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Abstract

In this paper a we determine analytically the number of balanced,
unlabelled, 3-member covers of an unlabelled finite set, which is then
used to find the number of non-isomorphic optimal lottery sets of
cardinality three. We also determine numerically the number of non-
isomorphic optimal playing sets for lotteries in which a single correct
number is required to win a prize.
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1 Introduction

Let (m,n,t;k) denote a lottery scheme in which an unordered winning ¢-
set is randomly selected from a universal m-set Uy,,, and in which a player
participates by selecting a playing set of any number of (unordered) n-sets
from the universal set prior to the draw. The player is awarded a prize
(called a k-prize) if k or more elements of the winning ¢-set occur in at
least one of the player’s n-sets (1 < k < {n,t} < m). Let L(m,n,t;k),
called the lottery number, denote the minimum cardinality of a playing set
in {(m,n,t; k) for which a k-prize is guaranteed and let n(m,n, ¢; k) denote
the number of non-isomorphic playing sets of cardinality L(m,n, t; k) in the
lottery (m,n,t; k).

It is known exactly which combinations of the parameters m, n, t and
k render the values 1, 2 or 3 for the lottery number [1]. Furthermore, it is
clear that n(m,n,t;k) = 1 when L(m,n,t;k) = 1 and it has been shown
that n(m,n,t;k) = S i_2k+ an} G2(m — i,n) when L(m,n,t;k) = 2,

i=max{0,m—
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where {¢(m,n) denotes the number of ways in which U,, may be covered
by means of £ distinct unordered subsets of U.,, each of cardinality = [1].
We also showed how to evaluate n(m,n,t;k) in terms of {3(m,n) when
L(m,n,t;k) =3 in [1]. Yet, although

Ca(m,n) = {

the evaluation of {¢(m, n) seems to be a hard problem in general, for £ > 3.
Our aim in this paper is twofold:

1 ifn<m<2n
0 otherwise,

1. To show that {3(m,n) may be written in terms of the well-known par-
tition number II(r, k) of an integer r into k positive parts [8] (thereby
rendering the evaluation of n(m,n,t; k) tractable by means of a re-
currence relation [7] when L(m,n,t; k) = 3).

2. To evaluate n(m,n,t;1) by means of a generating function and to
apply this approach numerically for all combinations of m, n and ¢
within the ranges 1 < {n,t} < m < 99, where n < m/2 is additionally
not allowed to increase above 15 (these are the ranges for which results
are published in the online lottery database [2]).

These problems are not only interesting in their own right, i.e. from a
combinatorial perspective; they are also useful from an application point of
view, even though the two lottery classes involved are perhaps the simplest
or most trivial classes, because values of 7 for these classes may be used
to establish new lottery numbers outside these classes!. Furthermore, an
analytic enumeration of non-isomorphic solutions to the two special classes
of lottery problems listed above will make it unnecessary to list values
numerically in databases such as (2].

For both of the above classes of lotteries values of 7 are determined by
summing together the numbers of covers of appropriate forms?. Hence we
start our exposition in §2 by recalling, from [3], a well-structured method
of viewing and counting set covers, namely by means of sequences of so-
called set contractions. This is followed, in §3, by the establishment of a
relationship between {3(m,n) and II(r,k). We then turn our attention, in
§4, to the question of evaluating n(m,n,t;1).

1For example, in [1, Theorem 8] we used the 7(17,6,6;3) = 3 optimal playing
structures in a construction technique to show that L(18,6,6;3) # 6 which, together
with the previously known bounds 5 < L(18,6,6;3) < 7 [2], yielded the new result
L(18,6,6;3) = 7. Another example occurs in [1, Theorem 9], where we used the fact
that (18, 6,9;4) = 1 to establish the new lower bound L(19,6,9;4) > 6.

2Considerable work has been done on the enumeration of general covers of a finite
set (see, for example [4, 5, 6]), yet the enumeration of covers in which all cover members
have the same cardinality, called balanced covers, seems to be a hard problem. We are
not aware of any analytical results on the enumeration of balanced covers of a finite set,
except our first steps in this direction contained in [3].
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Figure 2.1: A 4-member cover of 15 elements may be formed by means of
four contractions from four disjoint sets of 5 elements each.

