Uniform Generation of Unlabelled Graphs

Ida Pu
Department of Computin
Goldsmiths College, University of London
i.pu@gold.ac.uk

Alan Gibbons
Department of Computer Science
King’s College, London
amg@dcs. cl.ac.uk

January 24, 2006

Abstract

Given the number of vertices n, labelled graphs can easily be gen-
erated uniformly at random by simply selecting each edge indepen-
dently with probability 1/2. With n(n — 1)/2 processors, this takes
constant parallel time. In contrast, the problem of uniformly gen-
erating unlabelled graphs of size n is not so straightforward. In this
paper, we describe an efficient parallelisation of a classic algorithm of
Dixon and Wilf for the uniform generation of unlabelled graphs on n
vertices. The algorithm runs in O(logn) ezpected time on a CREW
PRAM using n? processors.

1 Introduction

We consider the problem of generating unlabelled graphs uniformly at ran-
dom. Very little is known about the uniform parallel generation of com-
binatorial objects. In [15] the authors describe several RNC algorithms
for generating graphs and subgraphs uniformly at random. An RNC algo-
rithms employs randomisation in their design to place the problem being
solved in the class NC, which (by the standard definition) is the class of
problems that can be solved by efficient parallel algorithms: algorithms that
run in polylogarithmic parallel time and use a poynomial number of pro-
cessors. For example, unlabelled graphs are generated in O(log® n loglog n)
time and O(n2?) work with a polynomially small error probability if their
number is known in advance and in O(logn) time and O(n3) work other-
wise; for an arbitrary graph RNC algorithms are described for the uniform

JCMCC 63 (2007), pp. 209-222

generation of its subgraphs that are either non-simple paths or spanning
trees.

The main result of this paper (Section 4) is a Las Vegas style RNC algo-
rithm which runs in O(log n) expected time using n? processors of a CREW
PRAM and which generates an unlabelled simple graph on n vertices uni-
formly at random from the set of all such graphs. By a Las Vegas RNC
algorithm we mean an algorithm which runs in ezpected polylogarithmic
time, uses a polynomial number of processors and which accurately gen-
erates the required outcome, in this case uniform generation of unlabelled
graphs. This result is essentially a parallelisation of a sequential algorithm
of Dixon and Wilf [1] which runs in O(n?) time. The time-complexities
stated above for the algorithm of [15] which solves the same problem are
worst-case running times. What we gain in this paper, at the expense of
an ezpected running time, is an algorithm of much greater simplicity. The
ezpected running time is also much faster than the worst-case running time
of [15]. It is also the case that the algorithm described here generates unla-
belled graphs ezactly uniformly, whereas in [15] there are small departures
from uniformity.

In section 2 we introduce some preliminary combinatorics. Section 3
recalls Dixon and Wilf’s sequential algorithm and describes important vari-
ations of some implementation details that lead to our parallelization of the
algorithm. In section 4, we describe our parallel algorithm and establish its
complexity parameters.

2 Preliminaries

A graph is simple if it has no parallel edges nor self-loops. It is undirected
if no vertex pair (u,v) in the graph is ordered, i.e. if (u,v) = (v, u). We use
in this paper the term ‘graph’ to mean an undirected simple graph unless
it is defined otherwise.

A labelled graph of size n is a graph whose vertex set is V = {1, 2, .y N}
An unlabelled graph is an isomorphism class of labelled graphs and may
be represented by any element of this class.

Given the number of vertices n, labelled graphs can easily be generated
uniformly at random. For uniform generation of a labelled graph we can
simply select each edge independently with probability 1/2. With n(n—1)/2
processors, this takes constant parallel time. In contrast, the problem of
uniformly generating unlabelled graphs of size n is not so straightforward.
If we employ the same algorithm just described for labelled graphs and
then remove vertex labels, unlabelled graphs are no longer generated with
equal probability. This is because each isomorphism class is generally of
different size. When all the labelled graphs are generated with an equal

210

probability, each unlabelled graph, as an isomorphism class of the labelled
graphs, will be generated with a probability that is proportional to the
number of labelled graphs in the class.

