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Abstract

Splitting balanced incomplete block designs were first formulated
by Ogata, Kurosawa, Stinson and Saido recently in the investigation
of authentication codes. This article investigates the existence of
splitting balanced incomplete block designs, i.e., (v,2k, A)-splitting
BIBDs; we give the spectrum of (v,2 x 4, A)-splitting BIBDs.
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1 Introduction

In the investigation of authentication codes Ogata, Kurosawa, Stinson and
Saido [4] found that splitting balanced incomplete block designs can be used
to construct k-splitting A-codes, whose impersonation attack probabilities
and substitution attack probabilities all achieve their information-theoretic
lower bounds. Let v, b, I, u, k, A be positive integers. A splitting balanced
incomplete block design, i.e., a (v,b,! = uk, \)-splitting BIBD is a pair
(X, B) where X is a v-set (of points) and B is a collection of b subsets of X
(called blocks) with size ! such that the following properties are satisfied:
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1. every B € B is expressed as a disjoint union of u subblocks of size k:
B=Bl UBZU"’UBu,

2. for each pair set {z,y} of X, there exist exactly A blocks B = B, U
By U---U By such that z € B;,y € B;(i # j).

The blocks of a (v, b, = uk, A)-splitting BIBD will be displayed in the form
{(11,(12,' sy Qs bl)b2)' * 'xbk; 3T, T2, 'ark} in this paper.

Let r be the number of blocks which contain a fixed point. We have the
following expressions from [4].

Afv—=1
T_ku—l ’

— Ju(v-1)
b=

There has been some work done on splitting balanced incomplete block
designs (see, for example, Ogata, Kurosawa, Stinson and Saido [4] and Du
[3] and [2]) and there are some known results on the existence of splitting
balanced incomplete block designs. They gave the spectra of (v,b,! =
uk, A)-splitting BIBDs for (u,k) = (2,2),(2,3) and (3,2). In this article,
we shall be restricting our attention to splitting balanced incomplete block
designs with u = 2 and we denote these briefly as (v, 2k, A)-splitting BIBDs.
We have the following necessary conditions for the existence of (v, 2k, A)-
splitting BIBDs.

Theorem 1.1 If there exists a (v, 2k, A)-splitting BIBD, then

AMv —1) = 0 (mod k),

Mv(v - 1) = 0 (mod 2k2).

For the case k = 4, the second author of this article in [2] obtained the
following result.

Theorem 1.2 ([2]) There exists a (v, 2 x 4, 4)-splitting BIBD for any v = 0
(mod 8) with v > 12928 and v = 1 (mod 8) with v > 1801.

This article investigates the existence of (v, 2k, A)-splitting BIBDs; we
give the spectrum of (v, 2 x 4, A)-splitting BIBDs. That is, our main objec-
tive in this article is to establish the following result.
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Theorem 1.3 There exists a (v,2 x 4, A)-splitting BIBD if and only if
AMv —1)= 0 (mod 4) and Av(v — 1) = 0 (mod 32).

2 Preliminaries

In this section we shall introduce some of the auxiliary designs and some
of the fundamental results which will be used later. The reader is referred
to [1] for more information on designs, and, in particular, group divisible
designs and splitting group divisible designs.

Let K and M be sets of positive integers. A group divisible design
(GDD) GDI[K, 1, M;v] is a triple (X, G, B) where X is a v-set (of points),
G is a collection of nonempty subsets of X (called groups) with cardinality
in M and B is a collection of subsets of X ( called blocks) with cardinality
at least two, in K, such that the following properties are satisfied.

1. G partition X,
2. no block intersects any group in more than one point,

3. each pair set {x,y} of points not contained in a group is contained in
exactly one block.

The group-type (or type) of the GDD (X, G, B) is the multiset of sizes |G|
of the group G € G and we usually use the “exponential” notation for its
description: group-type 1273 ... denotes i occurrences of groups of size 1,
7 occurrences of groups of size 2, and so on.

We need to establish some more notation. We shall denote by GD{k, 1, m;
v] a GD[{k},1,{m};v]. We shall sometimes refer to a GD[K,1, M;v]
(X,G,B) as a K-GDD.

For group divisible design, we have the following obvious result.

Lemma 2.1 There exists a 2-GDD of type m*n! for any positive integers
m and n.