2 Set covers and contractions

A cover of a finite set U,, of m indistinguishable elements is a family C of
distinct, non-empty, subsets of U, whose union is U,,. Any subset of the
members of a cover is called a subcover of that cover and an element of U,,
is said to be uniquely covered by C if it is an element of exactly one member
of C. Furthermore, a cover is said to be n-balanced if each of its members
has cardinality n, for some n € N; hence there are {¢(m,n) n-balanced,
¢-member covers of U,,. In the remainder of this paper all covers will be
assumed to be n-balanced, without mentioning this each time (the symbol
n will be reserved for this purpose throughout). Finally, a cover of U,, of
minimum cardinality is called a minimum cover of Up,.

In (3] we showed how the overlapping structure of any £-member cover
of m < nf elements may be described by a so-called contraction vector,
which has the form

C= [(agl)agl) : "0912;-1) (a?)a,:(f) : "ag)-n) (agy)agy) - 'ag)-l-l)] » (1)

where y denotes the number of elements of U,, not uniquely covered and

where each value afcj ) represents a member of the set £ = {1,...,¢}, for all

1<k<zj+1landalll< j<y. Foreach element of Uy, shared exclusively

by members a%’ ), aé’ U ag)_,_l of C, an entry of the form
(afPaf---al,) (2)

is included in the contraction vector C. In the remainder of the paper
we consistently use the terms element, member and entry in the contexts
italicized above.

Because we consider unlabelled covers, any set of m symbols may be
used to denote the cover members, but we shall follow the convention of
using the natural numbers 1,2,3... to denote the members. Also, the
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order of the entries in a contraction vector is irrelevant, but we adopt
the convention of sorting the entries first by their length and then by the
contents of each entry lexicographically — such a contraction vector is
said to be in standard form. To decide whether one contraction vector in
standard form is smaller than another (denoted by means of the symbol
<), we first compare the length of the entries and then their contents. For
example, [(12)(13)(14)] < [(12)(13)(15)] < [(12)(12)(123)]. The so-called
canonical form of a contraction vector is taken to be the smallest contraction
vector in standard form that results when all permutations of its member
labels are considered. Note that the canonical form of a contraction vector
is unique.

Example 1 The 4-member cover of Uys shown in Figure 2.1 has the con-
traction vector C = [(12)(12)(24)(123)] associated with it, indicating that
four members of Uys are not uniquely covered. Moreover, two elements of
Us are shared by cover members 1 and 2, one element of Uys is shared by
cover members 1, 2 and 3, and one element of Uys is shared by cover mem-
bers 2 and 4. The above contraction vector is in standard form, but not
in canonical form, because the permutation (: g 3 g) of the cover member
labels yields a smaller contraction vector in standard form (which is then

also in canonical form). ]

If s; denotes the number of elements that occur in exactly ¢ members of
an £-member cover C of Uy, (i = 1,...,£), then C may be constructed via
a series of E;-z s; contractions from Z disjoint n-sets. Define the quantity
ce(m,n) = nf —m as the contraction number of the cover. More precisely,

ce(mn)=nl—m= Zzs, Zs, Z(z—l)s, 3)

i=1 =2

represents the number of elements not uniquely covered by members of
C, counting multiplicities (in the sense of counting elements that occur in
exactly ¢ members of the cover i — 1 times), and hence is a measure of the
degree of overlap that is present between the members of C. Note that all
£-member covers of U,, have the same contraction number. The number of
entries of length ¢ in the contraction vector (1) is given by s;, so that

£ Y v
cmn) =3 (i-Dsi=) (z+1-1)=) z @

i=2 i=1 i=1

This implies that each entry of the form (2) contributes a value z; to the
contraction number.
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It is clear that two members of a cover cannot share more than n — 1
elements. If n > c¢¢(m, n), then the size of the cover members is not a restric-
tion and the number of covers are independent of n, so that {;(m,n) = {}(c)
may be defined in terms of ¢ and the contraction number ¢ only. Hence
¢p(c) is the number of £-member covers with contraction number ¢ whose
members have size larger than c.

In [3] we proved the following characterisation of minimum covers in
terms of the contraction number c¢(m,n).

Theorem 1 An ¢-member cover of Uy, with contraction number ce(m,n) is
minimum if and only if cg(m,n) < n—1. ]

It is clear, from the above theorem and the definition of {;(c), that ¢;(c)
is therefore the number of minimum covers of U,,, where ¢ = [m/n] and
¢ = nf — m. Finally, define a minimum contraction vector as a contraction
vector for which ¢ = 3°%_, z; < n—1, and let V. denote the set of minimum
contraction vectors with contraction number ¢. We apply the results and
definitions of this section in the remaining sections of the paper.