Two standard sequential approaches can be used to solve the problem
of generating unlabelled graphs uniformly at random (see [13] for a sur-
vey). One is based on counting formulas using either recurrence relations
or asymptotic enumeration. The other is based on the simulation of a
suitable Markov chain. In this paper we follow Dixon and Wilf who use
the first approach. So the problem of counting unlabelled graphs is essen-
tially the problem of finding the number of distinguished representatives of
isomorphic labelled graphs.

Isomorphic labelled graphs form equivalence classes (called orbits) under
the action of the permutation group on the vertex labels. Burnside’s Lemma
[4, 3] can be used to express the number of orbits in terms of the number of
objects which are fixed by permutations in the group at hand. We briefly
discuss the three well-known facts in group theory [14, 10, 11] as follows:

Let G be a finite group acting on a finite non-empty set 2. The equiv-
alence relation a ~ 8 (o, 8 € Q) holds iff a = g8 for some g € G and
the elements of are partitioned into equivalence classes which are called
“orbits of under G”. For each g € G, define Fiz(g) = {a : ga = a},
namely the set of elements fixed by the action of g.

(F1) (Frobenius-Burnside lemma) The number of orbits:
m =t e IFiz(g)l

(F2) For each orbit w, |{(g9,a) € G x 2 : a € wN Fiz(g)}| = |G|

(F3) If g, ¢’ lie in the same conjugacy class C of G then for each orbit w,
|Fiz(g’') Nw| = |Fiz(g) Nw|. In particular, |Fiz(g')| = |Fiz(g)|-

Now let © be the set of all labelled graphs with n vertices and G = S,
is the permutation group. The action of G on € is then to relabel the n
vertices of every graph G € § according to each permutation g € G.

Suppose that we could construct a multi-set S of labelled graphs such
that each isomorphism class (i.e.orbit) had the same number of representa-
tives within S. The problem of generating an isomorphism class uniformly
at random would then be solved by uniformly choosing an element G from
S and then ignoring the labels on G. A set such as S can be constructed as
follows: Given §, the set of all graphs on n vertices, successively operate on
Q with the elements of S,, and place successively found fixed elements into
S. That S would now contain exactly the same number of representatives
for each orbit follows from fact (F2) above.

The algorithm just described for uniformly generating an unlabelled
graph, although intrinsically simple, is very inefficient. This is because the

211

cardinality of S, is exponentially large in the problem size n. This, in turn,
provides a sequential running time that is exponential in n. In order to
provide a algorithm with an O(n?) ezpected running time, Dixon and Wilf
achieve the same effect by randomly choosing (with the right probability)
one element of S, by using fact (F3).

So what they actually do is randomly choose a conjugacy class with
weighted probability, and then choose an element within this class with
uniform probability. The weight, w;, of a conjugacy class C; is defined to
be the number of fixed elements induced by numbers of C; when operating
on . Thus: w; = |Fiz(g;)||C;| where |C;| is the cardinality of C; and g; is
any representative of C;. Note that (F3) allows w; to be written in this way
because it shows that w; is independent of the choice of g;. We choose any
conjugacy class C; with probability Pr(j) = w;/ Y_Cica Wi, Where o is the
set of all conjugacy classes. Now 3. ., w; is just |S| of our crude algorithm
so that, using fact (F1) above, we have Pr(j) = w;/m|G|. This choice
of Pr(j) makes the probability Pr(w) of choosing any orbit w uniform,
because Pr(w) = Pr(j)Ju%l = L1, where {-”g;l is simply the proportion of
fixed elements obtained from C; that are in w.

