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Abstract

A 4-cycle system of order n is said to be almost resolvable pro-
vided its 4-cycles can be partitioned into (n — 1)/2 almost parallel
classes (= (n — 1)/4 vertex disjoint 4-cycles) and a half parallel class
(= (n—1)/8 vertex disjoint 4-cycles.) We construct an almost resolv-
able 4-cycle system of every order n = 1 (mod 8) except 9 (for which
no such system exists) and possibly 33,41 and 57.

1 Introduction

A Steiner triple system (or triple system) of order = is a pair (S, T), where
T is a collection of triangles (or triples) which partitions the edge set of K,

JCMCC 63 (2007), pp. 173-181



with vertex set S. It is well-known that the spectrum for triple systems is
the set of all n = 1 or 3 (mod 6) [2].

If n =3 (mod 6), a parallel class is a set of n/3 vertex disjoint triples
(which necessarily partition S). A Kirkman triple system is a triple sys-
tem of order n = 3 (mod 6) whose triples can be partitioned into parallel
classes and it is well-known that the spectrum for Kirkman triple systems
is precisely the set of all n = 3 (mod 6) [4].

Clearly a triple system of order n = 1 (mod 6) cannot contain a parallel
class. The best one can hope for is an almost parallel class; (n — 1)/3
pairwise disjoint triples. A Hanani triple system is a triple system of order
n = 1 (mod 6) whose triples can be partitioned into (n—1)/2 almost parallel
classes and a single half parallel class consisting of (n — 1)/6 triples. The
spectrum for Hanani triple systems is the set of all » = 1 (mod 6), n # 7
or 13 [5].

A 4-cycle system of order n is a pair (X,C), where C is a collection
of 4-cycles which partitions the edge set of K, with vertex set X. It is a
well-known Folk Theorem that the spectrum for 4-cycle systems is precisely
the set of all n = 1 (mod 8) and that if (X, C) is a 4-cycle system of order
n, |C| = n(n — 1)/8. Since the order of a 4-cycle system is 1 (mod 8) it
is not possible for a 4-cycle system to contain a parallel class. However,
an almost parallel class is possible; i.e., (n — 1)/4 vertex disjoint 4-cycles.
The analogue of a Hanani triple system is also possible; i.e., the partition
of the n(n—1)/8 4-cyclesinto (n—1)/2 almost parallel classes and a half
parallel class consisting of (n —1)/8 4-cycles. The object of this paper is
the construction of an almost resolvable 4-cycle system of every order n = 1
(mod 8) > 17 (n = 9 is not possible), with the three possible exceptions of
33,41, and 57.

2 Two examples

The following two examples are crucial for the recursive constructions in
sections (3) and (5).

Example 2.1 (almost resolvable 4-cycle system of order 17)
(2,5,12,9)(3,6,13,10)(4,7,14,11)(14, 1,8, 16)
(4,5,13,14)(8,11,12,15)(6,9, 16, 7)(2, 10,0, 3)
(10,11,2,1)(13,4,12,3)(7,15,5,8)(16,6, 14, 0)
(14,15,6,5)(12,13,16,2)(3,11,1,4)(9,0,7,1)
(3,15,9,14)(7,2,13,1)(11,6,0,5)(4, 16, 10, 8)
(11,5,13,0)(10,5,9,4)(2, 14,8,6)(3,1,12,7)
(1,5,3,16)(13,11,9,7)(6,4,15,10)(8,2,0,12)
(0,4,2,15)(9,13,8,3)(7,5,16,11)(14, 12,6, 1)
(0,1,9,8)(12,16,14,1).
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Example 2.2 (almost resolvable 4-cycle system of order 25)
(0,12,18,6)(24,1,4,14)(7, 20,21, 2)(3,19,17,11)(9, 13, 23, 5)(8, 22, 15, 10)
(24,0,3,13)(6,19,20,1)(2,17, 8, 23)(4, 12, 16,5)(7, 21, 14,9)(10, 18,22, 11)
(24,9,0,22)(5,21, 19, 1)(2, 14, 20, 8)(3, 16, 17, 10), (4, 18,23, 6)(11, 15,13, 7)
(0,15,6,21)(24,10, 1,23)(2, 22, 14, 3)(4,17,18, 11)(5, 19, 12, 7)(8, 16, 20, 9)
(0,13,14,7)(1, 15,20, 3)(2, 18, 16,10)(8, 12, 22,4)(5, 17, 23,11)(24, 6,9, 19)
(5,18,19,0)(1, 16, 7,22)(24, 11, 2,12)(3, 23, 15, 4)(86, 20, 13, 8)(9, 17, 21, 10)
(0,14,19,2)(1,17,15,9)(7, 23,21, 3)(4, 16,22, 10)(24, 5, 8,18), (11, 12,13, 6)
(10,12,17,0)(1,21,13,2)(24, 3, 6,16)(9, 22, 23,4)(5, 20, 11, 14)(7, 15, 19, 8)
(0,16,14,8)(11,13,18,1)(6, 22, 20,2)(3, 15, 21,9)(24, 4, 7,17)(10, 23, 12, 5)
(4,20,18,0)(1,13,19,7)(24,2,5,15)(8,21, 22, 3)(10, 14, 12, 6)(9, 23, 16, 11)
(0,20,12,1)(2, 15,16,9)(3,17,22,5)(4, 19, 10, 13)(6, 14, 18, 7)(24, 8, 11, 21)
(11,19,23,0)(1, 14,15, 8)(2, 16, 21,4)(3,18,9,12)(5, 13,17, 6)(24, 7, 10, 20)
(12,15,18,21)(13, 16,19, 22)(14,17, 20, 23)

