Almost Resolvable 4-Cycle Systems

I. J. Dejter
Departament of Mathematics
University of Puerto Rico
Rio Piedras, PR 00931-3355
Puerto Rico

email: ijdejter@uprrp.edu
C. C. Lindner and C. A. Rodger
Department of Mathematics
Auburn University
Auburn, Alabama 36849-5307
USA

email: lindncc@auburn.edu email: rodgec1@auburn.edu

M. Meszka

Faculty of Applied Mathematics AGH University of Science and Technology

Kraków Poland

email: meszka@agh.edu.pl

Abstract

A 4-cycle system of order n is said to be almost resolvable provided its 4-cycles can be partitioned into (n-1)/2 almost parallel classes (=(n-1)/4 vertex disjoint 4-cycles) and a half parallel class (=(n-1)/8 vertex disjoint 4-cycles.) We construct an almost resolvable 4-cycle system of every order $n \equiv 1 \pmod{8}$ except 9 (for which no such system exists) and possibly 33,41 and 57.

1 Introduction

A Steiner triple system (or triple system) of order n is a pair (S,T), where T is a collection of triangles (or triples) which partitions the edge set of K_n

with vertex set S. It is well-known that the spectrum for triple systems is the set of all $n \equiv 1$ or 3 (mod 6) [2].

If $n \equiv 3 \pmod{6}$, a parallel class is a set of n/3 vertex disjoint triples (which necessarily partition S). A Kirkman triple system is a triple system of order $n \equiv 3 \pmod{6}$ whose triples can be partitioned into parallel classes and it is well-known that the spectrum for Kirkman triple systems is precisely the set of all $n \equiv 3 \pmod{6}$ [4].

Clearly a triple system of order $n \equiv 1 \pmod{6}$ cannot contain a parallel class. The best one can hope for is an almost parallel class; (n-1)/3 pairwise disjoint triples. A Hanani triple system is a triple system of order $n \equiv 1 \pmod{6}$ whose triples can be partitioned into (n-1)/2 almost parallel classes and a single half parallel class consisting of (n-1)/6 triples. The spectrum for Hanani triple systems is the set of all $n \equiv 1 \pmod{6}$, $n \neq 7$ or 13 [5].

A 4-cycle system of order n is a pair (X,C), where C is a collection of 4-cycles which partitions the edge set of K_n with vertex set X. It is a well-known Folk Theorem that the spectrum for 4-cycle systems is precisely the set of all $n \equiv 1 \pmod{8}$ and that if (X,C) is a 4-cycle system of order n, |C| = n(n-1)/8. Since the order of a 4-cycle system is 1 (mod 8) it is not possible for a 4-cycle system to contain a parallel class. However, an almost parallel class is possible; i.e., (n-1)/4 vertex disjoint 4-cycles. The analogue of a Hanani triple system is also possible; i.e., the partition of the n(n-1)/8 4-cycles into (n-1)/2 almost parallel classes and a half parallel class consisting of (n-1)/8 4-cycles. The object of this paper is the construction of an almost resolvable 4-cycle system of every order $n \equiv 1 \pmod{8} \ge 17$ (n=9) is not possible), with the three possible exceptions of 33, 41, and 57.

2 Two examples

The following two examples are crucial for the recursive constructions in sections (3) and (5).

```
Example 2.1 (almost resolvable 4-cycle system of order 17) (2,5,12,9)(3,6,13,10)(4,7,14,11)(14,1,8,16) (4,5,13,14)(8,11,12,15)(6,9,16,7)(2,10,0,3) (10,11,2,1)(13,4,12,3)(7,15,5,8)(16,6,14,0) (14,15,6,5)(12,13,16,2)(3,11,1,4)(9,0,7,1) (3,15,9,14)(7,2,13,1)(11,6,0,5)(4,16,10,8) (11,5,13,0)(10,5,9,4)(2,14,8,6)(3,1,12,7) (1,5,3,16)(13,11,9,7)(6,4,15,10)(8,2,0,12) (0,4,2,15)(9,13,8,3)(7,5,16,11)(14,12,6,1) (0,1,9,8)(12,16,14,1).
```