3 Dixon and Wilf’s Algorithm

Let Q be the set of all the labelled graphs on n vertices on which the
permutation group S, acts. Let Cy,Cj,..,C, be the conjugacy classes of
Sn and g; be a representative of C; (j = 1,..,7). The following algorithm
generates an unlabelled graph G with n vertices uniformly at random [1].

Algorithm 1 RANDGRAPH

1 Choose a conjugacy class C; of Sy with probability
Pr(j) = CllE=@ <<
2 If C; was chosen in step (1) then choose uniformly
at random an element G € Fixz(g;)
8 Output the graph G without vertez labels

The correctness of Algorithm 1, in terms of the uniformity of its gen-
erating unlabelled graphs, follows immediately from the group-theoretic
considerations of the previous section. We now establish the complexity
parameters that [1] obtains for the sequential version of the algorithm. In
what follows, we will largely follow [1] but add variations that will aid
parallelization of the algorithm in the later section.

3.1 Implementation

We first consider the implementation of Step (1) of Algorithm 1. Let p(n) be
the number of partitions of the integer n. From elementary graph theory,

212

two permutations are conjugate in S, if and only if they have the same
cycle structure (also called cycle pattern). In turn, there is a one-to-one
correspondence between the cycle structure of elements in S, and partitions
of n. A partition z;z2..z; of n is defined such that > 7_, z; = n. But
Z1Z2..x; might also represent a cycle structure in standard representation
of a permutation. The implementation of Step 1 conveniently concentrates
on the generation of a partition of n. We want to avoid the pretabulation of
probabilities of all partitions because p(n) grows about as fast as exp(K \/n)
with n, for some constant K.

A result by Oberschelp in [8] shows that a few partitions of n, in fact
those with many parts of size 1, contribute heavily to the total weight; the
other partitions contribute very little. This was shown by a result obtained
when deriving an asymptotic formula for g,, the number of unlabelled
graphs on n vertices. (see [8] by Oberschelp and p196-198 of [5]). Following

8], let
=2 w(m/nl

n—-k

where w(7) is the weight of the partition =, and the sum is over those
partitions m of n with exactly n — k parts of size 1. It is easy to see that
g0 =28 /1, g <0 (forn>1),and)}, 9 = gn. Oberschelp proves
that:

n

> "ot = g@o(mr2—n/2) (r=0,1,.,n)

k=r
Suppose that for each n we fix an ordering m, 7, .., Ap(n) of the partitions
of n such that for each ¢, m; has at least as many parts of size 1 as m;;; does.
Define t,(€), for each real £, 0 < £ < 1, as the least integer ¢ such that
iy Pr(m) > €. Finally let 7, be the average of t,,(£), then Oberschelp’s
result shows that

P(") n
> Pr(m) =Y 9% /g, = O(n?27")
i=2 k=2

So 1<%, =Y iPr(m) <1+ p(n)O(n?2~™). Therefore , — 1 as n — oo.
In particular ¢,, = O(1).

Although this result uses only the fact that ; is the partition with all
parts of size 1, Dixon and Wilf observed that if the partitions are ordered
as described above, then the bound on #, can be made more precise, and
direct calculation shows that £,, < 3 for all n.

We can now describe a top-level, coarse version of randomly generating
a partition of n (equivalent to Step 1 of Algorithm 1). The above analysis
shows that this algorithm will, on average, terminate after at most two
partitions have been generated.

213

Algorithm 2 Generation of a Partition of n: coarse version

1 chi a rand number £, 0 < £<1.

2 for k=0 ton do

for each partition m of n such that n has ezactly n — k parts of size 1, do
if the total probability of all partitions so far seen > €, then exit with n
else do nezt w.

b S

We need to refine Algorithm 2 by carefully describing the successive
generation of partitions. To produce all partitions 7 of n with n —k parts of
size 1, we produce all partitions of k£ with no parts of size 1 and adjoin n—k
1s. To produce all partitions of k¥ with no parts of size 1, we generate the
partitions of k—j into j parts and add 1 to every part, for each j = 1,..,k/2.
As we now describe, we depart from [1] in generating partitions of a given
number into a fixed number of parts.

