On the Covering Numbers Cy(v, k,t),t > 3

Iliya Bluskov
Department of Mathematics
University of Northern BC
Prince George, B.C. V2N 4Z9
Canada

January 12, 2006

Abstract

A t-(v,k, ) covering is a set of blocks of size k such that every
t-subset of a set of v points is contained in at least A blocks. The car-
dinality of the set of blocks is the size of the covering. The covering
number C(v,k,t) is the minimum size of a ¢-(v, k, A) covering. In
this article we find upper bounds on the size of ¢-(v,k,2) coverings
for t = 3,4, k = 5,6 and v < 18. Twelve of these bounds are the
exact covering numbers.

1 Introduction

A natural upper bound on the covering number Cj (v, k, t) is the following.
Ca(v,k,t) < AC(v,k,t).

It can be easily obtained by taking A copies of a (v, k,t) covering. In this
paper we are naturally interested in obtaining an upper bound on Cx (v, k, t)
smaller than AC(v,k,t) in the case when C(v,k,t) is known, and smaller
than Au, where u is the best known upper bound on the covering number
C(v, k, 1), otherwise. All of the coverings found in this paper meet these
conditions. References for the best upper bounds on C(v, k, t) are supplied
in the proofs. The choice of parameters of interest is justified by the fact
that the covering numbers C2(v,4,2) and Cs(v, 5,2) are known [8].

A general lower bound on Cj (v, k,t) is due to Schénheim [11].
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Theorem 1.1

Ca(v, kyt) > I—%C)\(v ~1,k-1,¢— 1)] .

By iterating the inequality of Theorem 1.1 we obtain the following.

Corollary 1.2

Cr(v,k,8) > [;-’ [;:i [Z:zii)\] H

Let D = {By, Ba,...,By} be a collection of k-subsets (called blocks)
of a v-set X(v) = {1,2,...,v} (with elements called points). Then D is a
t-(v, k, A) design if every t-subset of X (v) is contained in exactly A blocks
of D. Clearly, a t-(v, k, A) design is a t-(v, k, A) covering of minimum size.

A well-known necessary condition for the existence of a t-(v, k, A) design
D is that the A\;, 1 < ¢ < ¢, defined by

A _k—qg+1

/\0:=b=|D|, and q—m

)\q—l’

be integers. Obviously, A, = A and the number of the blocks of the design
is

L, _vv=1)..(v—-t+1)
do=b= Tkt D)

Let D = {By,By,..., By} be a t-(v,k, ) design. It is known [6] that
D, ={X(v)\B: B € D}isat-(v,v—k,A(";*) /(%)) design called the
supplemental design of D. Given a t-(v,k, ) design D and a point =z,
the blocks of D that contain z form a (¢ — 1)-(v — 1,k — 1, ) design on
X\{z} called the derived design of D with respect to z. The blocks
of D that do not contain z form a (t - 1)-(v — 1,k,A\s—1 — A¢) design on
X\{z} called the residual design of D with respect to z.

The next construction is the covering counterpart of a derived design.

Construction 1.3 Given a t-(v,k,\) covering design D and a point z €
X (v), the blocks of D that contain z form a (t—1)-(v—1,k—1,)) covering
on X(v) \ {z}.
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A covering of the smallest size among those obtainable from D is produced
by choosing z to be a point that occurs in the fewest blocks of D.

The set of all k-subsets of X (v) will be denoted by X (¥)(v). (We will use
X (%) instead of X(¥)(v) whenever the value of v is clear from the context.)
Consider the set X(9)(v) = X(*) wheret+1< s < [%J . The intersection
numbers of an s-subset S of X(v) with respect to the blocks of a
t-(v,k, ) design D are defined by

ni=ni{S)={B:B€D,|BnS|=i}|,i=0,1,..,s.