Example 2.2 (almost resolvable 4-cycle system of order 25) (0,12,18,6)(24,1,4,14)(7,20,21,2)(3,19,17,11)(9,13,23,5)(8,22,15,10)(24,0,3,13)(6,19,20,1)(2,17,8,23)(4,12,16,5)(7,21,14,9)(10,18,22,11)(24,9,0,22)(5,21,19,1)(2,14,20,8)(3,16,17,10),(4,18,23,6)(11,15,13,7)(0,15,6,21)(24,10,1,23)(2,22,14,3)(4,17,18,11)(5,19,12,7)(8,16,20,9)(0,13,14,7)(1,15,20,3)(2,18,16,10)(8,12,22,4)(5,17,23,11)(24,6,9,19)(5,18,19,0)(1,16,7,22)(24,11,2,12)(3,23,15,4)(6,20,13,8)(9,17,21,10)(0,14,19,2)(1,17,15,9)(7,23,21,3)(4,16,22,10)(24,5,8,18),(11,12,13,6)(10,12,17,0)(1,21,13,2)(24,3,6,16)(9,22,23,4)(5,20,11,14)(7,15,19,8)(0,16,14,8)(11,13,18,1)(6,22,20,2)(3,15,21,9)(24,4,7,17)(10,23,12,5)(4,20,18,0)(1,13,19,7)(24,2,5,15)(8,21,22,3)(10,14,12,6)(9,23,16,11)(0,20,12,1)(2,15,16,9)(3,17,22,5)(4,19,10,13)(6,14,18,7)(24,8,11,21)(11,19,23,0)(1,14,15,8)(2,16,21,4)(3,18,9,12)(5,13,17,6)(24,7,10,20)(12,15,18,21)(13,16,19,22)(14,17,20,23)

3 The 16k + 1 > 49 Construction

Let $n = 16k + 1 \ge 49$ and (Q, \circ) a commutative quasigroup of order $2k \ge 6$ with holes $H = \{h_1, h_2, h_3, \ldots, h_k\}$ of size 2. (See [3] for example.) Set $S = \{\infty\} \cup (Q \times Z_8)$ and define a collection of 4-cycles C as follows:

- (1) For each hole $h_i \in H$, let $\{\infty\} \cup (h_i \times Z_8, C(h_i))$ be an almost resolvable 4-cycle system of order 17 (Example 2.1) and place these 4-cycles in C. (We can do this so that the half parallel class does *not* contain ∞ .)
- (2) For each a and b belonging to different holes of H, let $(K_{8,8}, b(a, b))$ be a partition of $K_{8,8}$, with parts $\{a\} \times Z_8$ and $\{b\} \times Z_8$, into 4-cycles and place these 4-cycles in C. We can partition b(a, b) into four parallel classes $b_1(a, b), b_2(a, b), b_3(a, b)$ and $b_4(a, b)$.

It is straightforward to see that (S, C) is a 4-cycle systems of order 16k + 1.

Resolution: If $z \in h_i$ let $\pi(z) = \{\{a,b\} \mid \{a \neq b\} \cap h_i = \emptyset \text{ and } a \circ b = b \circ a = z\}$. Then $\{b_j(a,b) \mid (a,b) \in \pi(z)\}$, $j \in \{1,2,3,4\}$, partitions $S \setminus \{\{\infty\} \cup (h_i \times Z_8)\}$ into 4 parallel classes. Pairing these up with 4 almost parallel classes in $\{\{\infty\} \cup (h_i \times Z_8, C(h_i)\}$ produces 4 almost parallel classes of C. If $h_i = \{x,y\}$, choosing disjoint sets of 4 almost parallel classes in $(\{\infty\} \cup (h_i \times Z_9, C(h_i))\}$ gives 8 almost parallel classes of C. Running over all holes in E produces 8E almost parallel classes, and of course the half parallel classes in each E contains E contains E can be pieced together to form a half parallel class of E.

Lemma 3.1 There exists an almost resolvable 4-cycle system of every order 16k + 1 except possibly 33.

Proof The above construction plus Example 2.1.

4 Commutative quasigroups with holes

In this section we will construct commutative quasigroups with holes which are necessary for the 16k+9 Construction in Section 6. (These quasigroups are of interest in their own right.) To this end we collect a few (mostly) well-known ideas and results.

- (1) There exists a group divisible design (GDD) with 1 group of size $x \in \{6, 26\}$, u groups of size 4 (x^14^u) , and all blocks of size 3 if and only if (a) x = 6, $u \equiv 0$ or 1 (mod 3), and $u \geq 3$; and (b) x = 26, $u \equiv 0$ (mod 3) and $u \geq 9$ [1].
- (2) If there exists a GDD of type x^14^u with all blocks of odd size, then there exists a *commutative* quasigroup with 1 hole of size x and u holes of size 4. (Define an idempotent commutative quasigroup on each block.)
- (3) A grid is a pair $\{(a,b,c) \times \{1,2,3,4\},G)$, where $G = \{\{(a,1),(b,2),(c,3)\},\{(a,1),(b,3),(c,4)\},\{(a,1),(b,4),(c,2)\},\{(a,2),(b,1),(c,4)\},\{(a,2),(b,3),(c,1)\},\{(a,2),(b,4),(c,3)\},\{(a,3),(b,1),(c,2)\},\{(a,3),(b,2),(c,4)\},\{(a,3),(b,4),(c,1)\},\{(a,4),(b,3),(c,2)\},\{(a,4),(b,1),(c,3)\},\{(a,4),(b,2),(c,1)\}\}.$

Note that these triples do not contain any "vertical" or "horizontal" edges.