3 Lotteries (m,n,t; k) for which L(m,n,t; k) =3

In [1] we gave a characterisation of when L(m,n,t; k) = 3 and also proved
the following result.

Theorem 2 When L(m,n,t;k) =3,

t—3k+2
Z ¢a(m —i,n), if m>2n
Mmyn,t k) = 4 g sk omint2 (5)
Z G(m—i,m-n), if m<2n.
=0

However, the above result was not wholly satisfactory, because we were
not able to determine (3(-, -) analytically — hence we resorted to tabulating
values for this parameter numerically (by means of a computationally rather
expensive exhaustive search tree enumeration procedure) for small values
of its arguments. We are now able to evaluate {3(,) in terms of the well-
known partition number II(r, k) of an integer r into k positive parts (which
may be found efficiently by means of a recurrence relation [7]), and our
main result in this section is the following.

Theorem 3 Ifn < m, then

le/2]) c—n-1
Glmn)= > TM(c-22+3,3)+ Y I(z—c+m+3,3)~(a(m,n),
z=max{0,c—n} z=0
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Figure 3.2: The (3(9,5) = 9 different 5-balanced, 3-member covers of 9
elements, each member being of cardinality 5: (a)-(c) The I1(6,3) = 3
covers corresponding to the partitions of 6 into three positive parts. (d)-
(f) The I1(4 + 3,3) — 1 = 3 covers corresponding to the partitions of 4 into
three non-negative parts — disregarding the partition 0+0+4 = 4, because
in this case the cover members are not distinct and hence the structure is
not a valid cover. (g)-(h) The II(2 + 3,3) = 2 covers corresponding to the
partitions of 2 into three non-negative parts. (i) The II(0 + 3,3) = 1 cover
corresponding to the partitions of 0 into three non-negative parts.
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Figure 3.3: A 3-member cover of Up,.

where ¢ = cg(m,n) = 3n —m.

Note that the above theorem holds for all (n-balanced) 3-member covers
of Um; not just for minimum covers of U,,. Before proving this theorem,
let us first illustrate its result by means of a simple example.

Example 2 Suppose m = 9 and n = 5. Then the contraction number is
¢3(9,5) = (5 x 3) — 9 =6 and, by Theorem 3,

6/2 6—-5-—1
((9,5) = > M(6-2z+3,8)+ Y T(z—6+9+3,3)—((9,5)
£=6-5 =0
3 0
= Y I(9-22,3)+ Y Iz +6,3) - (2(9,5)
=1 =0

II(7, 3) + I1(5, 3) + 11(3, 3) + II(6, 3) — (2(9,5)
4+2+1+3-1
9.

The various partitions enumerated above, as well as their corresponding
covers of Ug, are shown in Figure 3.2. [ ]

In order to prove Theorem 3, let a1, a3, a3 and = denote the numbers
of elements of U,, in the lottery set overlapping structure depicted in the
3-member cover of U,, in Figure 3.3. The contraction number of this cover
is given by

c=3n—m=a1+a2+aa+22m, (6)
82 83

where ¢ = ¢3(m,n). Assume, without loss of generality, that

0<a; <az<as (7
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Then, for a fixed non-negative value of z, the number of covers of the form
depicted in Figure 3.3 is given by the number of integral solutions to the
equation

a1+ax+az=c—-2z (8)
subject to the constraints
a1+a+z < n,
a+a3+z < n, 9)
and az+az+z < n.

Constraint (7) ensures that we count non-isomorphic covers, whilst con-
straint (8) ensures that the structure is, in fact, a cover of Up,. Finally,
constraint (9) ensures that the cover is n-balanced.