An algorithm for generating the partitions of n into exactly m parts is
described in [7]. For fixed m, the partitions are generated in lexicographic
order. The algorithm is an old one and was discovered by K.F.Hindenburg
in 1778 (cf.[9]). We start with an initial partition of m — 1 parts of size 1
with one part (at the right most position in the standard representation)
of size n —m + 1. To obtain the next partition from the current one, the
elements are scanned from right to left, stopping at the rightmost x; such
that z,, —z; > 2. Replace z; by z; + 1 for j =i,i+1,..,m — 1 and then
replace z,, by the remainder n — E;":_ll z;. For example, in the partition
11334, i = 2 and the next partition is 12225. This detail is encoded in
Algorithm 3.

Algorithm 8 Generation of a Partition of n: fine version

Input: integern
Output: a partition of n stored in T chosen uniformly at random
generate a random number £, 0 < £ <1, SumProb ~ 0
fori=1tondo T[] —1
calculate Prob(partition), SumProb — SumProb + Prob(partition)
if SumProb > £ then output the partition and stop
for k=2 tondo
begin {Generate partitions with n — k parts of size 1}
fori=1lton-kdoT[i—1
for j = |k/2) downto 1 do
begin {Generate partitions of k — j with j parts by Hindenburg’s method }
fori=n—~k+1lton~k+j—1do T[] —2
Tr—k+j]l—k—j+2
10 calculate Prob(partition), SumProb «— SumProb + Prob(partition)
11 if SumProb > £ then output the partition and stop
12 finish — 0
18 repeat fori=n—k+lton-—k+jdoTlij—T[i]-1
14 p=n—k+j-1

©h IO o~

15 while Tln —k+j] - Tlp)<2andp>n—-kdope—p—1

16 ifp—1>n-kthen

17 begin T(p) — T[p] +1

18 forg=p+1ton—k+;j—1do Tlq — T[p|

19 8—0,forg=n—k+lton—k+3ji—1do s — s+ Tlq]

20 Tn—k+jl—k—s fori=n—k+1ton—k+jdo T[] — T[] +1
21 calculate Prob(partition), SumProb «— SumProb+ Prob(partition)
22 if SumProb > £ then output partition and stop

214

end

28 else finish — 1
24 until finish =1
end
end

We need to derive the running time of Algorithm 3 which uniformly at
random generates a partition of n. So far we have not considered how to
compute the probability of choosing a partition (lines 3, 10 and 21) which
represents a conjugacy class C;. Recall from line 1 of Algorithm 1 that we
choose C; with probability

.~ _ |Cjl|Fiz(g;)|
Prs) = mISn|

Now [1]:

ICj| = and |Fiz(g;)| = 259

n!
[1;(kekst)
where ¢(g) is the number of edge cycles induced by the vertex permutation
g;j. For example, if g; is (1)(2 3), then ¢(g) = 2 corresponding to the edge
cycles (12) — (1 3) — (1 2) and (2 3) — (2 3). We note that |S,| =n! and
m = g, the number of unlabelled graphs on n vertices. For the moment, we
shall assume that the universal constant g, is pre-computed and therefore
known, but we return to this question in the next section. We now have

that:
9¢(9)

Pr(j) = 55—
)= G TL@ED
From [1):
L N2
o(g) = Z{D_(H)*6() — 1(1) + ()}
=1
where (i) = Eﬂj k;, the conjugacy class (partition of n) has k; parts of
size j and the sum is over all j that are divisible by i. Also ¢() is the Euler

phi-function, that is the number of positive integers that are less than and
co-prime to 1, i.e.

¢@@) = |{n:1 <n<iand ged(n,i) =1}
We need to pre-compute, for 1 <i < n:
¢G)=i[Ja - (1)
pli

where the product is taken over all primes p that divide i. The identity (1)
is provided by [6].