For our purpose we need to introduce the concept of splitting group
divisible design. Let K and M be sets of positive integers. A splitting
group divisible design (splitting GDD) splitting GD[K, 1, M;v] is a triple
(X,G,B) where X is a v-set (of points), G is a collection of nonempty
subsets of X (called groups) with cardinality in M and B is a collection of
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subsets of X ( called blocks) with cardinality at least two, in K, such that
the following properties are satisfied.

1. G partition X,

2. every B € B is expressed as a disjoint union of u subblocks of size k:
B=B UByU---UBy,

3. no block intersects any group in more than one subblock,

4. for each pair set {z,y} of X not contained in a group, there exist
exactly one block B = By UB,U---U B, such that z € B;,y €
B;(i # j)-

The group-type (or type) of the splitting GDD is the same as that of the
GDD. We shall sometimes refer to a splitting GD[K,1,M;v] (X,G,B) as
a K-splitting GDD.

For splitting group divisible design, we can establish the following result
which will be used later.

Lemma 2.2 There exists a 2 x 4-splitting GDD of type 4% for any u > 2.

Proof The design we construct will have point set X = Z, x {1,2,3,4},
G = {G1,G2,+-+,Gu}, where G; = {i — 1} x {1,2,3,4}. The block set B
consists of the following blocks:

{(:,1),(4,2), (,8), (5, 4); (¢ + 5, 1), (i + 5,2), G + 5,3), (i + 5, 4)},
0<i<u—-21<j<u—-i-1.

It is easy to check that the (X, G, B) is a 2 x 4-splitting GDD of type 4%.
|

We shall illustrate the main technique that will be used throughout
the remainder of the article, which is “Filling in Holes” construction. In
applying the “Filling in Holes” construction, we require splitting GDD
with groups not necessarily all of the same size. To get these splitting
GDDs, we use the following construction which is a variant of “Weighting
Construction” in [5].
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Theorem 2.3 Suppose that there is a K-GDD of type g192 - - - g and that
for each k € K there is a 2k-splitting GDD of type h*. Then there is a
2k-splitting GDD of type (hg1)(hg2) - - - (hgu).

Proof We start with a K-GDD of type gig2- - gu (X,G,B), where G =
{G1,Ga,-+,Gy}, |G| = g:. For each B € B, let Xp = {a1,a2,*-,ak} be
the set of points of B, and X} = Xp x {1,2,---,h}. Let (X5, Ag) be a
2k-splitting GDD of type h*. Then the design we construct will have point
set

X*=Xx{1,2,---,h}
and the block set
B* =UBEB‘AB'

It is easy to check that the (X*,B*) is a 2k-splitting GDD of type
(hg1)(hga) - - - (hgu)- |

Finally, as the “Filling in Holes” construction will generally involve
adjoining more than one infinite point to a splitting GDD, we will require
the notation of a splitting incomplete balanced incomplete block design.
A splitting incomplete balanced incomplete block design, i.e., a (v, w; 2k, A)-
splitting IBIBD, is a triple (X, Y, B) where X is a set of v elements, Y is a
subset of X of size w (Y is called the hole) and B is a collection of subsets
of X ( blocks), such that

1. every B € B is expressed as a disjoint union of 2 subblocks of size k:
B = B; UB,,

2. each pair set {z,y} of Y do not occur in any block B = B; U B; such
that z € B;,y € B;(i # j),

3. each pair set {z,y} of X occur together either in Y or in exactly A
blocks B = B; U B; such that z € B;,y € B;(i # j),

We observe that the existence of a (v, w; 2k, A)-splitting IBIBD is equiv-
alent to the existence a (v, 2k, A)-splitting BIBD when w = 0 and 1. Now
we are in a position to give our main construction.

Construction 2.4 Suppose
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1. there is a 2k-splitting GDD of type g1g2- - - gu,

2. there is a (g; +w, w; 2k, A)-splitting IBIBD for each 1,1 < i < u,where
w20,

3. there is a (g, + w, 2k, A)-splitting BIBD.

Then there is a (v, 2k, \)-splitting BIBD, where v = w + Pici<u 9i-

Proof We start with a 2 x k-splitting GDD of type g1g2--- g (X,G,B),
where G = {G1,Ga,--+,Gy}, |Gi] = gi for 1 < i < u. For each G;,
1<i<uy,let (GiUW, A;) be a (9; + w, w; 2k, \)-splitting IBIBD, where
[W| =wand X NW = 0. Let (G, UW, A4,) be a (g4 + w, 2k, A)-splitting
BIBD. Then the design we construct will have point set

X*=Xuw,
and the block set
B* = B'U(Ucicy Ai)s

where B’ is a block collection obtained by repeating every block of B A
times. It is easy to check that the (X*,B*) is a (v, 2k, \)-splitting BIBD.