If we rewrite the constraint a; +a2+x <nin (9) asc—2r—az+z<n
by utilisation of (6), then we find that a3 > ¢ — z — n, and similarly for a;
and az. Thus we may replace (9) with the system of inequalities

a;2c—z—-n, 1=123. (10)

Therefore the problem of evaluating {3(m, n) reduces to finding the number
of partitions of the integer ¢ — 2z into three parts, each of size at least
c—z —n. (Note that ¢ — z — n may be negative.)

n

2 3 4 5 6 7 8 9 10 11 12 13 14 15
m=3|1 0 0 0 O 0 o 0 0 0 0 0 0 0
m=412 1 0 0 0 0 o o 0 0 0 0 o0 0
m=5|1 3 1 O 0 0 0 0 0 0 0 o o 0
m=6|1 3 4 1 0 0 0 0 0 0 0 o o0 0
m=7|0 3 5 4 1 0 0 0 0 0 0 0o o 0
m=8[0 1 6 6 4 1 0 o0 0o o0 0 0o o0 0
m=9|({0 1 4 9 7 4 1 0 o o 0 o o0 0
m=10]10 0 3 8 1 7 4 1 o o0 0 0 o 0
m=1110 0 1 7 12 12 7 4 1 0 0 0 0 0
m=1210 0 1 4 13 15 13 7 4 1 0 0 0 0
m=13{0 0 0 3 9 18 17 13 7 4 1 0 0 0
m=14]0 0 0 1 7 16 22 18 13 7 4 1 0 0
m=15]0 0 0 1 4 14 23 25 19 13 7 4 1 0
m=16)10 0 0 0 3 9 23 28 27 19 13 7 4 1
m=17|10 0 0 O 1 7 17 31 32 28 19 13 7 4
m=1810 0 0 O 1 4 14 28 38 35 29 19 13 7
m=19{0 0 0 O 0 3 9 24 38 43 37 29 19 13
m=20{]0 0 0 O 0 1 7 17 37 46 47 38 29 19

Table 3.1: Values of {3(m,n) for 2 < n < min{m, 15} and 3 < m < 20.

It is well-known that II(r+k, k) is the number of partitions of the integer
r € N into k non-negative parts [7], where II(r, k) denotes the number of
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different partitions of = into k& > 1 positive parts. Note that the latter
quantity may be obtained from the former by “borrowing” k additional
units and partitioning total of » + k units into k¥ non-empty parts, and
then removing one unit from each part afterwards. Conversely, the former
quantity may be obtained from the latter by first placing one unit in each
part, and then partitioning the remaining r — & units into ¥ non-negative
parts. This basic technique may be extended further: if we require at least j
units in each part, then the number of partitions is given by Il(r + k- k3, k).
If we now split our problem of evaluating {3(m,n) into two cases (de-
pending on the value of z), namely (i) ¢ ~ z — n < 0 where parts should
merely be non-negative (i.e. j = 0), and (ii) c — £ — n > 1 where parts
should, in fact, be positive (i.e. j = ¢ —x —n > 1), then it is clear that

le/2) e=n—1
Gmn)= Y T(c—22+3,3) + Y Iz —c+m+3,3)—((m,n),
z=max{0,c—n} =0 P T

@ (i)
(11)
which proves Theorem 3. The term (iii) above is subtracted to correct for
covers counted in (i) and (ii) in which two members coincide exactly. W

Values for {3(m,n) in (11) within the parameter ranges 2 < n <
min{m, 15} and 3 < m < 20 are tabulated in Table 3.1.
The following corollary follows directly from Theorem 3.

Corollary 1 When L(m,n,t;k) =3,

rt—3k+2 lSn—miiJ
> Y n@En-m+i-22+3,3) if m > 2n
1=0 =0
n(m, n, k) = 9 Hogk I | amogesi |
> > M@2m-3n+i-22+3,3) if m<2n.
\ =0 z=0
(12)

Proof: For minimum covers n > ¢+ 1 by Theorem 1. Hence the result
of Theorem 3 simplifies to

le/2)
(a(myn) = Y T(c—2z+3,3),

z=0

because the terms (ii) and (iii) in (11) are zero in this case. Substitution
of the above expression into (5) yields the desired result. |
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4 Lotteries of the form (m,n,t;1)

Lotteries of the form (m,n,t;1) constitute the simplest class of lotteries,
because when k = 1 the lottery problem reduces to the problem of covering
the universal sets Up,—¢41, ... sUmax{nt,m} Where £ = L(m,n,t;1), as will
be described in this section. The following result is well-known and seems
to be folklore.