So n; is the number of blocks of D that intersect S in i points. The
intersection equations for S are given by

28: (;) ng = (:z) Am for  m=0,1,..,min(s,t) [12].

i=m

The spectrum of A € X(*) under D is the ordered (m — t)-tuple
Specp(A) = (Ne+1,Ne42, - Pm)s

where m = min{k, s} and n;, i = t+1,...,m, are the intersection numbers
of A with respect to the blocks of the design D.

The spectral set of X(¥ under D is the collection of all possible
spectra of the elements of X (%) under D.

The equivalence relation ® on X(®) is defined by A;RA; if and only
if Specp(A;) = Specp(A;). Therefore R partitions X(®) into equivalence
classes X{, X9, ..., X{* and we write Specp(A4) = Specp(X{?) for all
Ae Xi(’) C X (9. It turns out that some of these classes, or unions of some
of these classes, are ¢ -designs for some ¢'.

Let the set X be the disjoint union of the sets X, X5,...,X;. Then a
(my +m2 + ...+ my)-subset S of X is said to be an [m;,m2,...m;]-set over
X1 UX2U...U X, if m; of the elements of S arein X;,i=1,2,...,1.

It is convenient to represent a covering by a b x k matrix whose rows
are the blocks of the covering. Let

a1 a2 ... Gin by bz ... by

a a e @ b b ... b
A= 21 Q22 2n and B= 21 b2z 2g

aml am2 cew amn bpl bp2 e bpq
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be a set of m blocks of size n and a set of p blocks of size g, respectively.
We use the notation AB to represent the following set of mp blocks:

{{aﬂ,agz,.. . ,a,'n,bjl,bjz, . .,qu} ti= 1,2,...,m; ] = 1,2, ...,p}.

2 Results
Theorem 2.1 C,(10,5,3) = 28.

Proof. We searched for a self-complimentary design, that is, a design
which has the same blocks as its suplemental design. The following con-
struction gives a 3-(10, 5, 2) covering design of minimum size. Extend each
of the 14 blocks given below by the point 10. The new blocks and their
complements form a 3-(10,5,2) covering of size 28.

D O N N e
Ut I > OV b O O N
COCOOO 003w
O WO WO WO OW W
QO DN DN =t b
U Ut N
O~
~J 00 0o =3 Lt 0o

The minimality follows from C5(9,4,2) = 14 [8] and the Schénheim Theo-
rem. a.

Theorem 2.2 C3(12,5, 3) = 48.

Proof. The blocks of a 3-(12,5,2) covering of size 48 are listed be-
low. Points given in bold show some structure within the covering; further
structure is evident from the grouping of the blocks: Partition X (12) into
the three sets X; = {1,2,3,4}, X, = {5,6,7,8} and X3 = {9,10,11,12}.
Let A be the set of the first 16 blocks of the first column of blocks in the
list, B the set of the remaining 8 blocks in the first column and C the set
of blocks in the second column. Then we can observe the following.

Each (3,0, 0]-set is covered exactly four times by the blocks of A.

Each of the [0, 3,0] and [0, 0, 3]-sets is covered exactly four times by the
blocks of B.
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Each of the [2,1,0] and [2,0,1]-sets is covered exactly twice by the
blocks of A. v

Each of the [1,2,0] and [1,0,2}-sets is covered exactly once by a block
of B and once by a block of C.

Each of the [0,1,2] and [0, 2, 1]-sets is covered exactly twice by a block
of C.

Finally, each [1,1,1]-set is covered exactly once by a block of A and
once or twice by a block of C.