Especially, we have the following construction.

Lemma 2.5 Let m, n, and u be positive integers and w > 0. If there exist
a (4m + w,w; 2 x 4, A)-splitting IBIBD and a (4n + w,2 x 4, A)-splitting
BIBD, then there exists a (dmu + 4n + w, 2 x 4, \)-splitting BIBD.

Proof We begin with a 2-GDD of type m*n! (whose existence see Lemma
2.1) and give the points weight 4 and apply Theorem 2.3 to obtain a 2 x 4-
splitting GDD of type (4m)*(4n)!. The input design we need 2 x 4-splitting
GDD of type 42 comes from Lemma 2.2. The result then follows from
Construction 2.4.

We also need the following construction whose proof is easy.

Lemma 2.6 If there exist a (v, 2x k, A\;)-splitting BIBD and a (v, 2x k, Ag)-
splitting BIBD, then there exists a (v,2 x k, A; + Ag)-splitting BIBD.
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3 Direct Constructions

In this section we shall construct some designs of small order, which we
will used later.

Lemma 3.1 There exists a (9,2 x 4,4)-splitting BIBD.

Proof We construct directly the design as follows:
X = Z,,
B: {0,2,5,6;3,4,7,8}, {0,1,7,8;3,4,5,6}, {0,4,5,7;1,2,6,8},
{0,2,4,8;1,3,6,7}, {0,2,3,7;1,4,5,8}, {0,3,6,8;1,2,5,7},
{0,1,4,6;2,3,5,8}, {0,1,3,5;2,4,6,7}, {1,2,3,4;5,6,7,8}.

In the remaining of this section we shall give some cycle constructions,
which are variants of cycle construction used to construct balanced incom-
plete block designs.

The first cycle construction is difference construction based on Abelian
group. Let (X,+) be an Abelian group of order v, A (v,b,! = uk,\)-
splitting difference family over X is a collection of r subsets of X, {B!, B2, -- -,
BT}, such that each B* is expressed as a disjoint union of u subsets of size
k: B* = B} UB} U---U B!, and the multiset union

Uicher{z —v:z € By € B} (i £ 5), z #y} = MX \ {0}).

The subsets B* (1 < h < r) are called based blocks. It is easy to see the
existence of a (v, b,{ = uk, A)-splitting difference family over X implies the
existence of a (v, b,! = uk, X)-splitting BIBD (X, B), in which the block set
B is obtained by developing the based blocks mod v.

Lemma 3.2 There exists a (17,2 x 4, 2)-splitting BIBD.

Proof We construct directly the design as follows:
X =2
B: Develop the following blocks mod 17:
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{0,1,2,3;4,8,12,16}. |

Lemma 3.3 There exists a (8,2 x 4, 4)-splitting BIBD.

Proof We construct directly the design as follows:

X=2Z,U {.‘D}
B: Develop the following blocks mod 7:
{0,1,2,4;3,5,6,z}. |

Lemma 3.4 There exist (v,2 x 4, 8)-splitting BIBDs for v = 12 and 13.

Proof We construct the designs directly in Appendix. l

Lemma 3.5 There exists a (v, 2x4, 16)-splitting BIBD for v € {10, 11, 14, 15}.

Proof We construct the designs directly in Appendix. I
The second cycle construction is mixed difference construction. Let

(G,+) be an Abelian group of order n, M = {1,2,---,m — 1}, and let
X =G x M = {a, : s € M}. The group G operates on X by the rule

a,+B=(a+p), forall BeG.

For any subset A C X theset A+ 8 = {x+ 8 : z € A} is defined by
the above rule. Let {B!,B?,... ,B"} be a collection of r subsets of X,
such that each B? is expressed as a disjoint union of u subsets of size k:
B"* =B UB}U-..U B!, and the multiset union

Usshgrle =v:2. € Bl € B} (i £3), 2 #3} = XG\ {0)) for al
seM,

Uicher{z—y: 25 € Bhy € B;-‘ (E#7)}=AG forall s,t e M,s<t.

The subsets B* (1 < h < r) are called based blocks. It is easy to see that
we can construct from the based blocks a (mn, b, = uk, \)-splitting BIBD
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(X, B), in which the block set B is obtained by developing the based blocks

mod n.