Lemma 4.1 There exists a commutative quasigroup of order 4t + 2 with 1 hole of size 6 and t - 1 holes of size 4 for t = 1 and all $t \ge 4$.

Proof We will break the proof into 3 parts: $t \equiv 1, 2, 4$, or 5 (mod 6); $t \equiv 3 \pmod{6}$; and $t \equiv 0 \pmod{6}$.

 $t \equiv 1, 2, 4$, or 5 (mod 6). This follows immediately from (1a) and (2) above by letting u = t - 1.

 $t \equiv 3 \pmod{6}$. Let $X = \{\infty_1, \infty_2\} \cup (\{1, 2, ..., t\} \times \{1, 2, 3, 4\})$ and define a GDD(X, G, B) as follows:

 $G = \{\{\infty_1, \infty_2, (1, 1), (1, 2), (1, 3), (1, 4)\}\} \cup \{\{(i, 1), (i, 2), (i, 3), (i, 4)\} \mid i \in 2, 3, \ldots, t\}\}.$

Now let $(\{\infty_1, \infty_2\} \cup (\{1, 2, \dots, t\} \times \{i\}), B_i)$ be a PBD of order 5 (mod 6) with one block of size 5 and the remaining blocks of size 3 (see [3] for example) with the proviso that $\{\infty, \infty_2, (1, i)\} \in B_i$. Put the blocks of $B_i \setminus \{\infty_1, \infty_2, (1, i)\}$ in B. Let $(\{1, 2, \dots, t\}, T)$ be a Steiner triple system of order t. For each triple $\{a, b, c\} \in T$, put the 12 triples of the grid in (3) in B.

Then (X, G, B) is a GDD of type 6^14^{t-1} with blocks of size 3 and 5. The statement of the lemma follows from (2).

 $t \equiv 0 \pmod{6}$. When t = 6 we have the following example.