Proposition 1 L(m,n,t;1) = [2=tl],

Proof: The set Unm_¢41 may be covered by a collection C; of [m=ttl]
n-subsets of Upm—¢+1, of which | 2=t+L | are mutually disjoint, in which case
any t-subset w of Uy, coincides with at least one element in at least one of
the members of ). This shows that L(m,n,t;1) < || = [R=ttl),

However, a collection C; = {Sj,. ..,Sr_"%ﬂ]_l} of n-subsets of U,,

can cover at most n ([2241] — 1) < n (2=t1) = m — ¢ 4 1 elements of
Um, namely when the members of C; are mutually disjoint. Hence [U,,\ U
Si| >m —(m—t+1) =t—1, so that there is an empty intersection
between any t-subset w € Up,\ US; and all members of C;. This shows that
Lim,n, 1) > [Co] = [t — 1. .

In [3] we determined the number, £(m,n), of minimum (n-balanced)
labelled covers of Uy, in terms of the contraction number, where £ = [m/n]
is the minimum number of n-sets required to cover Uyy,. If this result is gen-
eralised to unlabelled covers, then the function {;(m,n) is clearly obtained.
The value of n(m, n,t; 1) may then be computed by means of the following
result.

min{né,m} né~m+t—1
Theorem 4 7(m,n,t;1) = ZCg(i,n) = Z Celc), where £ = L(m, n,t;1).

t=m—t+1 c=max{0,né—m}

Proof: To determine n(m,n,t;1) it is necessary to add together the
number of distinct unlabelled L(m,n,t; 1)-member covers ¢ L(m,n,t;1)(%, 7) of
U;, where ¢ < m denotes the number of elements from U,,, that are utilised
in such valid minimum covers. Furthermore, i is clearly at least m—t+1 and
at most nf. The second sum is obtained by changing the summation index
by means of the substitution ¢ = n€ — ¢, where c represents the contraction
number. n

Our aim is to evaluate {j(c) for small values of ¢ and ¢, from which
values of 7(m,n,t;1) may then be deduced via Theorem 4 for values of m,
n and ¢ within the ranges mentioned in the introduction. The evaluation
of ¢;(c) hinges on the following result.
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Theorem 5 §(c) = |V|.

Proof: It is clear, from the definition of a contraction vector in canon-
ical form and by Theorem 1, that there exists for each minimum cover
of U, a unique element v € V,, so that we have (c) < |Vp|. The
proof is completed by showing that for each contraction vector v € V,
there exists a unique corresponding minimum cover of U,,, and hence
that &(c) > |Vp|. From (4) it may be seen that there can be at most
ce(m,n) € n — 1 entries in a contraction vector of the form (1) satisfy-
ing (3), because y < 3°¥_, i; = cg(m,n) < n — 1. Thus there can be at
most n — 1 contraction vector entries, which means that any member of an
overlapping set structure corresponding to the contraction vector may be
involved in at most » — 1 contractions. As a result all members of the cor-
responding overlapping set structure are distinct (and have cardinality n).
Hence the overlapping set structure is indeed a cover of Uy,. Furhermore, it
is a minimum cover of U,,, by Theorem 1, and it is clear that this minimum
cover is unique. [ ]

A cover is said to be disconnected if the entries of the corresponding
contraction vector may be partitioned into a number of parts such that
no element of U,, occurs in more than one part; otherwise it is called
connected. A subcover is called a component of the cover if it is a maximal
connected subcover (in the sense that the addition of any cover member to
the subcover would render the new subcover disconnected). A component
of a cover is called a trivial component if it comprises exactly one member
of the cover; otherwise it is called a non-trivial component.

In order to reduce the computational complexity of evaluating {;(c),
we only count the number of contraction vectors of connected covers and
then use a generating function to accommodate disconnected covers. Our
algorithm for evaluating the number of connected covers (given in pseudo-
code in Algorithm 1) generates the contraction vectors of all connected
covers sequentially and determines their canonical form. If the canonical
form of a vector is smaller than one previously considered, it is discarded
(because the corresponding cover has already been considered and hence
counted); otherwise the cover is included in the count. We represent the
total number of connected covers with contraction number ¢ by means of
the polynomial

j+1 _
Cj(z) =Y ali,j)<', (13)
=2
where the coefficient a(i,j) denotes the number of connected i-member
covers with contraction number j.
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Algorithm 1: Counting connected covers with contraction number ¢
Input: The contraction number, 7, of set structures to be considered.
Output: The coefficients a(i, 7) in (13).
1. fori=2,3...,7+1doa(ij)—0
2. for each partition p of j do
2.1 for each contraction vector € corresponding to partition p do
2.1.1 if C is canonical and its structure is connected then