215

For given i, we can compute the primes less than i in O(logi) time
using O(i¢/logi) processors [12]. The subset of primes that divide i can
then be found easily with (i/logi) processors in a further O(logs) time.
For all 1 < ¢ < n we can therefore pre-compute the ¢(i)’s in O(logn)
parallel-time using Y., i/logi = O(n®) processors. It follows that for
any conjugacy class, Pr(j) can be computed in O(n2) sequential time.
Therefore, on average (since only a constant number of partitions need
to be computed on average), the total time for computing the probabilities
with which partitions are chosen is O(n?). It is easy to see now that overall,
the ezpected running time of Algorithm 3 is also O(n?).

From Step 1 we have a partition in standard representation tyi2..1; from
which we must construct a representative of the corresponding conjugacy
class. Such a representation can be obtained by writing down the symbols
1,2,..,n and then inserting brackets so as to obtain the correct sequence of
cycle lengths. For example the partition 11134 would yield the representa-
tive

(1)(2)(3)(4 5 6)(7 8 9 10).

For computational purposes, a more convenient representative would be to
record, for each 1 <4 < n, the next integer in its cycle. For our example,
this gives 1 2 3 5 6 4 8 9 10 7 where the ith position records the integer
following i on the cycle. In general, this may be achieved by the following
linear time code in which RE Pla] stores the integer following a in its cycle:

Algorithm 4
1 a1
2 forb=1to j do

begin
3 if i, = 1 then begin REP[g] —a, a —a+1 end
4 else
5 begin d—a
6 for c=1 to iy — 1 do begin REP[a) —a+1,a —a+1 end
7 REP[g] —d,a —a+1

end
end

In order to choose a graph uniformly at random from Fiz(g), we compute
the edge cycles associated with g and, for each cycle independently, choose
with probability 1/2 whether all or none of the edges of that cycle will
appear in H, the edge set of the graph generated. In this way each graph
in Fiz(g) has equal probability of being chosen. We now use the array
REP to compute the edge cycles induced by the vertex permutation. In
the process we construct the adjacency matrix A of the graph constructed.
The following code achieves this in O(n?) time because each location Al3, j]
is visited not more than twice.

Algorithm 5

1 fori=1tondo
2 for j =1 to n do A[i,j] — =

216

8 4
10 2 6

Figure 1: The graph generated

3 fori=1tondo
4 for j = 1 to n do if A[i,j] = = then
begin
5 if i = j then A[i,j] — 0
6 else begin
7 choose z to be 0 or 1 uniformly at random
8 2 — i, y — j, A[i,j] — Alj,i] — 2, i — REP[i}, j — REP[j]
9 while not (i = x aend j = y) do A[i, j] — A[4,i] — z, i — REPi], j — REP[j)

end
end

We can illustrate the implementation of step 2 with the following repre-
sentative of a conjugacy class: 12356 4 8 910 7. The edge cycles induced
by the vertex permutation are as follows, where the subscript indicates a
random choice that the cycle is in (1) or not in (0) the graph:

{(12)}o0, {(1 3)}o, {(23)}1, {(1 4)(1 5)(1 6) }1, {(24)(25)(26)}0, {(34)(35)(36) },
{(1 7)(1 8)(1 9)(2 10)}o, {(2 7)(2 8)(2 9)(2 10)}o, {(3 7)(3 8)(3 9)(3 10)}o,

{(45)(56)(4 6)}o, {(47)(58)(6 9)(4 10)(5 7)(6 8)(4 9)(5 10)(6 7)(4 8)(5 9)(6 10)}o

{(7 8)(8 9)(9 10)(7 10)}1, {(7 9)(8 10)}». The graph generated is shown in

Figure 1.

