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Abstract

In this paper we establish a doubling method to construct in-
equivalent Hadamard matrices of order 2n, from Hadamard matri-
ces of order n. Our doubling method uses heavily the symmetric
group Sy, where n is the order of a Hadamard matrix. We improve
the efficiency of the method by introducing some group-theoretical
heuristics. Using the doubling method in conjunction with the stan-
dard 4-row profile criterion, we have constructed several millions of
new inequivalent Hadamard matrices of orders 48, 56, 64, 72, 80, 88,
96 and several hundreds of inequivalent Hadamard matrices of orders
672 and 856. The Magma code segments, included in this paper, al-
low one to compute many more inequivalent Hadamard matrices of
the above orders and all other orders of the form 8t.
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1 Introduction

Hadamard matrices were studied more than a century ago by J. Hadamard
in his classical paper [7]. J. J. Sylvester proposed a recursive method for
the construction of Hadamard matrices of orders 2, see [30]. Since then,
Hadamard matrices have attracted the vivid interest of researchers due to
their many applications, the simplicity of the concepts involved and the
challenging open problems concerning their existence and equivalence. For
more details and construction methods for Hadamard matrices, see the
book chapters and books [6], [10], [28], [33].

A Hadamard matrix of order n is an n x n (1, —1)-matrix satisfying
HHT = nl,. A Hadamard matrix is normalized if all entries in its first
row and column are equal to 1. Two Hadamard matrices are said to be
equivalent if one can be transformed into the other by a series of row or
column permutations and negations. It is well known that if n is the order
of a Hadamard matrix, then n is necessarily 1,2 or a multiple of 4.

The difficulty of a discussion of Hadamard equivalence is mainly due to
the lack of a good canonical form. The complete classification of Hadamard
matrices up to equivalence, has been established for the four orders 16, 20,
24 and 28. We summarize the exact statements of these results and the
relevant references.

o Hadamard matrices of orders less than 16 are unique up to equivalence
e There are precisely five equivalence classes at order 16, see [8)

o There are precisely three equivalence classes at order 20, see [9]

¢ There are precisely 60 equivalence classes at order 24, see [11, 14]

¢ There are precisely 487 equivalence classes at order 28, see [15, 16).

The classification of Hadamard matrices of orders n > 32 still remains a
difficult open problem since an algorithmic approach based on an exhaus-
tive search is NP hard. We summarize the partial results for n = 32. Lin,
Wallis and Lie (22] found 66104 inequivalent Hadamard matrices of order
32. Extensive results appear in [23] and [24]. Thus the lower bound for
inequivalent Hadamard matrices of order 32 is 66104.

There are at least 217 inequivalent Hadamard matrices of order 36. This
lower bound is obtained as follows: Seberry’s home page http://www.uow.
edu.au/~jennie contains 192 inequivalent Hadamard matrices of order 36.
These are supplied by E. Spence (180 matrices) see [29], Z. Janko, (1 matrix
of Bush-type) see [12] and V. D. Tonchev (11 matrices) see [31]. Using an
efficient algorithm and the Magma software [1] Georgiou and Koukouvinos
in [4] improved further this bound to 217 by constructing 25 new Hadamard
matrices of order 36.
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Recently Topalova [32] classified the Hadamard matrices of order 44
with an automorphism of order 7, and found 384 inequivalent Hadamard
matrices of this order. In our search using an efficient algorithm and the
Magma software [1] we found that 6 of their transposes, are inequivalent
to these. Two more Hadamard matrices were given in N. J. A. Sloane’s
web page http://wuw.research.att.con/~njas/hadamard/ (One is the
Williamson type Hadamard matrix and the other is the Paley type Hada-~
mard matrix first given in [27]). In [5] this bound was increased to 500.

Lam, Lam and Tonchev [20, 21] showed that the lower bound for in-
equivalent Hadamard matrices of order 40, 48, 56, 64, 72, 80,88 and 96 is
8.18x10"!,4.34x10%3, 3.47x 1024, 2x10%, 1.99x10%6, 3.19x 1042, 9.57 x 1042
and 2.4 x 10%° respectively. Even though these are huge theoretical lower
bounds, those matrices were not constructed and are not available for prac-
tical applications. Thus, the number of available Hadamard matrices, of
those orders, is quite small.