24 23 10 9 19 25 4 3 22 21 2 1 13 26 16 15 18 17 12 11 20 14 17 18 21 22 1 16 15 2 2610 9 24 2312 11 4 2520 19 14 13 1 2 4 3 18 26 17 8 21 25 6 1 2 18 20 14 13 24 23 20 25 16 15 4 3 18 268 7 22 216 5 2 1 17 19 21 22 17 183 4 26 2 2 25 6 19 2023 24 13 147 8 15 16 5 1 22 21 17 8 21 22 21 14 13 17 18 3 4 25 5																							_
9 10 21 2223 24 17 1826 8 5 6 25 16 11 1213 14 19 20 15 7 10 9 22 2124 23 18 177 26 6 5 15 25 12 1114 13 20 19 16 8 23 24 9 10					23	24	17	1813	14	21	2219	20	25	115	6	26	9	15	16	7	8	10	12
10 9 22 2124 23 18 177 26 6 5 15 25 12 1114 13 20 19 16 8					24	23	18	1714	13	22	2120	19	12	256	5	10	26	16	15	8	7	9	11
23	1				9	10	21	2223	24	17	1826	8	5	6 25	16	11	12	13	14	19	20	15	7
24 23 10 9 19 25 4 3 22 21 2 1 13 26 16 15 18 17 12 11 20 14 17 18 21 22 16 15 2 26 0 9 24 23 12 11 4 25 20 19 14 13 1 2 4 3 18 26 7 22 21 10 14 13 1 2 2 10 19 10 23 24 11 12 25 3 19 20 13 14 2 4 3 18 26 8 7 22 216 5 2 1 17 19 21 22 17 18 3 4 26 5 5 20 19 22 21 13 14 13 17 18 20 19 20 26 7 21 22 9 103	l				10	9	22	2124	23	18	17/7	26	6	5 15	25	12	11	14	13	20	19	16	8
17 18 21 22	23	24	9	10	Г			25	20	3	4 21	22	1	2 26	14	15	16	17	18	11	12	19	13
18 17 22 21 16 15 2 2610 9 24 2312 11 4 2520 19 14 13 1 3 13 14 23 2425 19 15 16 3 4 26 177 8 21 225 6 1 2 18 20 14 13 24 2320 25 16 15 4 3 18 268 7 22 216 5 2 1 17 19 21 22 17 183 4 26 2 25 6 19 2023 24 13 147 8 15 16 5 1 22 21 18 174 3 1 26 5 25 20 1924 23 14 138 7 16 15 6 2 19 20 26 7 21 22 9 103 4 25 5 2 1 <td>24</td> <td>23</td> <td>10</td> <td>9</td> <td></td> <td></td> <td></td> <td>19</td> <td>25</td> <td>4</td> <td>3 22</td> <td>21</td> <td>2</td> <td>1 13</td> <td>26</td> <td>16</td> <td>15</td> <td>18</td> <td>17</td> <td>12</td> <td>11</td> <td>20</td> <td>14</td>	24	23	10	9				19	25	4	3 22	21	2	1 13	26	16	15	18	17	12	11	20	14
13 14 23 2425 19 15 16 3 4 26 177 8 21 225 6 1 2 18 20 14 13 24 2320 25 16 15 4 3 18 268 7 22 216 5 2 1 17 19 21 22 17 183 4 26 2 25 6 19 2023 24 13 147 8 15 16 5 1 22 21 18 174 3 1 26 5 5 20 1924 23 14 138 7 16 15 6 2 19 20 26 7 21 22 9 103 4 25 5 2 1 24 2312 11 18 7 16 15 6 2 19 20 21 20 21 22 21 8 9 10	17	18	21	22	l			15	16	26	19	10	23	2411	12	25	3	19	20	13	14	2	4
13 14 23 2425 19 15 16 3 4 26 177 8 21 225 6 1 2 18 20 14 13 24 2320 25 16 15 4 3 18 268 7 22 216 5 2 1 17 19 21 22 17 183 4 26 2 25 6 19 2023 24 13 147 8 15 16 5 1 22 21 18 174 3 1 26 5 5 20 1924 23 14 138 7 16 15 6 2 19 20 26 7 21 22 9 103 4 25 5 2 1 24 2312 11 18 7 16 15 6 2 19 20 21 20 21 22 21 8 9 10	18	17	22	21	1			16	15	2	2610	9	24	2312	11	4	25	20	19	14	13	1	3
21 22 17 183 4 26 2 25 6 19 2023 24 13 147 8 15 16 5 1 22 21 18 174 3 1 26 5 25 20 1924 23 14 138 7 16 15 6 2 19 20 26 7 21 22 9 103 4 25 5	13	14	23	24	25	19	15	16			3	4	26	177			22	5	6	1	2	18	20
21 22 17 183 4 26 2 25 6 19 2023 24 13 147 8 15 16 5 1 22 21 18 174 3 1 26 5 25 20 1924 23 14 138 7 16 15 6 2 19 20 26 7 21 22 9 103 4 25 5	14	13	24	23	20	25	16	15			4	3	18	268	7	22	21	6	5	2	1	17	19
22 21 18 174 3 1 26 5 25 20 1924 23 14 138 7 16 15 6 2 19 20 26 7 21 22 9 103 4 25 5 1 2 23 2411 12 17 18 8 6 20 19 8 2622 21 10 9 4 3 6 25 2 1 24 2312 11 18 17 7 5 25 12 5 6 1 2 23 2426 18 19 20 21 22 21 8 9 10 3 4 11 17 11 2 25 1 24 2317 26 20 19 22 21 8 7 10 9 4 3 12 18 5 6 5 15 26 13 11 12 8 23<	21	22	17	18	3	4	26	2				6	19	2023	24	13	14	7	8	15	16	5	1
20 19 8 2622 21 10 9 4 3 6 25 2 1 24 2312 11 18 17 7 5 25 12 5 6 1 2 23 2426 18 19 20 21 22 7 8 9 10 3 4 11 17 11 25 6 5 2 1 24 2317 26 20 19 22 21 8 7 10 9 4 3 12 18 5 6 25 1526 13 11 127 8 23 241 2 21 22 3 4 9 10 14 16 6 5 16 2514 26 12 118 7 24 232 1 22 21 3 4 3 10 9 13 15 26 10 11 1215 16 25 4 21 22 13 1423 24 7 8 12 2 13 141 15 16 25 4 21 22 13 1423 24 7 8 12 2 13 141 16 15 3 2522 21 14 1324 23 8 7 2 1 2 2 1 6 5 4 10 15 16 13 1417 18 19 205 6 7 8 11 12 9 103 4 1 2 1 1 1 1 2 5 6 3 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22	21	18	17	4	3	1	26				25	20	1924	23	14	13	8	7	16	15	6	2