3.2 Dixon and Wilf’s Result

The foregoing Implementation Section has shown that steps 1 and 2 of Algo-
rithm 1 may be made to run in O(n?) sequential expected time. Step 3 triv-
ially takes O(n?) time. Thus provided (discussion of implementing Step 1 of
the algorithm) the universal constant g,, the number of unlabelled graphs
on n vertices, is known, we have the following theorem.

Theorem 8.1 (Dizon and Wilf) There erists an O(n?) time sequential
algorithm to generate the unlabelled graphs on n vertices uniformly at ran-
dom.

From a purely practical point of view, we may consider that efficient
computation of g, is not a problem. As (1] points out, the formula of

217

Oberschelp (given earlier) for g, will compute g, in O(1) time provided
that a fized accuracy (say D digits) is all that is required. Within the
computation we have to take successive partitions in the same order that
make Algorithm 3 efficient. Tiny errors in the probability of graphs will
then be of no consequence. From a theoretical point of view, it is not known
if there is a polynomial time algorithm to compute g,, exactly.

4 Parallel Algorithm for Uniform Generation
of Unlabelled Graphs

In this section we establish the existence of a Las Vegas style RNC algorithm
for the uniform generation of unlabelled graphs by parallelising Algorithm 1
of the previous section.

Consider Algorithm 3 which realises Step 1 of Algorithm 1. This algo-
rithm merely finds a constant number of partitions of 7 and keeps a running
total of the probabilities with which they should be chosen. It takes O(n?)
time to compute such a probability and O(n) time to generate each succes-
sive partition from the previous one. The bulk of the code of Algorithm 3
is just to ensure that partitions are generated in the right order so that on
average only a constant number of them are required. In order to establish
polylogarithmic running time for Algorithm 1 using a polynomial number
of processors it is therefore sufficient to achieve these parameters for the
computation of a single probability and for the generation of one partition
from another.

Recall that there exists a parallel algorithm running in O(logn) time
with O(n/logn) processors [12] that can evaluate the Euler phi-function
#(i) for all 1 < i < n. We therefore pre-compute these &(%) in readiness
for the computation of ¢(g) and then the probability Pr(;) defined in the
previous section. For fixed ¢, we can compute the I(i) contained in the ex-
pression for c¢(g) using the standard balanced binary tree technique [2]) in
O(log n) time with n/logn processors. For all i we therefore need O(logn)
time with n?/logn processors to compute the I(i). With the ¢(i) and I(3)
pre-computed one more application of the balanced binary tree technique
will evaluate c(g) in a further O(logn) time with n/logn processors. Sim-
ilar computations will compute [];(i*:k;!) and 2°) in O(logn) time with
n/logn processors. It follows that overall, Pr(j) may be computed by a
CREW PRAM in O(logn) time with n2/logn processors.

Now consider the generation of one partition from another. It is in fact
very easy to efficiently parallelise this operation. We need just consider
how Hindenburg’s algorithm generates a next partition of n into m parts
from a similar partition. If the current partition z,zs..z,, is stored in an
array X, X([i] containing z;, then the first task is to find the largest i such

218

that z,, — z; > 2. This is easily achieved by assigning a single processor
to each 1 < i < m which then places a 0 in Y[i] and overwrites this with
i iff z,, — z; 2 2. This takes constant time with m < n processors, or we
can reschedule the work on m/logn < n/logn processors in O(logn) time.
The z; with largest i such that z,, — z; > 2 is then at the address in X
corresponding to the largest number stored in array Y. The maximum of
a set of m numbers is found in O(logm) < O(logn) time using m/logn <
n/logn processors by the standard balanced binary tree technique. Let z;
denote the corresponding element in the partition. Hindenburg’s algorithm

now requires the following assignments to generate the new partition:

forall:,g<:<m-1inparalleldo:‘ —zi+1
[2‘_1 £

The summation in the assignment to z,, can be evaluated in O(logm) <
O(log n) time with m/logn < n/logn processors using the balanced binary
tree technique. The assignments to z;, j < ¢ £ m — 1 may be scheduled
to run on the same number of processors in the same time. Overall we,
therefore, have the following lemma:

Lemma 4.1 Step 1 of Algorithm 1 can be realised on a CREW PRAM in
O(logn) time using n%/logn processors.