1 2 3 5 9 1 56 6 11 12
1 2 3 6 10 1 5 7 9 1
1 2 3 7 1 1 5 8 10 12
1 2 3 8 12 1 6 7 9 12
1 6 8 9 10
1 2 4 5 10 1 7 8 10 11
1 2 4 6 9
1 2 4 7 12 2 5 6 9 12
1 2 4 8 1 2 5 7 10 12
2 8 8 9 11
1 3 4 5 12 2 6 7 10 11
1 3 4 6 1 2 6 8 11 12
1 3 4 7 10 2 7 8 9 10
1 3 4 8 9
3 5 6 9 10
2 3 4 5 1 3 68 7 11 12
2 3 4 6 12 3 5 8 10 11
2 3 4 7 9 3 6 7 10 12
2 3 4 8 10 3 6 8 9 1
3 7 8 9 12
1 5§ 6 7 8
2 5 6 7 8 4 5 6 10 11
3 5 6 T 8 4 5 7 9 10
4 5 6 T 8 4 5 8 9 12
4 6 7 9 1
1 9 10 11 12 4 6 8 10 12
2 9 10 11 12 4 7 8 11 12
3 9 10 11 12
4 9 10 11 12

The result follows from C2(11,4,2) = 20 [8] and the Schénheim Theo-
rem. o.
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Proposition 2.3 C,(13,5,3) < 65.

Proof. Given below are the representatives of the orbits under the
cyclic group of order 13.

1 2 3 6 12
1 2 3 8 11
1 2 4 6 10
1 2 49 11
1 25 7 8
We note that the best upper bound on C(13, 5, 3) is 34 [10]. a.

Proposition 2.4 C,(18,5,3) < 180.

Proof. Given below are the representatives of the orbits under the
cyclic group of order 18.

1 2 3 7 16 1 2 6 14 17
1 23 9 10 1 2 10 13 17
1 2 4 5 14 1 3 5 7 13
1 2 4 7 12 1 3 6 11 15
1 2 5 8 15 1 3 7 12 14
We note that C(18,5,3) = 94 is known, [9). 0.

Proposition 2.5 C(7,6,4) = 6.

Proof. Remove one of the 6-sets of X(®)(7). The six remaining 6-sets
form a 4-(7, 6, 2) covering. The result follows from Schénheim Theorem. O.

Proposition 2.6 Cy(6,5,3) = 5.

Proof. Remove one of the 5-sets of X(®)(6). The five remaining 5-sets
form a 3-(6,5,2) covering. The result follows from Schénheim Theorem.
a.

Theorem 2.7 C»(8,6,4) = 12.
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Proof. Partition X (8) into the two sets X; = X (4) and X, = {5,6,7,8}.
Let A and B be the sets of all unordered pairs on X; and Xj, respectively.
We claim that the collection

A5678
1234 B

is a 4 — (8,6,2) covering of size 12.

The [0,4]-sets and the [4,0]-sets are each covered exactly 6 times, the
[1,3]-sets and the [3,1]-sets are each covered exactly 3 times and the [2,2]-
sets are covered each exactly 2 times. o.

Corollary 2.8 C»(7,5,3) =9.

Proof. Apply Construction 1.3 to the covering from the preceding
theorem. a.

The following theorem has been proved in [4].

Theorem 2.9 Let v = 2 or 4 (mod 6) and m = (v — 4)(v? — 15v +
62) — 1. Then Cm(v,v — 4,4) = 359(v — 1)(v — 2) = C1(v,4,3).

Corollary 2.10 C3(10,6,4) = 30.
Proof. Apply the preceding theorem with v = 10. 0.
Corollary 2.11 C,(9,5,3) = 18.

Proof. Apply Construction 1.3 to the covering from the preceding
theorem. 0.

The 4-(10, 6, 2) covering of size 30 found in [4] is actually a 3-(10, 6,5)
design D, so that a 3-(9,5,2) covering of size 18 (it is also a 2-(9,5,5)
design) can be obtained as the derived design of D.

Proposition 2.12 C;(11,6,4) < 55.

Proof. Multiply the following block by 2%, i = 0,1,2,3,4 to generate
the representatives of the orbits under the cyclic group of order 11.

1 2 3 4 6 10

23



We note that C(11,6,4) = 32 is known [10].

We use spectral sets for the next result and later on, in proposition 2.20.