25 12 5 6 1 2 23 2426 18 19 20 21 22 7 8 9 10 3 4 11 17 11 25 6 5 2 1 24 2317 26 20 19 22 21 8 7 10 9 4 3 12 18 5 6 25 15 26 13 11 127 8 23 241 2 21 22 3 4 3 10 9 10 14 16 6 5 16 25 14 26 12 118 7 24 232 1 22 21 3 4 3 10 9 13 15 26 10 11 1215 16 25 4 21 22 13 1423 24 7 8 2 1 2 2 1 6 5 4 10 15 16 13 1417 18 19 205 6 7 8 11 12 9 103 4 1 2 1 1 6 5 4 10 15 16 15 14 1318 17 20 196 5 8 7 12 11 10 9 4 3 2 1 7 8 19 2011 12 13 141 2 15 1617 18 3 4 9 10 5 6 8 7 20 1912 11 14 132 1 16 1518 17 4 3 10 9 6 5 10 9 15 1619 20 2 1 18 17 5 6 8 7 11 1214 13 3 4	19	20	26	7	21	22	9	103	4	25	5			1	2	23	24	11	12	17	18	8	6
25 12 5 6 1 2 23 2426 18 19 20 21 22 7 8 9 10 3 4 11 17 11 25 6 5 2 1 24 2317 26 20 19 22 21 8 7 10 9 4 3 12 18 5 6 5 16 25 14 26 12 118 7 24 232 1 22 21 8 7 10 9 4 3 12 18 6 5 16 25 14 26 12 118 7 24 232 1 22 21 4 3 10 9 13 15 26 10 11 1215 16 25 4 21 22 13 1423 24 7 8 9 26 12 1116 15 3 2522 21 14 1324 23 8 7 2 1 2 2 1 6 5 4 10 15 16 13 1417 18 19 205 6 7 8 11 12 9 103 4 1 2 1 1 10 15 16 15 14 1318 17 20 196 5 8 7 12 11 10 9 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20	19	8	26	22	21	10	9 4	3	6	25			2	1	24	23	12	11	18	17	7	5
5 6 25 1526 13 11 127 8 23 241 2 21 22 3 4 9 10 14 16 6 5 16 2514 26 12 118 7 24 232 1 22 21 4 3 10 9 13 15 26 10 11 1215 16 25 4 21 22 13 1423 24 7 8 12 2 5 6 3 9 9 26 12 1116 15 3 2522 21 14 1324 23 8 7 2 1 6 5 4 10 15 16 13 1417 18 19 205 6 7 8 11 12 9 103 4 1 2 16 15 14 1318 17 20 196 5 8 7 12 11 10 9 4 3 2 1 7 8 19 2011 12 13 141 2 15 1617 18 3 4 9 10 5 6 8 7 20 1912 11 14 132 1 16 1518 17 4 3 10 9 6 5 10 9 15 1619 20 2 1 18 17 5 6 8 7 11 1214 13 3 4	25	12	5	6	1	2	23	2426	18	19	2d			21	22	7	8	9	10	3	4	11	17
5 6 25 15 26 13 11 127 8 23 24 2 21 22 22 3 4 9 10 14 16 6 5 16 25 11 18 7 24 232 1 22 21 4 3 10 9 13 15 26 10 11 1215 16 25 4 21 22 13 1423 24 7 8 7 2 1 6 5 4 3 10 9 13 15 1 2 5 6 3 9 2 1 6 5 4 10 10 9 10 3 4 1 2 1 6 5 4 3 10 9 13 15 1 2 5 6 3 9 2 1 6 5 4 10 10 1 1 2 1 6 5 4 10 1 1 <td>11</td> <td>25</td> <td>6</td> <td>5</td> <td>2</td> <td>1</td> <td>24</td> <td>2317</td> <td>26</td> <td>20</td> <td>19</td> <td></td> <td></td> <td>22</td> <td>21</td> <td>8</td> <td>7</td> <td>10</td> <td>9</td> <td>4</td> <td>3</td> <td>12</td> <td>18</td>	11	25	6	5	2	1	24	2317	26	20	19			22	21	8	7	10	9	4	3	12	18
6 5 16 2514 26 12 118 7 24 232 1 22 21 4 3 10 9 13 15 26 10 11 1215 16 25 4 21 22 13 1423 24 7 8 1 2 5 6 3 9 9 26 12 1116 15 3 2522 21 14 1324 23 8 7 2 1 6 5 4 10 15 16 13 1417 18 19 205 6 7 8 11 12 9 103 4 1 2 16 15 14 1318 17 20 196 5 8 7 12 11 10 9 4 3 2 1 7 8 19 2011 12 13 141 2 15 1617 18 3 4 9 10 5 6 8 7 20 1912 11 14 132 1 16 1518 17 4 3 10 9 6 5 10 9 15 1619 20 2 1 18 17 5 6 8 7 11 1214 13 3 4		6	25	15	26	13	11	127	8	23	241	2	21	22				3	4	9	10	14	16
26 10 11 1215 16 25 4 21 22 13 1423 24 7 8 1 2 5 6 3 9 9 26 12 1116 15 3 2522 21 14 1324 23 8 7 2 1 6 5 4 10 15 16 13 1417 18 19 205 6 7 8 11 12 9 103 4 1 2 16 15 14 1318 17 20 196 5 8 7 12 11 10 9 4 3 2 1 7 8 19 2011 12 13 141 2 15 1617 18 3 4 9 10 5 6 8 7 20 1912 11 14 132 1 16 1518 17 4 3 10 9 6 5 10 9 15 1619 20 2 1 18 17 5 6 8 7 11 1214 13 3 4	6	5	16	25	14	26	12	118	7	24	232	1	22	21				4	3	10	9	13	15
15 16 13 1417 18 19 205 6 7 8 11 12 9 103 4 1 2 16 15 14 1318 17 20 196 5 8 7 12 11 10 9 4 3 2 1 7 8 19 2011 12 13 141 2 15 1617 18 3 4 9 10 5 6 8 7 20 1912 11 14 132 1 16 1518 17 4 3 10 9 6 5 10 9 15 1619 20 2 1 18 17 5 6 8 7 11 1214 13 3 4	26	10	11	12	15	16	25	4 21	22	13	1423	24	7	8				1	2	5	6	3	9
16 15 14 1318 17 20 196 5 8 7 12 11 10 9 4 3 2 1 7 8 19 2011 12 13 141 2 15 1617 18 3 4 9 10 5 6 8 7 20 1912 11 14 132 1 16 1518 17 4 3 10 9 6 5 10 9 15 1619 20 2 1 18 17 5 6 8 7 11 1214 13 3 4	9	26	12	11	16	15	3	2522	21	14	1324	23	8	7				2	1	6	5	4	10
7 8 19 2011 12 13 141 2 15 1617 18 3 4 9 10 5 6 8 7 20 1912 11 14 132 1 16 1518 17 4 3 10 9 6 5 10 9 15 1619 20 2 1 18 17 5 6 8 7 11 1214 13 3 4	15	16	13	14	17	18	19	205	6	7	8 11	12	9	103	4	1	2						\neg
8 7 20 1912 11 14 132 1 16 1518 17 4 3 10 9 6 5 10 9 15 1919 20 2 1 18 17 5 6 8 7 11 1214 13 3 4	16	15	14	13	18	17	20	196	5	8	7 12	11	10	9 4	3	2	1						1
10 9 15 1 0 19 20 2 1 18 17 5 6 8 7 11 1214 13 3 4	7	8	19	20	11	12	13	141	2	15	1617	18	3	4 9	10	5	6						1
	8	7	20	19	12	11	14	132	1	16	1518	17	4	3 10	9	6	5						
	10	9	15	16	19	20	2	1 18	17	5	68	7	11	1214	13	3	4						
	Ι.	11	7	8	13	14	4	3 20	19	1		5	17	1816	15	9	10						