In two recent papers, Kotsireas and Koukouvinos {18, 19] used com-
putational algebra, the Williamson arrays and the full orthogonal design
0D(16;1,1,2,2,2,2,2,2,2) of order 16, to construct among others: 25, 9,
65, 64, 149, 52, 2664 new inequivalent Hadamard matrices for orders 48,
56, 64, 72, 80, 88, 96 respectively.

In many applications, such as Statistics, Coding Theory, Image Pro—
cessing, Cryptography and other, many inequivalent Hadamard matrices
are needed. In these cases, the great theoretical result of Lam, Lam and
Tonchev [20, 21] and the huge lower bounds on the number of inequivalent
Hadamard matrices are of limited use since in practical applications the
actual matrices are needed and are essential for comparisons and straight-
forward applications. In this paper, we proposed a new doubling method
for constructing Hadamard Matrices of order 2n using Hadamard matrices
of order n. By using this method, we constructed for the first time some
millions of inequivalent Hadamard matrices of those orders. The purpose
of this method is to provide an algorithm that can produce some millions
of inequivalent Hadamard matrices, of the desirable order, at any time and
by anyone who need to use the inequivalent matrices.

2 Equivalent Hadamard matrices for the dou-

bling construction
In this section, we present a doubling method that can be used for con-
structing new Hadamard matrices of order 2n. We also investigate the

properties needed to obtain inequivalent Hadamard matrices of order 2n
from equivalent Hadamard matrices of order n.
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Theorem 1 (The doubling method) Let H; and H, be Hadamard ma-
trices of order n. Then the matriz defined by

Hon(Hy, Hp) = ( Z; _g; ) (1)

is a Hadamard matriz of order 2n.

Proof. By a simple calculation we see that Han(Hy, Hy)Hyp (Hy, H)t =
(271)]2,,. (m]

Using the method described in Theorem 1 we can obtain Hadamard
matrices of order 2n using two Hadamard matrices of order n. It is not
known if equivalent Hadamard matrices of order n can generate inequivalent
Hadamard matrices of order 2n via this construction method.

From one Hadamard matrix of order n we can obtain 22*(n!)? equiva-
lent matrices, by applying permutations and multiplications by —1 to the
columns and rows of that matrix. In the next lemmas we investigate if it
is possible to use equivalent Hadamard matrices of order n in the doubling
construction (1) to obtain inequivalent Hadamard matrices of order 2n.

Lemma 1 Let H, and H; be Hadamard matrices of order n. Define H; to
be the Hadamard matriz derived from H, by multiplying some of its rows by
-1. Then the Hadamard matrices defined by Ho,(Hy, Hy) and Hyn(H,y, Hy)
are equivalent.

Proof. Suppose that H; derived from H, by multiplying the rows num-
bered iy,1s,...,i; of Hy by -1. Then the Hadamard matrix H,,(H,, H,)
becomes identical to Ha,(H,, H;) if we multiply by -1 the rows n +i;,n +
i9,...,M + 1, of either. n

Lemma 2 Let H, and H; be Hadamard matrices of order n. Define H;
to be the Hadamard matriz derived from Hj by permuting some of its jrows.
Then the Hadamard matrices defined by Hon(Hy, Hp) and Han(Hy, Hy) are

equivalent.

Proof. Suppose that H; derived from H, by applying the permutation
1 2 ... n
i1 2 ... in
(1,2,...,n). "Then the Hadamard matrix Hs,(H;, Hs) becomes identical
to Han(Hy, H,) if we apply the permutation

of rows ® = , Where (iy,42,...,4,) a permutation of

r=(1 2 .- m n+tl n+2 ... 2n
"\l 2 ...n nt+i n+ip ... n+i,
to the rows of either. (m|
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Lemma 38 Let Hy and H, be Hadamard matrices of order n. Define H;
to be the Hadamard matriz derived from H, by multiplying some of its
columns by -1. Then the Hadamard matrices defined by Hon(Hy, H2) and
Hy,(H,, H;) are equivalent.

Proof. Suppose that H; derived from H, by multiplying the columns
numbered i1, 42, . .., of H by -1. Then the Hadamard matrix Ho,, (Hy, H2)
becomes identical to Han(Hi,H,) if we exchange the pairs of columns
(i1,n +i1), (i2,n +i2) and (is,n + i5) of either. ]

Lemma 4 Let H, and Hy be Hadamard matrices of order n. Then the
Hadamard matrices defined by Hopn(Hy, Hy) and Hon(Hs, Hy) are equiva-
lent.