2.1.1.1 M + largest cover member label in C

2.1.1.2 a(M,j) ~ a(M,j) +1
3. output a(2,j),4(3,5),...,a( +1,5)

The number of unlabelled, connected, :-member covers with contraction
number j, namely a(i, j), is tabulated in Table 4.2 for 2 < i < 11 and
1 < j <14 and illustrated graphically in Figure 4.4 for the cases i = 2,3, 4
and j = 3.

a(2,3)=1 a(3,3)=3

Figure 4.4: The number of unlabelled, connected, i-member covers with
contraction number j, for i = 2,3,4 and j = 3.

Let C;-" 7(x) be a generating function for the number of covers of U,
comprising a; non-trivial components, each with contraction number j. If
a; = 1 then Cj?(z) = Cj(z) as described in (13). We describe a method
of computing this generating function later in this section.

The number of different ways in which components that have differ-
ent contraction numbers may be combined to form disconnected covers
may be achieved via a straight forward multiplication of the corresponding
polynomials. For example, C2(z) x C2+(z) is a polynomial representing
all covers comprising o, + o, components with corresponding contraction
numbers r and s so as to form a cover with overall contraction number
ray + sa;. However, we need to be careful not to count covers more than
once when components that have the same contraction number are com-
bined. To count the total number of covers with contraction number ¢ and
no trivial components, we consider all partitions of ¢, where each part rep-
resents a component. Thus, for a partition 7(j) = 112%2... j% we may
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Table 4.2: The number, a(i, j), of unlabelled, connected, -member covers
with contraction number j = c¢(m,n), where3 < £ < 1land1 < ¢¢(m,n) <
14, as obtained via Algorithm 1. Note that a(4,j) = 1 if ¢ € {1,2}, for all
j > 1. Entries denoted by ‘—’ were not computed due to the considerable
computation times involved and because they are not required to evaluate
n(m,n,t;1) within the parameter ranges mentioned in the introduction.
The row labelled ‘Time’ contains the times (in seconds) it took to compute
a column of a(%, j) values on an 3.2GHz processor with 512MB of memory.




compute the generating function C{*(z)C5?(z)- - - C;’ 7(z) to represent all
covers associated with the concerned partition. The number of covers with
contraction number j (but with no trivial components) is then given by the
generating function®

i 2c
D)= 3. JICy@ =) bic)a* (say).  (14)

lag+...+cac=c j=1 =2

To compute C;’ 7 (x) we count the number of ways in which a total of a;
components may be selected from the various possible connected subcover
structures with contraction number j. We do this by selecting (with replace-
ment) n; components from the a(s, /) components with i members and con-
traction number j for all i = 2,...,5+1 in such a way that 371 n; = ;.
Thus we have

J+1 .,
o a(,j) =1+ n\ i
HOEIEDY H(( - )x (15)
nz+...+nj541 =aj =2

0<niSay

Note that an arbitrary number of trivial components may be added to a
subcover without affecting the contraction number of the cover. Thus, to
find the total number of covers comprising £ members (including covers with
trivial components), we have to add ¢ — ¢ trivial components to subcovers
consisting of < members, for all 1 < i < £. Therefore a generating function,
D.(z), for the total number of covers (including covers with trivial compo-
nents) may be found by taking a cumulative sum of the coefficients of the
generating function D/(z), that is

De(z)=) (Z b(z”,c)) . (16)

i=2 \i'=2
Cele)
The first nineteen coefficients {}(c) of the polynomial D.(z) are listed

as columns in Table 4.3 for values of the contraction number within the
range 2 < ¢ < 10.

3The above process of partitioning the contraction number may be achieved auto-
matically by means of the generating function

P(t,z) = ﬁ i (t?y Ci(=)
j=1q=0

in which the coefficient of z¢t¢ is the number, (| %(¢), of &-member covers with contraction
number ¢ (and with no trivial components). Thus, to obtain all £-member covers with
contraction number ¢ (including covers with trivial components), we need to add together
the coefficients of x%¢¢ for which i < €.
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cg(m, n)