3 The 16k + 1 > 49 Construction

Let n = 16k +1 > 49 and (Q, o) a commutative quasigroup of order 2k > 6
with holes H = {hy, hg, hs,...,hi} of size 2. (See [3] for example.) Set
S = {00} U (Q x Zs) and define a collection of 4-cycles C as follows:

(1) For each hole h; € H, let {00} U (h; x Zg,C(h;)) be an almost
resolvable 4-cycle system of order 17 (Example 2.1) and place these 4-cycles
in C. (We can do this so that the half parallel class does not contain co.)

(2) For each a and b belonging to different holes of H, let (K3 s, b(a, b))
be a partition of Kgg, with parts {a} x Zg and {b} x Zs, into 4-cycles and
place these 4-cycles in C. We can partition b(a, b) into four parallel classes
b1(a, b), ba(a, b), bs(a,b) and bs(a,b).

It is straightforward to see that (S,C) is a 4-cycle systems of order
16k + 1.

Resolution: If z € h; let n(2) = {{a,b} | {a # b} Nh; = 0 and
aob=boa =2z} Then {b;(a,b) | (a,b) € n(2)}, 7 € {1,2,3,4}, partitions
S\({oo} U (h; x Zg)) into 4 parallel classes. Pairing these up with 4 almost
parallel classes in ({co}U(h; x Zg, C(h;)) produces 4 almost parallel classes
of C. If h; = {z,y}, choosing disjoint sets of 4 almost parallel classes in
({oo} U (hi x Zg,C(h;)) gives 8 almost parallel classes of C. Running over
all holes in H produces 8k almost parallel classes, and of course the half
parallel classes in each C(h;) (remember that none of the half parallel classes
contains oo) can be pieced together to form a half parallel class of C.

Lemma 3.1 There ezists an almost resolvable 4-cycle system of every or-
der 16k + 1 except possibly 33.

Proof The above construction plus Example 2.1. a
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4 Commutative quasigroups with holes

In this section we will construct commutative quasigroups with holes which
are necessary for the 16k +9 Construction in Section 6. (These quasigroups
are of interest in their own right.) To this end we collect a few (mostly)
well-known ideas and results.

(1) There exists a group divisible design (GDD) with 1 group of size
z € {6,26}, u groups of size 4 (z!4*), and all blocks of size 3 if and only if
(a) 2 =6,u=0o0r 1 (mod 3), and v > 3; and (b) z =26, u = 0 (mod 3)
and u > 9 [1].

(2) If there exists a GDD of type z'4* with all blocks of odd size, then
there exists a commutative quasigroup with 1 hole of size z and u holes of
size 4. (Define an idempotent commutative quasigroup on each block.)

(3) A grid is a pair ({a,b,c} x {1,2,3,4},G), where G = {{(a,1),(b,2),
(¢,3)},{(a,1),(5,3), (c,4)}, {(a, 1), (b,4), (¢, 2)}, {(a, 2), (b, 1), (¢, 4)},
{(2,2),(5,3),(c, 1)}, {(a,2), (5,4), (c,3)}, {(a,3), (6,1), (¢, 2)},

{(av 3)7 (br 2)! (C: 4)}’ {(as 3)1 (b» 4)’ (c» 1)}’ {(a) 4)’ (b’ 3): (c’ 2)}»
{(a,4),(5,1),(c;3)}, {(a,4), (b,2), (c, 1)}}.

® {

a) b] C1

o
C2

o
a3 b3 c3

@ o L]
a4 by ca

Note that these triples do not contain any “vertical” or “horizontal” edges.