Lemma 3.6 There exist a (10, 2; 2x 4, 16)-splitting IBIBD and a (11,3;2x
4, 16)-splitting IBIBD.

Proof We construct directly the design (10,2;2 x 4, 16)-splitting IBIBD
as follows:

X =24 x {1,2} U {z1,z2}

B: Develop the following blocks mod 4:
{(0,1),(1,1),(2,1),(3,1);(0,2), (1,2),(2,2),(3,2)},
{(0,1),(1,1),(0,2),(1,2);(2,1),(3,1),(2,2),(3,2)},
{(0,1),(1,1),(0,2),(2,2);(2,1),(3,1),(1,2),(3,2)},
{(0,1),(1,1),(0,2),(1,2); (2,1),(3,1), 21, z2},
{(0,1),(1,1),(0,2),(2,2); (2,1),(3,1), z1, 22},
{(0,1),(2,1),(0,2),(1,2); (1,1),(3,1), 1, z2},
{(0,1),(2,1),(0,2),(2,2); (1,1),(3,1), 21, 22},
{(0,1),(1,1),(2,2),(3,2): (0,2), (1,2), 71, 22},
{(0,1),(1,1),(3,2), (2,2); (0,2), (1, 2), 3, 22},
{(0,1),(2,1),(1,2),(3,2); (0,2),(2,2), 1, z2},
{(0,1),(3,1),(1,2),(2,2); (0,2),(3,2), z1,z2}.

For the (11, 3; 2x4, 16)-splitting IBIBD, we construct the design directly
in Appendix.

4 (v,2 x4, ))-splitting BIBD

In this section, we shall give the spectrum of (v, 2 x 4, A)-splitting BIBDs.
From Theorem 1.1, we have the following necessary condition for the exis-
tence of (v,2 x 4, A)-splitting BIBD:

e v =1 (mod 32) when A =1, 3 (mod 4).
¢ v =1 (mod 16) when A =2 (mod 4).
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e v =0, 1 (mod 8) when A =4, 12 (mod 16).

e v =0, 1 (mod 4) when A =8 (mod 16).

e v > 8 when A =0 (mod 16).

From Lemma 2.6, we only need to consider the cases (1) v = 1 (mod

32)and A =1, (2) v =1 (mod 16) and A = 2, (3) v = 0, 1 (mod 8) and
A=4,(4)v=0, 1 (mod 4) and A =8, and (5) v > 8 and ) = 16.

For the case A = 1, the second author of this article have obtained the
following result.

Lemma 4.1 ([3]) There exists a (v,2k, 1)-splitting BIBD for any v
1 (mod 2k?) and v > 2k2 + 1.

Then we have

Lemma 4.2 There exists a (v,2 x 4,1)-splitting BIBD for any v
1 (mod 32) and v > 33.

For the case A > 1, we can obtain the desired result by applying our
main construction with the input designs constructed in Section 3.

Lemma 4.3 There exists a (v,2 x 4,2)-splitting BIBD for any v =
1 (mod 16) and v > 17.

Proof From Lemmas 3.2 we only need to consider the case v > 33. For
any v = 1 (mod 16) and v > 33, we can write v = 16u + 16 + 1. Notice
that there exists a (17, 2 x 4, 2)-splitting BIBD from the above Lemma, the

result then follows from Lemma 2.5 with w = 1. |

Lemma 4.4 There exists a (v,2 x 4,4)-splitting BIBD for any v =
0, 1 (mod 8) and v > 8.

Proof From Lemmas 3.1 and 3.3 we only need to consider the case v > 16.
For any v = 0, 1 (mod 8) and v > 16, we can write v = 8u + 8 + w, where
w = 0,1, and then there exists a (8 + w,2 x 4, 4)-splitting BIBD from the
above Lemmas. The result then follows from Lemma 2.5 with w = 0 and
1.
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Lemma 4.5 There exists a (v,2 X 4,8)-splitting BIBD for any v =
0,1 (m0d4) and v > 8.

Proof From Lemmas 3.1, 3.3 and 3.4 we only need to consider the case v >
16. For any v =0, 1 (mod 4) and v > 16, we can write v = 8u+ (8+s)+w,
where s = 0,4 and w = 0,1, and then there exists a (8 + s + w,2 x 4, 8)-
splitting BIBD from the above Lemmas. The result then follows from
Lemma 2.5 with w =0 and 1.