The exhibited spectral sets can be verified by computer.

Proposition 2.13 C,(16,6,4) < 280.

Proof. Let D be the residual design of the unique 3-(17,5,1) de-
sign [13]. It is a 2-(16,5,4) design. The spectral set of X(6)(16) under

Dis
Equivalence | Spectrum Size of
class ng ng4 ng | the class
x{9 10 0 1 48
x® 8 0 1 480
x{® 6 3 0 640
x® 0 2 0 2400
x® 9 2 0 1920
x® 8 2 0 240
x® 13 1 0 960
x{® 12 1 0 240
x{® 111 0 960
X9 6 0 0 120

We need the class ng). It is a 2-(16,6,15) design. Now, the spectral set

of X(6)(16) under X{% is

Equivalence Spectrum Size of
class ng n4 ns ng | the class
AR 40 7 0 1 120
Y® 28 10 2 0 240
v ® 34 9 2 0 960
Y ® 40 6 2 0 480
v® 3 10 1 0 960
A 0 9 1 0 960
Y,® 33 9 1 0 1920
v® 32 14 0 0 240
v® 30 14 0 0 960
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Y |32 13 0 0480
Y9 [36 12 0 0] 160
Y140 11 0 0480
Y® |4 10 0 0 48

Let D’ be the union of the blocks of the classes Yl(e) and Yl(f ). We claim
that D’ is a 4-(16, 6, 2) covering design. The easiest way to verify this is by
checking the spectral set of X{4)(16) under D'. It is

Equivalence | Spectrum Size of
class ng ng | the class
z 16 6 20
VAR 28 3 480
VAN 32 2 1320

which shows that the blocks of D' cover each 4-subset of X (16) at least
twice. The result now follows from |D’| = 280.

We note that the best upper bound on C(16, 6,4) is 152 (found in [9}). O.
Proposition 2.14 C;(7,6,3) = 5.

Proof. Remove any two of the 6-sets of X()(7). The five remain-
ing 6-sets form a 3-(7,6,2) covering. The result follows from Schénheim
Theorem. a.

Theorem 2.15 C(8,6,3) = 7.
Proof. Partition X (8) into the three sets X; = X(2), X2 = {3,4,5}
and X3 = {6,7,8}. We claim that the collection

123454, i=6,7,8
126785, j =3,4,5
345678

is a 3-(8,6,2) covering of size 7.

The [0,3,0]-sets, [0,0,3]-sets, [1,2,0]-sets, [2,1,0]-sets, [1,0,2]-sets and [2,0,1]-
sets are each covered exactly 3 times, while the [1,1,1]-sets, [0,1,2]-sets and
[0,2,1]-sets are each covered exactly 2 times. o.
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Theorem 2.16 C5(9,6,3) = 11.

Proof. The following 3-(9, 6,2) covering was found by optimization.

1 2 3 46 7 1 45 6 79
1 23 5 69 2 3 45 7 8
1 2 45 89 2357 89
1 26 7 89 2 45 6 89
1347809 3 456 89
13 56 78
The result follows from C2(8,5,2) = 7 and Schénheim Theorem. o.

Theorem 2.17 C»(10,6,3) = 15.

Proof. Let D be one of the three non-isomorphic 2-(10, 4, 2) designs [7].
Then D is residual of one of the three symmetric 2-(16,6,2) designs [7).
Therefore, the intersection of any two blocks of D is at most 2. The number
of blocks of D is 15. The supplemental design D of D is a 2-(10, 6, 5) design
with Mg = 15, \; = 9 and X\, = 5. We claim that D is a 3-(10, 6,2) covering
of minimum size.