Lemma 4.1 There exists a commutative quasigroup of order 4t + 2 with
1 hole of size 6 and t — 1 holes of size 4 fort =1 and all t > 4.
Proof We will break the proof into 3 parts: ¢t = 1,2,4, or 5 (mod 6);
t =3 (mod 6); and ¢ = 0 (mod 6).

t =1,2,4, or 5 (mod 6). This follows immediately from (1a) and
(2) above by letting u = ¢ — 1.
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t = 3 (mod 6). Let X = {oo1,002} U ({1,2,...,t} x {1,2,3,4}) and
define a GDD(X, G, B) as follows:

G = {{o01,002,(1,1),(1,2),(1,3), (L4} U {{(3,1), (3,2), (3,3), (i, 4)} |
i€2,3,...,t}}.

Now let ({001, 002}U({1,2,...,t} x {i}), B;) be a PBD of order 5 (mod
6) with one block of size 5 and the remaining blocks of size 3 (see (3] for
example) with the proviso that {00,002,(1,i)} € B;. Put the blocks of
B;\{o001,002,(1,7)} in B. Let ({1,2,...,t},T) be a Steiner triple system
of order t. For each triple {a,b,c} € T, put the 12 triples of the grid in (3)
in B.

Then (X,G, B) is a GDD of type 6'4'~! with blocks of size 3 and 5.
The statement of the lemma follows from (2).

t = 0 (mod 6). When t = 6 we have the following example.

23 24 17 1813 14 21 2219 20 25 1 6 26915167 8 101
24 23 18 1714 13 22 2120 19 12 2 5 10 2616 15 8 7 9 1
9 10 21 2223 24 17 1826 8 5 625 16 11 1213 14 19 20 15 7
10 9 22 2124 23 18 177 26 6 5|15 25 12 1114 13 20 19 16 8
23 24 9 1( 25 20 3 421 22 1 2[26 14 15 1617 18 11 12 19 1
24 23 10 9 19 25 4 3P2 21 2 1[13 26 16 1518 17 12 11 20 14
17 18 21 22 15 16 26 19 10 23 2411 12 25 3(19 20 13 14 2 4
18 17 22 2] 16 15 2 2610 9 24 2312 11 4 2520 19 14 13 1 3
13 14 23 2425 19 15 16 B 4 261 8 21 2 6 1 2 18 20
14 13 24 2320 25 16 15 4 3 18 268 7 22 2 5 2 1 17 19
21 22 17 183 4 26 2 25 6 19 2023 24 13 1 8 15165 1
22 21 18 174 3 1 2§ 5 25 20 1924 23 14 1 7 16 156 2
19 20 26 721 22 9 1 4 255 1 2 23 2411 12 17 18 8 6
20 19 8 2622 21 10 9 3 6 29 2 1 24 2412 11 18 17 7 5
25 12 5 61 2 23 2426 18 19 2 21 22 7 8 103 4 11 17
11 256 6 52 1 24 2317 26 20 19 22 21 8 7{10 9 4 3 12 1§
5 6 25 1426 13 11 1 8 23241 2 21 22 3 4 9 10 14 14
6 5 16 2914 26 12 1 7 24231 1 22 2] 4 3 109 13 15
26 10 11 1215 16 25 421 22 13 1423 24 7 8 1 2 5 6 3 9
9 26 12 1116 15 3 2522 21 14 134 23 8 7 2 1 6 5 4 10
15 16 13 1417 18 19 2 6 7 811 129 1 4 1 2
16 15 14 1318 17 20 1 5 8 71211 109 3 21
7 8 19 2q11 12 13 141 2 15 1617 18 3 4 105 6
8 7 20 1912 11 14 1 1 16 18418 174 3109 6 5
10 9 15 1419 20 2 118 17 5 6 7 11 1314 13 3 4
12 11 7 8|13 14 4 3P0 191 2 5 17 1816 15 9 10

When t > 18 there exists a GDD of type 2614:~6 with all blocks of size
3 (1b). This gives a commutative quasigroup with one hole of size 26 and
t — 6 holes of size 4. Filling in the hole of size 26 with the above example
gives a commutative quasigroup with one hole of sizer 6 and the remaining
t — 1 holes of size 4.

This leaves only the case where ¢ = 12. So, let X = {00, 002, 003, 004,
o0s,006} U ({1,2,3,...,11} x {1,2,3,4}) and define a GDD (X, G, B) of
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type 6'4!1 as follows:

G = {{°°1s°°2v°°3:°°4’°°51°°6}} U {{(7" 1)»(i»2)1 (3,3), (":’4)} '
i€{1,2,3,...,11}}.