Proof. We have that Han(Hy, Hy) = ( g: _g;

ing the last n columns by —1 we obtain the equivalent Hadamard matrix

) . By multiply-

H 1 —-H 1 . . 1 2 A 1
( H, H, ) By applying the permutation ( n+l nt?2 ... 2
to the rows of that matrix we obtain the equivalent Hadamard matrix
H H. -
( Hf _Hf ),whlch is Hon(Hz, H1). 0

Remark 1 From Lemmas 1, 2, 3 and 4 we conclude that equivalent Hada-
mard matrices of order n might generate inequivalent Hadamard matrices of
order 2n and that permutations of columns are necessary for achieving the
inequivalence. When doubling, the permutations of rows, multiplications of
rows or columns by —1, and permuting the matrices H; and H,, generate
equivalent Hadamard matrices of order 2n.

Corollary 1 Suppose there exist k ineguivalent Hadamard matrices of or-
der n. Then, the number of inequivalent Hadamard matrices of order 2n
k(k+ 1)n!

obtained by the doubling construction is less or equal to 5

Proof.

Select two matrices (H;, H;), i,j € {1,2,...,k}. From Lemma 4 we
have that matrices (H;, H;) and (Hj;, H;) generate equivalent Hadamard
matrices of order 2n. Thus 7 should be less or equal to j. So, we have that

k
#{(,5):1,5=1,2,...,kand i <j} =) i=

i=1

k(k +1)
S

For each of these choices we can apply n! permutations of columns to either
of the H; or H; matrices. Thus, the number of inequivalent Hadamard
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matrices of order 2n obtained by the doubling construction is less or equal
k(k + 1)n!

2

The problem of classifying Hadamard matrices up to equivalence is ex-
tremely hard. This is mainly due to the lack of efficient algorithms to deter-
mine equivalence of two Hadamard matrices of the same order. Algorithms
based on necessary and sufficient criteria for equivalence of Hadamard ma-
trices are cumbersome to use with, as soon as we have a few million ma-
trices to check for equivalence. A useful alternative to a complete test for
equivalence is the profile criterion which is presented in the next section.

to a

3 Criteria for Hadamard Inequivalence

3.1 The profile criterion

Cooper, Milas and Wallis in [2] suggested the profile criterion to investigate
the equivalence of Hadamard matrices. Later Lin, Wallis and Zhu in [22,
25, 26] proposed some modifications of this criterion. Suppose H is a
Hadamard matrix of order 4n with typical entries h;;. We write Pijxs for
the absolute value of the generalized inner product of rows ¢, j, k and £ :

4n

Pike =Y hizhjzhizhe)|

z=1

It is a well-known fact that Pijre = 4n (mod 8), see [2].
We shall write m(m) for the number of sets {4, j, k, £} of four distinct rows
such that Pijz¢ = m. From the definition and the above we have that
m(m) = 0 unless m > 0 and m = 4n (mod 8). We call 7(m) the profile (or
4-profile) of H.

The (unique) matrices of order 4,8 and 12 have profiles

m4)=1
7(0) =56, =(8)=14
m(4) = 495, w(12) =0

respectively.
The five equivalence classes of order 16 have four distinct profiles.

class Hp: m(0)=1680, w(8)=0, m(16)=140
class Hy: m(0) = 1488, =(8) =256, (16) =76
class Hy: 7(0) = 1392, =(8) =384, m(16) =44
class Hy: =(0) = 1344, =(8) =448, =(16) =28
class Hy: 7(0) = 1344, w(8) =448, =(16) =28
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The matrices of class H; are the transposes of the matrices of class Hs.
The profile criterion cannot distinguish between the three equivalence
classes of Hadamard matrices of order n = 20, because it gives the same
profile for all three of them. The three classes of order 20 all have the same
profile:
m(4) = 4560, w(12) = 285, 7(20) = 0.

The main advantage of the profile criterion is its increased efficiency, com-
pared to the complete equivalence test algorithms. The profile of a Hada~
mard matrix is invariant under the definition of equivalence. Thus, if two
Hadamard matrices have different profiles then they are inequivalent (also
called profile-inequivalent) but the converse is not necessarily true. If two
Hadamard matrices have equal profiles, they may be equivalent or inequiv-
alent. In Magma, the profile criterion is implemented as the command
HadamardInvariant.