Consider an arbitrary 3-subset S of X (10). The intersection equations
of S with respect to D are

no+ny+ns+nz3 =15
n1 + 2no 4+ 3ng = 27
ny +3n3 =15

Solving this system for ng,n; and na, we obtain

Ny =15—-"ng3
n = -3+ 3n3
ng=3—n3

Since ng > 0 and n; > 0, we have 1 < n3 < 3. If n3 = 1, then ng = 2, so
that there are two different blocks of D that do not intersect S. However,
every two blocks of D have at most 4 points in common, so that they
must contain at least 8 points not in S, which is a contradiction, because
|S] = 3. Therefore, nz > 2, so that D is indeed a 3-(10, 6, 2) covering. The
minimality follows from C»(9,5,2) = 9 (8] and Schénheim Theorem. 0.

Theorem 2.18 (C,(13,6,3) = 33.
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Proof. The following 3-(13, 6, 2) covering was found by optimization.

123 6 8 9 235 9 12 13
1 23 6 11 13 237 8 10 11
124 5 6 9 2 37 8 10 13
1 24 6 9 12 2 45 7 910
125 6 710 2 4 5 11 12 13
1 26 7 10 12 2 4 7 9 10 12
126 8 11 13 2 58 9 11 12
134 7 9 13 2 7 9 10 11 13
1 3 4 10 11 12 345 6 71
1 35 7 8 12 346 8 910
135 9 10 11 3 56 10 12 13
145 8 10 13 3 67 9 11 12
1 47 8 91 4 6 7 8 12 13
1 5 7 11 12 13 4 6 9 10 11 13
1 8 9 10 12 13 5 6 7 8 9 13
2 3 4 5 8 12 5 6 8 10 11 12
2 3 4 8 11 13

The result follows from C2(12,5,2) = 15 and Schénheim Theorem. o.
Proposition 2.19 Cz(i5, 6,3) < 55.

Proof. Given below are the representatives of the orbits under the
cyclic group of order 15.

123 5 6 13
123 8 10 12
1 2 4 10 12 13
1 26 7 11 12
1 36 8 11 13

The last two orbits are short.

We note that the best upper bound on C(15,6,3) is 31 (folklore). 0O.
Proposition 2.20 C>(18,6,3) < 88.

Proof. Let D be the affine plane of order 4. Hence D is a 2-(16,4,1)
design. The spectral set of X()(16) under D is
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The class Xfe) is a 2-(16,6,6) design. Now consider the spectral sets of

Equivalence | Spectrum Size of
class n3 ng | the class
x{® 0 0 48
X9 2 0 3520
x{® 3 0 2880
x® 4 0 240
X9 0 1 360
x® 1 1 960

X©)(16) and X*)(16) under the design X®). These are

Equivalence | Spectrum Size of
class n3 the class
x& 0 80
x{® 2 480

and

Equivalence | Spectrum Size of
class ng n4 | the class
x 0 0 20
x® 6 0 960
x® 8 0 120
x{ 4 1 720

They show that the blocks of Xl(e) cover exactly twice every triple in
X®)(16) except for the triples contained in the blocks of D. Therefore,

the set of blocks
D 1718 (twice)

x®
is a 3-(18, 6,2) covering of size 88.
The best upper bound on C(18,6,3) is 48 [5]. O.

The next table summarizes the current knowledge on C; (v, k, t) for pairs
(k,t) in {(5,3), (6, 4?, (6,3)}. Columns 2 and 5 are given to illustrate the
computation of the Iower bounds in columns 3 and 6 via Schénheim Theo-
rem. The dot after an entry indicates that it is the coveringrnumber. The
starred entries are covering numbers found in this paper. The remaining
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entries in columns 3,4 and 6 are presented in the form a — b — ¢, where
a is the lower bound obtained by Schonheim Theorem, ¢ is equal to 2u,
where u is the best known upper bound on C(v,k,t) (see (1] and (3] for

the best known upper bounds on C(v, k,t)) and b is the upper bound on
Ca(v, k,t) found in this paper (except for Ca(v,6,4), v = 14,17,18, for
which no bound better than 2u was found).

v | Ca(v,4,2) C2(v,5,3) C3(v,6,4) C2(v, 5,2) C2(v,6,3)

5 4.