Define {1,2,3,...,11} x {i}, i € {1,2, 3,4}, to be blocks and place these
blocks in B. The remaining blocks in B are the following: {{o01, (1,3), (2,i+
9N} {001, (3,4), (4,4 + 5)}, {002, (1,1), (2,4 + 10), {002, (3, %), (4,7 + 10)},
{°°3! (1,3), 3,1+ 2)}’ {°°3a (2,9), (4,5 + n} {°°47 (1,9),(3,i+ 4)}»
{004, (2,1), (4,7 + 10)}, {o0s, (1,1), (4, + 6)}, {005, (2,1), (3,4 + 9)},
{006,(1,7:)7 (47"' + 10)}’ {°°6r(2’1:)1 (3)7' + 10)} I i€ le} U {{(1)1)’ (2$2 +
3,B3,i+25)} | j € {5,6,7,8},4 € Zu} U {{(2,i),(3,i+5), (4,5 + 2)} |
j€{1,2,3,4},i€ Zu}U{{(1,i),(3,i+7),(4,i+2j)} | j € {6,7,8,9},i €
le} u {{(1’7:)’ (2"’:+ l)a (4!i +4)}! {(1, i), (2’i +2)a (4:i+9)}a {(ls 'i), (2:i+
3),(4,i+8)},{(1,4),(2,4+4),(4,i+2) | i € Z1;}. The statement of the
lemma follows from (2).

Combining all of the above cases completes the proof. O

5 n=9

Lemma 5.1 There does not ezist an almost resolvable 4-cycle system of
order 9.

Proof Suppose there exists an almost resolvable 4-cycle system of order
9 on the vertex set {1,2,...,9}. We can assume one almost parallel class
ism = {(1,3,2,4),(5,7,6,8)}. Vertex 9 must appear in each of the 3
remaining almost parallel classes 73,73 and 74, and in the half parallel
class 5. We can assume that the half parallel class is

(1) (9,5,1,6),
(2) (9,5,1,8), 0r
(3) (9,2,1,5).

(ms either contains an edge joining two vertices in the same 4-cycle in m;
(Case (3)) or ms doesn’t use such an edge and has two vertices which are
non-adjacent or adjacent (Cases (1) and (2) respectively) in the second
cycle in m).

We consider each case in turn. Note that the vertices missing from
the almost parallel classes are the vertices in 75. We refer to the edges
{1,2},{3,4},{5,6}, and {7,8} as pure edges. It is useful to note that each
pure edge must be in a 4-cycle containing either 9 or another pure edge.

Case (1) m5 = (9,5,1,6).

178



The edge {5,6} must be in a 4-cycle in, say, w2 avoiding 9, so (by
renaming vertices 3 and 4 if necessary) we can assume it is (5, 6,4, 3) since
it must contain another pure edge. Since m, must avoid vertex 1, we can
assume (by renaming 7 and 8 if necessary) m = {5,6,4,3),(2,8,7,9)} or
{(5,6,4,3),(7,2,8,9)}. In the former case, only 1 pure edge {1, 2} remains,
so must be in 73 in a 4-cycle that includes 9, but no such 4-cycle exists (the
only remaining neighbor of 2 are 5,6 and 7). In the latter case no 4-cycle
remains containing the pure edge {7,8}.

Case 2 5 = (9,5,1,8)

Since this case has 4 pure edges to allocate to m, 73 and m4, we can
assume 7 has 2 pure edges; by symmetry we consider just the cases where
m contains (1,2,5,6) and (3,4,7,8) in turn.

In the first case, T = {(1,2,5,6),(3,7,4,9)} or {(1,2,5,6),(7,3,4,9)}
since it must miss 8 (and 3 and 4 can be interchanged). In the former situa-
tion, the only 4-cycle containing 1 is (1,7,2,9), so 73 = {(1,7,2,9), (3,6,4,
8)} (since it must avoid 5), leaving 74 = {(3,4,5),(6,2,8,7,9)}. In the lat-
ter case, (1,7,2,9) is the only 4-cycle left containing 1, so w3 = {(1,7,2,9),
(3,6,4,8)}, leaving 74 = {(6,2,8,7,4,5,3,9)}.