Now consider the parallel implementation of Algorithm 4 which gen-
erates a suitable representative (in the array REP) of a representative of
the conjugacy class corresponding to a randomly generated partition. If
the partition is z,z,..z; stored in array X([1..j], then the following code
generates REP (in the following algorithm, array Z[i] stores the index of
the cycle that 7 belongs to):

1 perform a parallel prefiz computation on the z:, placing 3%
2 for eachi, 1 £i < n in parallel do
find Z[i] such that Y[Z[i] - 1] <ig Y(Z[i])
if X[Z [t]] =1 then REP[i] — i
else if i = Y[Z[i]] then REP[:] ~Y[Z[i] - 1) +1
else REP[i] —i+1

zi, 1 <k <j, in Y[&].

i1

S b W

Here Step 1 takes O(log n) time using n/logn processors of a CREW PRAM
by the standard prefix sum algorithm, see [2]. Step 2 takes a constant time
with n processors or, by rescheduling, O(logn) time on n/logn processors.

To complete the description of the parallel implementation of Algo-
rithm 1 we must parallelise the action performed by Algorithm 5. That is,
we must generate the adjacency matrix A of the graph produced by the
algorithm from the array REP. The method we adopt is different from that
of Algorithm 5.

For the matrix elements A[i, j], ¢ < j, we first assign the edge following
(,7) on the edge cycle induced by the corresponding vertex permutation.

219

If (k,1) is this edge then we adopt the convention of writing the edge such
that k < I. In this way, if we trace edge cycles within the adjacency matrix,
then we stay within the upper right triangular portion of the matrix. The
following assignments achieve our objective:

for all (i,7), 2<i<n, i <j<nin parallel do
A[i, j] — if REP[i) < REP[j] then (REPIi], REP{j]) else (REP[j], REP[i])

This takes constant time with O(n?) processors or O(logn) time with
n?/logn processors. Each Ali, j] now contains a pointer to the next edge in
the edge cycle and a number of edge cycles are formed. We then assign the
value of 0 or 1 uniformly to each such cycle and replace the corresponding
location on a cycle with the cycle value. As we shall see, this can be done
efficiently by the pointer doubling method [2]. We proceed in two stages:

1. Each location A[z, j] needs to acquire an additional pointer such that
every location on the same cycle has a pointer to the same location.
This location can conveniently be that location on the cycle which
has the lexicographically smallest address (3, j). For any (i, j) denote
this by (¢, 7). Initially set (i,j) — *forall2 <i<n,i <j<n. Now
each time we double pointers we compare the current value of (i, 5)
with that of the item pointed to and update (3,) if a smaller value is
found. After O(log n?) = O(logn) time using O(n?) processors, each
edge (i,7), i < j, will have (perhaps indirectly) “seen” every other
edge on its cycle and will have found its (2, §) value.

2. On each edge cycle there will be a unique edge such that (%,) = (i,).
If we assign a processor to each (i, j) we then execute:

for all (1,7), 2 <i < n, i <j < n in parallel do
if (i,5) = (4, 7) then uniformly at random assign 0 or 1 to Al[i, j]

We now copy the value of A[i, j] assigned to in the last step to every
other edge on the same cycle:

for all (i,7), 2<i < n, i <j<nin parallel do
if (i, 5) # (4,5) then A[4, j] — Af{,7)

Notice that this involves concurrent reads, so that our PRAM model
is the CREW variant.

The rest of the elements of the adjacency matrix are assigned to as follows:

for all (i,j), 1 <i<n, 1 <j<iin parallel do
if i = j then Ali, j] = 0 else A[i, j] — A[j, 4]

220

This takes constant time with O(n?) processors or O(logn) time with
n2/logn processors. Taking the most work costly stage in the above de-
scription we have the following Lemma.