When $t \ge 18$ there exists a GDD of type 26^14^{t-6} with all blocks of size 3 (1b). This gives a commutative quasigroup with one hole of size 26 and t-6 holes of size 4. Filling in the hole of size 26 with the above example gives a commutative quasigroup with one hole of sizer 6 and the remaining t-1 holes of size 4.

This leaves only the case where t = 12. So, let $X = \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5, \infty_6\} \cup (\{1, 2, 3, \dots, 11\} \times \{1, 2, 3, 4\})$ and define a GDD(X, G, B) of

type 6^14^{11} as follows:

$$G = \{\{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5, \infty_6\}\} \cup \{\{(i,1), (i,2), (i,3), (i,4)\} \mid i \in \{1, 2, 3, \dots, 11\}\}.$$

Define $\{1,2,3,\ldots,11\} \times \{i\}$, $i \in \{1,2,3,4\}$, to be blocks and place these blocks in B. The remaining blocks in B are the following: $\{\{\infty_1,(1,i),(2,i+9)\},\{\infty_1,(3,i),(4,i+5)\},\{\infty_2,(1,i),(2,i+10),\{\infty_2,(3,i),(4,i+10)\},\{\infty_3,(1,i),(3,i+2)\},\{\infty_3,(2,i),(4,i+1)\},\{\infty_4,(1,i),(3,i+4)\},\{\infty_4,(2,i),(4,i+10)\},\{\infty_5,(1,i),(4,i+6)\},\{\infty_5,(2,i),(3,i+9)\},\{\infty_6,(1,i),(4,i+10)\},\{\infty_6,(2,i),(3,i+10)\} \mid i \in Z_{11}\} \cup \{\{(1,i),(2,i+1),(3,i+2j)\} \mid j \in \{5,6,7,8\}, i \in Z_{11}\} \cup \{\{(2,i),(3,i+j),(4,i+2j)\} \mid j \in \{1,2,3,4\}, i \in Z_{11}\} \cup \{\{(1,i),(3,i+j),(4,i+2j)\} \mid j \in \{6,7,8,9\}, i \in Z_{11}\} \cup \{\{(1,i),(2,i+1),(4,i+4)\},\{(1,i),(2,i+2),(4,i+9)\},\{(1,i),(2,i+3),(4,i+8)\},\{(1,i),(2,i+4),(4,i+2) \mid i \in Z_{11}\}$. The statement of the lemma follows from (2).

Combining all of the above cases completes the proof.

5 n = 9

Lemma 5.1 There does not exist an almost resolvable 4-cycle system of order 9.