6 6. 5.° 4,

7 7. 9. 6. 5. 5.

8 10. 12-14° — 16 12.* 7. 7.*

9 14. 18.° 18 —22° — 24 9. 11.*
10| 15 28.* 30. 10. 15.*
11 20. 33 —36° — 40 52 — 55¢ — 64 11. 19 — 20° — 22
12 24. 48.° 66 — 72° — 82 15. 224
13 26. 63— 65¢ ~ 68 | 104 — 118° — 132 17. 33.*
14 32. 73 — 78° — 86 147 — 160 — 160 19. 40 — 41° — 50
15 38. 96 — 101° — 112 | 183 — 224° — 234 22. 48 — 55¢ — 62
16 40. 122 - 125° —~ 130 | 256 — 280° — 304 26. 59 — 68° — 76
17 47. 136.4 346 — 376 — 376 28. 74 — 82° — 88
18 54. 170 — 180 — 188 | 408 — 472 — 472 33. 84 — 88 — 96

Key to the tables:
¢— cyclic covering
d— there exist a design with the parameters of the covering
o— covering found by optimization
s— covering found by studying spectra

The coverings indicated by “o” are given in the Appendix.

References

{1] R. Bertolo, I.D. Bluskov and H. Hamaélidinen, Upper Bounds on
the General Covering Number C) (v, k, t,m), Journal of Combinatorial
Designs, 12(2004), 362-380.

(2] I.D. Bluskov, Designs with Maximally Different Blocks and v =
15,16, Utilitas Mathematica, 50(1996), 203-213.

(3] I.D. Bluskov and H. Hamadldinen, New Upper Bounds on the
Minimum Size of Covering Designs, Journal of Combinatorial Designs,
6(1998), 21-41.

[4] 1.D. Bluskov, Some t-Designs are Minimal (¢+1)-Coverings, Discrete
Mathematics, 188(1998), 245-251.

29



[5] C.J. Colbourn, Wining the Lottery. In C.J. Colbourn and J.H.
Dinitz, editors, The CRC Handbook of Combinatorial Designs, CRC
Press, 1996, 578-584.

[6] D.L. Kreher, t-Designs, ¢t > 3. In C.J. Colbourn and J.H. Dinitz,
editors, The CRC Handbook of Combinatorial Designs, CRC Press,
1996, 47-66.

[7] R. Mathon and A. Rosa, 2-(v,k, \) Designs of Small Order. In C.J.
Colbourn and J.H. Dinitz, editors, The CRC Handbook of Combina-
torial Designs, CRC Press, 1996, 3-41.

(8] W.H. Mills and R.C. Mullin, Coverings and Packings, in J.H.
Dinitz and D.R. Stinson, editors, Contemporary Design Theory: A
Collection of Surveys, Wiley, 1992, 371-399.

[9] K.J. Nurmela and P.R.J. Ostergard, Covering t-sets with (t+2)-
sets, Discrete Applied Mathematics, 95(1999), 425-437.

[10] K.J. Nurmela and P.R.J. Ostergard, Upper Bounds for Covering
Designs by Simulated Annealing, Congressus Numerantium 96(1993),
93-111.

[11] J. Schénheim, On Coverings, Pacific Journal of Mathematics,
14(1964), 1405-1411.

(12] V.D. Tonchev, Combinatorial Configurations, Wiley, New York,
1988.

[13] E. Witt, Uber Steinersche Systeme, Abhandlungen aus dem Mathe-
matischen Seminar der Universitat Hamburg, 12(1938), 265-275.

Appendix

The appendix contains the coverings obtained by optimization.