Lemma 4.6 There exists a (v,2 X 4, 16)-splitting BIBD for any v > 8.

Proof From Lemma 3.5 and 4.5 we only need to consider the case v =
2, 3 (mod 4) and v > 18. For any v = 2, 3 (mod 4) and v > 18, we
can write v = 8u + (8 + s) + w, where s = 0,4 and w = 2,3, and then
there exist a (8 + s + w,2 x 4,16)-splitting BIBD from Lemma 3.5 and
a (8 + w,w;2 x 4, 16)-splitting IBIBD from Lemma 3.6. The result then
follows from Lemma 2.5 with w = 2 and 3. I

Combining Lemma 4.2 to Lemma 4.6, we have established the following
result.

Theorem 4.7 if A(v—1) = 0 (mod 4) and Av(v—1) = 0 (mod 32), there
exists a (v,2 x 4, A)-splitting BIBD.

We are now in a position to prove Theorem 1.3.

The proof of Theorem 1.3: Theorems 1.1 and 4.7 complete the proof
of Theorem 1.3.

Appendix: Some Direct Constructions

(11,3;2 x 4, 16)-splitting IBIBD
X =274 x {1,2} U {z1,z2, 23}
B: Develop the following blocks mod 4:
{(0,1),(1,1),(2,1),(3,1): (0,2),(1,2),(2,2), (3,2)},
{(0,1),(1,1),(0,2),(1,2); (2,1), (3, 1), 21, 72},
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{(0,1),(1,1),(0,2),(2,2); (2,1),(3,1), zy,%2},
{(0,1),(1,1),(0,2),(3,2);(2,1), (3,1), 231, z2},
{(0,1),(1,1),(1,2),(0,2); (2,1), (3, 1), z1, 22},
{(0,1),(2,1),(0,2),(1,2); (1,1), (3,1), z2, 23},
{(0,1),(2,1),(0,2), (2,2); (1,1), (3,1), z2, 23},
{(0,1),(1,1),(0,2),(2,2);(1,2), (3,2), z2, z3},
{(0,1),(1,1),(1,2),(2,2); 0,2), (3,2), 22, 23},
{(0,1),(1,1),(2,2),(3,2); (0,2),(1,2), 23,71},
{(0,1),(1,1),(3,2),(2,2); (0,2), (1,2), 3,1},
{(0,1),(2,1),(0,2), (1,2); (2,2), (3,2), z3, 21},
{(0,1),(2,1),(1,2),(3,2): (0,2),(2,2), z3, 1 }. |

(12,2 x 4, 8)-splitting BIBD
X =27,V {z}
B: Develop the following blocks mod 11:
{0,1,2,3;4,5,6,7}, {0,1,2,4;3,5,10,z}, {0,1,4,6;2,3,10,z}.

(13,2 x 4, 8)-splitting BIBD
X =23
B: Develop the following blocks mod 13:
{0,1,2,3;4,5,6,7}, {0,1,2,4;3,5,6,7}, {0,1,3,10;2,7,11,12}.

(10,2 x 4, 16)-splitting BIBD
X =2ZyV {z}
B: Develop the following blocks mod 9:
{0,1,2,3;4,5,6,7}, {0,1,2,4;3,5,7,z}, {0,1,3,5;2,4,8,z},
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{0,1,3,6;2,4,8,z}, {0,1,4,5;2,3,6,z}. |

(11,2 x 4, 16)-splitting BIBD
X=272n
B: Develop the following blocks mod 11:
{0,1,2,3;4,5,6,7}, {0,1,2,3;4,5,6,9}, {0,1,3,5;2,4,6,10},
{0,1,3,8;2,4,9,10}, {0,1,4,5;2,3,6,8}. [ |

(14,2 x 4, 16)-splitting BIBD
X =2Zy3u{z}
B: Develop the following blocks mod 13:
{0,1,2,3;4,5,6, 7} three times,
{0,1,2,3;4,5,7,z}, {0,1,5,8;6,7,12,z},
{0,2,4,6;1,3,5,z}, {0,1,4,10;2,3,12,z}. [ |

(15,2 x 4, 16)-splitting BIBD
X =25
B: Develop the following blocks mod 15:
{0,1,2,3;4,5,6,7} four times,
{0,1,5,6;7,8,13,14}, {0,1,7,8;2,6,9,14}, {0,2,6,8;1,7,9,14}.
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