Proof Suppose there exists an almost resolvable 4-cycle system of order 9 on the vertex set $\{1, 2, ..., 9\}$. We can assume one almost parallel class is $\pi_1 = \{(1, 3, 2, 4), (5, 7, 6, 8)\}$. Vertex 9 must appear in each of the 3 remaining almost parallel classes π_2, π_3 and π_4 , and in the half parallel class π_5 . We can assume that the half parallel class is

- (1) (9, 5, 1, 6),
- (2) (9,5,1,8), or
- (3) (9, 2, 1, 5).

(π_5 either contains an edge joining two vertices in the same 4-cycle in π_1 (Case (3)) or π_5 doesn't use such an edge and has two vertices which are non-adjacent or adjacent (Cases (1) and (2) respectively) in the second cycle in π_1).

We consider each case in turn. Note that the vertices missing from the almost parallel classes are the vertices in π_5 . We refer to the edges $\{1,2\},\{3,4\},\{5,6\}$, and $\{7,8\}$ as pure edges. It is useful to note that each pure edge must be in a 4-cycle containing either 9 or another pure edge.

Case (1)
$$\pi_5 = (9, 5, 1, 6)$$
.

The edge $\{5,6\}$ must be in a 4-cycle in, say, π_2 avoiding 9, so (by renaming vertices 3 and 4 if necessary) we can assume it is (5,6,4,3) since it must contain another pure edge. Since π_2 must avoid vertex 1, we can assume (by renaming 7 and 8 if necessary) $\pi_2 = \{5,6,4,3\},(2,8,7,9)\}$ or $\{(5,6,4,3),(7,2,8,9)\}$. In the former case, only 1 pure edge $\{1,2\}$ remains, so must be in π_3 in a 4-cycle that includes 9, but no such 4-cycle exists (the only remaining neighbor of 2 are 5, 6 and 7). In the latter case no 4-cycle remains containing the pure edge $\{7,8\}$.

Case 2 $\pi_5 = (9, 5, 1, 8)$

Since this case has 4 pure edges to allocate to π_2 , π_3 and π_4 , we can assume π_2 has 2 pure edges; by symmetry we consider just the cases where π_2 contains (1, 2, 5, 6) and (3, 4, 7, 8) in turn.

In the first case, $\pi_2 = \{(1,2,5,6),(3,7,4,9)\}$ or $\{(1,2,5,6),(7,3,4,9)\}$ since it must miss 8 (and 3 and 4 can be interchanged). In the former situation, the only 4-cycle containing 1 is (1,7,2,9), so $\pi_3 = \{(1,7,2,9),(3,6,4,8)\}$ (since it must avoid 5), leaving $\pi_4 = \{(3,4,5),(6,2,8,7,9)\}$. In the latter case, (1,7,2,9) is the only 4-cycle left containing 1, so $\pi_3 = \{(1,7,2,9),(3,6,4,8)\}$, leaving $\pi_4 = \{(6,2,8,7,4,5,3,9)\}$.

In the second case $\pi_2 = \{(3,4,7,8),(2,5,6,9) \text{ or } \{(3,4,7,8),(2,1,6,9)\}$ or $\{(3,4,7,8),(1,2,6,9)\}$ or $\{(3,4,7,8),(1,2,6,9)\}$. In the first case, the only 4-cycle containing vertex 8 is (2,6,4,8), so $\pi_3 = \{(2,6,4,8),(1,7,3,9)\}$, leaving $\pi_4 = \{(4,5,3,6,1,2,7,9)\}$. In the second case, the only 4-cycle containing 1 is (1,7,3,9), so $\pi_3 = \{(1,7,3,9),(2,5,4,6)\}$ (since it must miss 8 and include 5), leaving $\pi_4 = \{(3,5,6),(4,8,2,7,9)\}$. In the third case the only 4-cycle containing 1 is (1,6,3,7), so $\pi_3 = \{(1,6,3,7),(2,5,4,9)\}$, leaving $\pi_4 = \{(3,5,6,4,8,2,7,9)\}$. In the last case, the only 4-cycle containing 8 is (8,2,5,4), so $\pi_3 = \{(8,2,5,4),(6,3,7,9)\}$, leaving $\pi_4 = \{(4,6,5,3,9),(1,2,7)\}$.

Case 3 $\pi_5 = (9, 2, 1, 5)$

The edge $\{2,5\}$ must be in a 4-cycle avoiding 9; we can assume it is the 4-cycle (2,5,3,7) or $(2,5,3,6) \in \pi_2$. Since π_2 must miss 1, $\pi_2 = \{(2,5,3,7),(6,4,8,9)\},\{(2,5,3,6),(4,8,7,9)\}$ or $\{(2,5,3,6),(7,4,8,9)\}$. In the first case, the only remaining 4-cycle containing 5 is (3,4,5,6); completing this to an almost parallel class avoiding vertex 2 requires $\pi_3 = \{(3,4,5,6),(1,8,7,9)\}$. But the remaining edges form the 8-cycle (1,6,2,8,3,9,4,7). In the second case, no 4-cycle remains containing 5. In the last case, the only 4-cycle containing 5 is (4,5,6,9), so $\pi_3 = \{(4,5,6,9),(1,7,3,8)\}$ (since it avoids 1), leaving $\pi_4 = \{(1,6,4,3,9),(2,7,8)\}$.