We use the following compressed notation [10]. Suppose the k-subsets of
X (v) are arranged in lexicographical order (for example, let v = 4, k=3,
then the order is 123, 124, 134, 234). We present the blocks of a design
by a sequence a,,az,...,as, such that the n-th block of the design is the
(32721 @:)-th k-set from the lexicographical arrangement of X *)(v), where

i=1

1<n<b
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C>(8,5,3) < 14
4,2,3,2,6,56,6,1,4,5,1,3,4.

C2(11,5,3) < 36:
16, 12, 3, 4, 22, 25, 8, 4, 17, 20, 39, 2, 8, 2, 10, 9, 13, 8, 13, 24, 29, 10, 2,
8,8,9,35,3,9,19,3,8, 6, 4, 10, 39.

C2(14,5,3) < 78:
21, 22, 14, 28, 20, 69, 38, 3, 25, 22, 20, 6, 39, 23, 59, 32, 4, 29, 38, 50, 27,
7, 19, 88, 24, 26, 20, 23, 22, 18, 11, 51, 23, 62, 15, 19, 39, 12, 34, 16, 18, 9,
3,54, 16, 17, 12, 61, 13, 23, 9, 6, 72, 63, 26, 4, 7, 30, 15, 16, 16, 43, 19, 19,
12, 14, 40, 30, 49, 1, 25, 12, 21, 19, 27, 46.

C2(15,5,3) < 101:
22, 26, 11, 31, 19, 15, 18, 88, 13, 13, 64, 10, 43, 12, 12, 36, 82, 17, 23, 28,
5, 43, 20, 62, 8, 67, 19, 10, 13, 22, 72, 11, 46, 7, 21, 32, 17, 93, 23, 46, 17,
51,13, 34, 7, 69, 33, 34, 15, 36, 26, 6, 30, 14, 20, 70, 13, 23, 38, 8, 67, 9,
3, 18, 36, 26, 15, 19, 67, 26, 20, 4, 15, 29, 70, 22, 59, 25, 11, 45, 48, 15, 12,
27, 71, 18, 3, 59, 12, 56, 28, 4, 40, 8, 29, 53, 39, 25, 56, 3, 14.

C»(16,5,3) < 125: |
41, 12, 24, 5, 16, 100, 15, 48, 21, 49, 71, 4, 29, 34, 18, 100, 31, 13, 41, 19,

51, 10, 31, 65, 28, 28, 15, 55, 11, 113, 3, 31, 55, 34, 8, 15, 70, 13, 36, 11, 4,
2, 97, 57, 79, 7, 72, 55, 16, 18, 19, 59, 40, 11, 14, 24, 5, 36, 37, 23, 3, 62,
29, 39, 97, 8, 24, 31, 66, 64, 23, 37, 44, 23, 42, 11, 40, 22, 55, 20, 47, 30, 2,
72, 10, 9, 28, 63, 38, 17, 37, 26, 49, 25, 30, 29, 10, 15, 73, 64, 29, 38, 29, 24,
60, 94, 67, 59, 22, 14, 14, 50, 8, 43, 12, 79, 19, 19, 43, 4, 52, 28, 11, 26, 11.

C2(9,6,4) £ 22
4, 27 8) 4’ 5’ 2] 1’ 11 6’ 31 9’ 3’ 57 3’ 27 67 27 2’ 31 1’ 9) 1'

C2(12,6,4) < 72:

1,1,7,5,9,2,1,2,126,7,7,1,11, 5,2, 13,77, 13, 2,5, 11, 1, 7, 7, 25, 1,
7,5,21,5,7,1,133,5,7,1,25,1, 7,5, 20, 13, 2, 5, 11,1, 7, 7, 83, 7, 7, 1,
11, 5, 2, 13, 137, 5, 7, 1.