2 3 4 5 6 7 8 9 10
=211 1 1 1 1 1 1 1 1
£=31]3 4 7 9 14 17 24 29 38
=44 9 20 41 87 162 309 554 971
£=5]4 11 34 89 255 668 1758 4408 10820
€=614 12 42 134 460 1535 5193 17105 55430
£=714 12 44 156 612 2376 9630 38860 156573
€=8|4 12 45 164 688 2926 13263 61459 290032
=9 |4 12 45 166 714 3175 15333 77245 404748

£=10|4 12 45 167 722 3263 16222 85337 479803
£=11 |4 12 45 167 724 3289 16522 88555 507361
£=12 |4 12 45 167 725 3297 16615 89626 519543
=13 14 12 45 167 725 3299 16641 89942 523425
€=14 |4 12 45 167 725 3300 16649 90035 524567
€=15|4 12 45 167 725 3300 16651 90061 524889
€=16 |4 12 45 167 725 3300 16652 90069 524982
€=17 |4 12 45 167 725 3300 16652 90071 525008
€=18 |4 12 45 167 725 3300 16652 90072 525016
€=19]14 12 45 167 725 3300 16652 90072 525018
€=20|4 12 45 167 725 3300 16652 80072 525019
Table 4.3: Values of {j(ce(m,n)) for 2 < £ < 20 and 2 < ce(m,n) < 10.

n

1 2 3 4 5 6 7 8 9 10
m=1]1 — — — — — — — — —
m=2[1 1 — — — — — — — —
m=3|1 1 1 — — — — — — —
m=4|1 2 1 1 — — — — — —
m=5|1 1 1 1 1 — — — — —
m=6[1 2 3 1 1 1 — — — —
m=7(1 1 2 1 1 1 1 — — —
m=8|1 2 1 4 1 1 1 1 — —
m=9 |1 1 5 3 1 1 1 1 1 —
m=10 | 1 2 2 2 5 1 1 1 1 1
m=11 | 1 1 1 1 4 1 1 1 1 1
m=12 | 1 2 6 9 3 6 1 1 1 1
m=13 | 1 1 2 5 2 5 1 1 1 1
m=14 | 1 2 1 2 1 4 7 1 1 1
m=15 | 1 1 6 1 16 3 6 1 1 1
m=16 | 1 2 2 15 9 2 5 8 1 1
m=17 | 1 1 1 6 5 1 4 7 1 1
m=18 | 1 2 6 2 2 25 3 6 9 1
m=19 | 1 1 2 1 1 16 2 5 8 1
m=20 |1 2 1 17 35 9 1 4 7 10

Table 4.4: Values of n(m,n,n,1) for 1 <n <m <20 and = < 10.

61



We illustrate the above process by means of a simple example.
Example 3 It follows by (14) that

Dg(z) = Ci(z)+Ci(z)Ci(2)Ca(z) + C(2)Cs(z) + C(2)CE(x)
+C1(2)Ca(2) + C1(2)Ca(2)Ca(z) + C1(z)Cs(z) + C3(z)
+Cy(z)Ca(z) + C2(z) + Cs(z), '

where the coefficients of Ci(z),...,Ce(z) are obtained via Algorithm 1.

Note that C(z) = z?, so that C](z) = ¥ A@N=14r)p2r o g2
Furthermore,

= Y ﬁ(a(i,3);1+ni)zgn_.

na+ng+ng=2 =2
= (l—;+2)$2'2 + (3—;+2)$3-2 + (4—;+2)m4-2 + (1—}-!-1):62-1 (3—i+1)z3-1
+ (1—i+1)m2-1 (4-i+l)z4-1 + (3—i+l)m3-1 (4—i+l)x4-l

= z* 4+ 325 + 102% + 1227 + 10z8.

na2=r (

Hence there are, for example, twelve T-member covers consisting of two
non-trivial compontents, each with contraction number 3. The generating
functions C3(x) = z* + 22° + 32% and C3(z) = z° + 227 + 328 + 422 are
computed similarly. Finally, the generating function

Ds(z) = z*+142® + 87z 4 25525 + 4602° + 61227 + 68828 + 7142°

o0
+ 722210 4+ 72421 4 795 Z z
i=12

may be obtained from Dg(zx) by taking the cumulative sum in (16). Hence
there are, for example, siz hundred and twelve 7-member covers with con-
traction number 6 (including covers with trivial components). ]

Finally, Table 4.3 and Theorem 4 may be used to compute values of
n(m,n,t,1). As an example, values of 7(m,n,n,1) are given for 1 < n <
m < 20 and n < 10 in Table 4.4.
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