6 The 16k + 9 > 73 Construction

In this section we show, except possibly for 41 and 57, the existence of an almost resolvable 4-cycle system of every order $n \equiv 9 \pmod{6}$ except for n = 9 for which no such system exists.

The $16k + 9 \ge 73$ Construction. This construction is identical to the 16k + 1 Construction except for the use of quasigroups with holes of size 6 and 4 instead of holes of size 2.

Let $n=16k+9\geq 73$ and let (Q,\circ) be a commutative quasigroup of order $4k+2\geq 18$ with holes $H=\{h_1^*,h_2,h_3,\cdots,h_k\}$, where h_1^* is a hole of size 6 and the remaining holes have size 4. (Section 4.) Let $S=\{\infty\}\cup (Q\times Z_4)$ and define a collection of 4-cycles C as follows:

- (1) Let $(\{\infty\} \cup (h_1^* \times Z_4), C(h_1^*))$ be an almost resolvable 4-cycle system of order 25 (Example 2.2) and place these 4-cycles in C. (We can do this so that the half parallel class does *not* contain ∞ .)
- (2) For each $i \geq 2$, let $(\{\infty\} \cup (h_i \times Z_4), C(h_i))$ be an almost resolvable 4-cycle system of order 16 (Example 2.1) and place these 4-cycles in C. (We can do this so that the half parallel class does *not* contain ∞ .)
- (3) For each a and b belonging to different holes of H, let $(K_{4,4}, b(a, b))$ be a partition of $K_{4,4}$ with parts $\{a\} \times Z_4$ and $\{b\} \times Z_4$ into 4-cycles and place these 4-cycles in C. We can partition b(a, b) into 2 parallel classes $b_1(a, b)$ and $b_2(a, b)$.

Then (S, C) is a 4-cycle system of order 16k + 9.

Resolution: For each $z \in h_1^*$ (see Section 3) $\{b_i(a,b) \mid (a,b) \in \pi(z)\}$, $i \in \{1,2\}$, partitions $S \setminus (\{\infty\} \cup (h_1^* \times Z_4))$ into 2 parallel classes. Pairing these up with 2 almost parallel classes in $(\{\infty\} \cup (h_1^* \times Z_4), C(h_1^*))$ produces 2 almost parallel classes of C. Since $|h_1^*| = 6$, choosing disjoint sets of 2 almost parallel classes in $(\{\infty\} \cup (h_1^* \times Z_4), C(h_1^*))$ gives 12 almost parallel classes of C. An analogous argument for each of the holes of size 4 gives 8 almost parallel classes of C. This gives a total of 12 + 8(k-1) = 8k + 4 almost parallel classes. Since none of the half parallel classes in the holes contain ∞ they can be pieced together to form a half parallel class of C. We have the following lemma.

Lemma 6.1 There exists an almost resolvable 4-cycle system of every order 16k + 9 except 9 (for which no such system exists) and possibly 41 and 57.

7 Summary

Combining Lemmas 3.1, 5.1 and 6.1 gives the following theorem.

Theorem 7.1 There exists an almost resolvable 4-cycle system of every order $n \equiv 1 \pmod{8} \ge 17$, except possibly for 33,41, and 57. There does not exist an almost resolvable 4-cycle system of order 9.

The problem of constructing almost resolvable 4-cycle systems of orders 33,41, and 57 seems a difficult problem. The authors have struggled valiantly with this problem, so far without success.

References

- C. J. Colbourn, D. G. Hoffman, and R. S. Rees, A new class of group divisible designs with block size 3, J. Combin. Theory (A), 59 (1992), 73-89.
- [2] T. P. Kirkman, On a problem in combinations, Cambridge and Dublin Math. J., 2 (1847), 191-204.
- [3] C. C. Lindner and C. A. Rodger, *Design Theory*, CRC Press, (1997), 208 pages.
- [4] D. K. Ray-Chaudhuri and R. M. Wilson, Solution of Kirkman's Schoolgirl problem, Proc. Symp. Pure Math., 19, Amer. Math. Soc., Providence, RI, (1971), 187-203.
- [5] S. A. Vanstone, D. R. Stinson, P. J. Schellenberg, A. Rosa, R. Rees, C. J. Colbourn, M. J. Carter, and J. E. Carter, *Hanani triple systems*, Israel J. Math., 83 (1993), 305-319.