C»(13,6,4) < 118:

25, 10, 8, 4, 13, 16, 10, 35, 15, 3, 16, 19, 16, 53, 10, 20, 7, 5, 21, 8, 15, 10,
16, 14, 2, 19, 29, 10, 8, 22, 2, 23, 7, 30, 8, 11, 8, 44, 1, 12, 1, 17, 7,9, 17,
24, 2, 13, 16, 2, 25, 5, 45, 7, 25, 1, 18, 12, 18, 16, 21, 7, 31, 17, 12, 2, 1, 20,
2,25,6,9, 2, 45, 6, 16, 9, 14, 6, 24, 5, 26, 2, 20, 11, 33, 23, 13, 8, 6, 4, 14,
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5, 20, 29, 26, 8, 16, 11, 21, 1, 7, 4, 36, 1, 26, 23, 11, 36, 7, 10, 13, 29, 9, 8,
16, 6, 8.

C2(15,6,4) < 224:
13, 18, 14, 20, 22, 23, 19, 31, 10, 7, 31, 24, 24, 24, 15, 34, 28, 25, 5, 11, 50,
228929403213217206321201129294039211148
57,12, 89, 5,9, 30, 12, 21, 4, 4, 8, 35, 13, 1, 4, 29, 29, 59, 6, 4, 49, 2, 19,

45, 6, 37, 2, 16, 91, 45, 15, 8, 4, 10, 16, 29, 6, 20, 13, 7, 44, 1, 17, 47, 11,
46, 27, 9, 37, 32, 10, 17, 13, 25, 12, 16, 77, 6, 5, 24, 2, 20, 28, 18, 25, 19, 3,
85, 15, 48, 16, 13, 18, 39, 42, 15, 37, 22, 19, 24, 5, 24, 32, 6, 7, 30, 7, 1, 50,
8, 15, 4, 11, 48, 37, 17, 29, 15, 46, 5, 5, 41, 49, 3, 26, 27, 11, 14, 8, 6, 39,
16, 16, 9, 43, 27, 25, 44, 1, 21, 7, 10, 6, 7, 90, 3, 37, 7, 26, 12, 8, 56, 10, 17,
18,9, 3, 11, 63, 2, 11, 61, 44, 46, 1, 8, 48, 26, 17, 7, 12, 27, 14, 18, 2, 26,
10, 45, 38, 7, 30, 48, 56, 11, 3, 16, 21, 6, 6, 33, 8, 83, 18, 15, 48, 1, 43, 26,

2,27,9.

C»(11,6,3) < 20:
17,19, 23, 39, 5, 12, 12, 30, 2, 10, 79, 30, 13, 24, 22, 15, 32, 40, 25, 3.

C(14,6,3) < 41:
11, 112, 31, 45, 105, 131, 35, 121, 31, 29, 20, 184, 92, 23, 62, 120, 22, 51,
95, 68, 52, 104, 174, 64, 24, 30, 86, 61, 12, 101, 24, 59, 36, 201, 82, 32, 46,
61, 203, 58, 93.

C»(16,6,3) < 68:
5, 224, 112, 196, 23, 203, 32, 176, 14, 171, 81, 52, 172, 125, 73, 143, 106,
17, 149, 75, 389, 16, 59, 102, 180, 159, 39, 5, 79, 170, 70, 99, 513, 45, 43,
54, 101, 75, 149, 43, 52, 41, 520, 19, 180, 248, 103, 5, 234, 181, 109, 42, 30,
9,227, 292, 141, 43, 18, 184, 9, 89, 7, 209, 92, 66, 161, 2.

C2(17,6,3) < 82:
51, 175, 174, 151, 163, 241, 46, 232, 83, 196, 124, 42, 171, 78, 257, 170, 30,
154, 93, 353, 328, 175, 140, 32, 227, 36, 283, 8, 34,181, 277, 122, 54, 215,
78, 164, 241, 109, 25, 51, 109, 167, 72, 297, 42, 35, 225, 289, 280, 43, 104,
240, 13, 297, 94, 262, 88, 230, 208, 126, 126, 14, 168, 111, 33, 48, 179, 638,
76, 79, 66, 330, 24, 222, 97, 216, 59, 269, 110, 56, 38, 37.
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