical Report TR 8712, Department
of Mathematics and Statistics, Simon Fraser University, Canada, 1987.

(2] J. Aubert and B. Schneider. Decomposition de la Somme Cartisienne
d’un Cycle et de I'union de Deux Cycles Hamiltoniens en Cycles Hamil-
toniens. Discrete Mathematics, 38:7-16, 1982.

[3] M. Baumslag and F. Annexstein. A Unified Framework for Off-Line
Permutation Routing in Parallel Networks. Mathematical Systems
Theory, 24:233-251, 1991.

[4] R. Cypher and C.G. Plaxton. Deterministic Sorting in Nearly Loga-
rithmic Time on the Hypercube and Related Computers. Proceedings
of the 22"¢ ACM STOC, 193-203, 1990.

(5] M.F. Foregger. Hamiltonian Decompositions of Products of Cycles.
Discrete Mathematics, 24:251-260, 1978.

(6] A. Gibbons and P. Spirakis (editors). Lectures on Parallel Computa-
tion. Cambridge International Series on Parallel Computation, Volume
4, Cambridge University Press, 2005.

[7] F. Harary, J.P. Hayes and H.J. Wu. A Survey of the Theory of
Hypercube Graphs. Computers and Mathematics with Applications,
15(4):277-289, 1988.

[8] A. Kotzig. Every Cartesian Product of two Circuits is Decompos-
able into two Hamiltonian Circuits. Technical report 233, Centre de
Recherches Mathematique, Montreal, 1973.

[9] F.T. Leighton. Introduction to Parallel Algorithms and Architectures:
Arrays, Trees and Hypercubes. Morgan Kaufmann, 1992.

(10] L. G. Valiant and G. J. Brebner. Universal Schemes for Parallel Com-
munication. Proceedings 13* ACM STOC, 263-277, 1981.

[11] L. G. Valiant. Experiments with a Parallel Communication Scheme.
Proceedings of the 18 Allerton Conference on Communication, Con-
trol and Computing, 861-811, 1980.

[12] L. G. Valiant. A Scheme for Fast Parallel Communication. SIAM Jour-
nal of computing, 11:350-361, 1982.

(13] B. Vicking. Almost Optimal Permutation Routing on Hypercubes.
Proceedings of the 33" ACM STOC, 530-539, 2001.

158