In the second case m = {(3,4,7,8),(2,5,6,9) or {(3,4,7,8),(2,1,6,9)}
or {(3,4,7,8),(1,2,6,9)} or {(3,4,7,8),(1,6,2,9)}. In the first case, the
only 4-cycle containing vertex 8 is (2, 6,4, 8), so 73 = {(2,6,4,8},(1,7,3,9)},
leaving 74 = {(4,5,3,6,1,2,7,9)}. In the second case, the only 4-cycle con-
taining 1 is (1,7, 3,9), so m3 = {(1,7,3,9),(2,5,4,6)} (since it must miss 8
and include 5), leaving 74 = {(3,5,6),(4,8,2,7,9)}. In the third case the
only 4-cycle containing 1 is (1,6,3,7), so 73 = {(1,6,3,7),(2,5,4,9)}, leav-
ing m4 = {(3,5,6,4,8,2,7,9)}. In the last case, the only 4-cycle containing
8 is (8,2,5,4), so 73 = {(8,2,5,4), (6,3,7,9)}, leaving 74 = {(4,6,5,3,9),
(1,2,7)}.

Case 8 75 = (9,2,1,5)

The edge {2,5} must be in a 4-cycle avoiding 9; we can assume it is
the 4-cycle (2,5,3,7) or (2,5,3,6) € m. Since w2 must miss 1, m =
{(2,5,3,7), (6,4,8,9)},{(2,5,3,6), (4,8,7,9)} or {(2,5,3,6),(7,4,8,9)}. In
the first case, the only remaining 4-cycle containing 5 is (3,4, 5,6); com-
pleting this to an almost parallel class avoiding vertex 2 requires 73 =
{(3,4,5,6),(1,8,7,9)}. But the remaining edges form the 8-cycle (1,6,2,8,
3,9,4,7). In the second case, no 4-cycle remains containing 5. In the last
case, the only 4-cycle containing 5 is (4, 5, 6,9), so 73 = {(4,5,6,9),(1,7,
3,8)} (since it avoids 1), leaving m4 = {(1,6,4,3,9),(2,7,8)}. a
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6 The 16k + 9 > 73 Construction

In this section we show, except possibly for 41 and 57, the existence of an
almost resolvable 4-cycle system of every order n = 9 (mod 6) except for
n = 9 for which no such system exists.

The 16k 4+ 9 > 73 Construction. This construction is identical to
the 16k + 1 Construction except for the use of quasigroups with holes of
size 6 and 4 instead of holes of size 2.

Let n = 16k + 9 > 73 and let (Q,0) be a commutative quasigroup
of order 4k + 2 > 18 with holes H = {h},hy,h3,--- yhi}, where h} is
a hole of size 6 and the remaining holes have size 4. (Section 4.) Let
S = {00} U(Q x Z,) and define a collection of 4-cycles C as follows:

(1) Let ({oo}U(h{ x Z4), C(Rt)) be an almost resolvable 4-cycle system
of order 25 (Example 2.2) and place these 4-cycles in C. (We can do this
so that the half parallel class does not contain cc.)

(2) For each i > 2, let ({oo} U (h; x Z4), C(h;)) be an almost resolvable
4-cycle system of order 16 (Example 2.1) and place these 4-cycles in C.
(We can do this so that the half parallel class does not contain 00.)

(3) For each a and b belonging to different holes of H, let (K4,4,b(a, b))
be a partition of Ky 4 with parts {a} x Z; and {b} x Z into 4-cycles and
place these 4-cycles in C. We can partition b(a,b) into 2 parallel classes
bi(a, b) and ba(a, b).

Then (S, C) is a 4-cycle system of order 16k + 9.

Resolution: For each z € hj (see Section 3) {b;(a,b) | (a,b) € n(z)},
i € {1,2}, partitions S\({oo} U (h} x Z4)) into 2 parallel classes. Pairing
these up with 2 almost parallel classes in ({oo} U (R} x Z4), C( 1)) produces
2 almost parallel classes of C. Since |h}| = 6, choosing disjoint sets of 2
almost parallel classes in ({00} U (k] x Z4), C(h})) gives 12 almost parallel
classes of C. An analogous argument for each of the holes of size 4 gives 8
almost parallel classes of C. This gives a total of 12 + 8(k — 1) = 8k + 4
almost parallel classes. Since none of the half parallel classes in the holes
contain oo they can be pieced together to form a half parallel class of C.
We have the following lemma.

Lemma 6.1 There exists an almost resolvable 4-cycle system of every or-

der 16k + 9 except 9 (for which no such system exists) and possibly 41 and
57. O

7 Summary

Combining Lemmas 3.1, 5.1 and 6.1 gives the following theorem.
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Theorem 7.1 There exists an almost resolvable 4-cycle system of every
order n = 1 (mod 8) > 17, except possibly for 33,41, and 57. There does
not erist an almost resolvable 4-cycle system of order 9. O

The problem of constructing almost resolvable 4-cycle systems of or-
ders 33,41, and 57 seems a difficult problem. The authors have struggled
valiantly with this problem, so far without success.
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