Lemma 4.2 Step 2 of Algorithm 1 can be realised on ¢ CREW PRAM in
O(logn) time using n? processors.

Combining the last two lemmas we can now state the main result of this
paper.

Theorem 4.1 There exists an algorithm running in O(log n) ezpected time
using n? processors of a CREW PRAM which uniformly at random gener-
ates an unlabelled graph on n vertices from the set of all such graphs.

5 Summary and Open Problems

The main result of this paper is the design of a Las Vegas style algorithm
which runs in O(logn) ezpected time on a CREW PRAM using n? pro-
cessors which uniformly generates an unlabelled graph from the set of all
such graphs on n vertices. The work measure of our parallel algorithm is a
logarithmic factor larger than the sequential algorithm of Dixon and Wilf.
Whilst this is no great penalty to pay to get efficient parallel computation it
does pose the question as to whether there is an optimal parallel algorithm
for this problem.

A problem closely related to the one solved in this paper is the uniform
generation at random of connected graphs on n vertices efficiently either by
a sequential or a parallel algorithm (of course, the former would follow from
the later). In fact the algorithm of Dixon and Wilf and our parallelisation of
it provide solutions to this problem. We can run either algorithm repeatedly
until a connected graph is produced. There are well-known algorithms for
testing connectivity that run in O(n?) sequential time or O(log® n) parallel
time on a CREW PRAM using n2/ log n processors. Since the proportion
of connected graphs in the set of all unlabelled graphs is always at least
1/2 we will need, on the average, to test at most two graphs. Thus we
have an algorithm running in O(log? n) parallel time on a CREW PRAM
using n?/ log? n processors which uniformly generates connected graphs on
n vertices.

One interesting problem is that of generating uniformly at random the
graphs on n vertices with ezactly e edges. It is an open question as to
whether the methods described in this paper would provide an effective
solution either by sequential or by parallel computation.

221

References

(1] J.D. Dixon and H.S. Wilf. The random selection of unlabelled graphs.
Journal of Algorithm, 4:205-213, 1983.

[2] A. Gibbons and P. Spirakis. Lectures in Parallel Computation. Cam-
bridge University Press, 2005.

[3] C. Godsil and G. Royle. Combinatorial Theory, Martin Aiger-
Mathematics. Springer, 2004.

[4] J. Gross and J. Yellen. Graph Theory and Its Applications. CRC Press,
1999.

(5] F. Harary and E.M. Palmer. Graphical Enumeration. Academic Press
New York and London, 1973.

(6] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Num-
bers. Oxford, 5th edition, 1979.

(7] L.D.H. Lehmer. Applied Combinatorial Mathematics, chapter The Ma-
chine Tools of Combinatorics. Beckenback (ed.), Wiley NY, 1964.

[8] W. Oberschelp. Kombinatorische anzahlbestimmungen in relationen.
Mathematics Annul, 174:53-58, 1967.

(9] E.M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms.
Prentice Hall, Englewood Cliffs, New Jersey, 1977.

(10] J.J. Rotman. The Theory of Groups - an Introduction. Allyn and
Bacon, Inc., 1965.

[11] C.C. Sims. Computation with Finitely Presented Groups. Cambridge
University Press, 1994.

[12] J. Siorenson and I. Parberry. Two fast parallel prime number sieves.
Information and Computation, 114, 1994.

[13] M.G. Tinhofer. Generating graphs uniformly at random. Computing,
7:235-255, 1990.

(14] D.B. West. Introduction to Group Theory. Prentice-Hall Inc., 2nd
edition, 2001.

(15] M. Zito, I. Pu, M. Amos, and A. Gibbons. RNC algorithms for the
uniform generation of combinatorial structures. In Proceedings of the
7th Annual ACM-SIAM Symposium on Discrete Algorithms, Atlanta,
Georgia, 28-30 January 1996.

222