3.2 The graph isomorphism criterion

The graph isomorphism criterion is a necessary and sufficient condition
for Hadamard equivalence. In Magma, the graph isomorphism criterion is
implemented as the command IsHadamardEquivalent.

4 The doubling method

In this section we present the doubling method in an algorithmic form, us-
ing a concise pseudo-code. In subsequent sections, we will present several
improvements of this algorithm as well as segments of Magma code that
can be used directly, to implement the algorithm and its variants.

INPUT: A set H of Hadamard matrices of order n
OUTPUT: A set of inequivalent Hadamard matrices of order 2n

(a) form a set of permutations P, a subset of S,
(b) for every Hadamard matrix H of order n in M
for every permutation o in P
check whether H? is a new inequivalent matrix of order 2n
end for
end for

Pseudo-code for the doubling method

The different choices in steps (a) and (b) of the algorithm, lead to different
variants of the doubling method.
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1. randomized and non-randomized doubling, in step (a) of the algo-
rithm, one can choose randomly elements from S, to form a set of
permutations P, or one can use a ranking algorithm to enumerate
systematically elements of S,,.

2. doubling with 4-profile and doubling with graph isomorphism and buck-
ets, in step (b) of the algorithm, one can use the 4-profile criterion to
establish Hadamard inequivalence, or one can use the graph isomor-
phism criterion with buckets. When we use the 4-profile criterion,
we can just store the computed 4-profiles and at the end of the com-
putation, identify the different ones, using simple operating system
scripts. When we use the graph isomorphism criterion however, which
is implemented as a boolean predicate (i.e. gives a true/false answer)
then we need in addition to use the buckets algorithm [17], in order
to identify inequivalent Hadamard matrices.

The four variants of the doubling method (randomized doubling with
4-profile,

non-randomized doubling with 4-profile, randomized doubling with graph
isomorphism and buckets, non-randomized doubling with graph isomor-
phism and buckets) possess different advantages. When the 4-profile is
employed, the programs run quite fast, but the amount of inequivalent
matrices located becomes stationary rather quickly and we are missing in-
equivalent matrices who happen to have equal profiles. When the graph
isomorphism criterion with buckets is employed, the programs run slower,
but in general we find more inequivalent matrices and we are not missing
any inequivalent matrices.

5 The subgroup and centralizer group-
theoretical heuristics

In this section we present two group-theoretical heuristics that improve
the execution time of the randomized version of the doubling method, re-
gardless of which criterion we use to detect Hadamard inequivalence. The
randomized version of the doubling method operates by randomly picking
an element of S, and using this permutation to interchange the columns
of Hadamard matrices.

The cyclic subgroup heuristic operates by considering together with a ran-

dom permutation o, the cyclic subgroup generated by o in Sy, and using
all its elements, to interchange columns of Hadamard matrices. The cyclic
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subgroup generated by ¢ in Sy is defined as the set of all powers of ¢
(o) ={1,0,0%,...,0%7},

where & is the order of o in S,

Similarly, the centralizer heuristic operates by considering together with
a random permutation o, its centralizer in S,,, and using all its elements,
to interchange columns of Hadamard matrices. The centralizer of an ele-
ment o € S, is defined as the set of all elements of S,, which permute with
o

Cs,.(0)={T€Sn : To =0T7}.
The centralizer Cs, (o) is a subgroup of S,.

Typically, we have that |(¢)] < |Cs, ()|, the size of the centralizer sub-
group is bigger than the size of the cyclic subgroup.

6 Properties of the symmetric group S,

The symmetric group S, has many interesting properties that could po-
tentially be used to optimize the doubling method. For example, S, is a
2-generator group for every n. This means that S, is generated by two
elements, permutations. It can be seen that the transposition 7 = (12) and
the permutation o = (123...n) suffice:

Sn = ((12),(123...7n)), for n > 3.

This assertion can be proved by showing that {r,o) contains all transposi-
tions in S,,. This structural property of S, means that we have

Sp = {™c™ ... " -1g", where ny1,n2,...,0-1,0, € Z, and r € N*}.

This structural property of S, can potentially be used to optimize the
selection of random elements from S, during the doubling method or even
lead to theoretical result that make predictions on the nature of the profiles
of the doubled matrices, simply by looking at the permutations they are
generated from.

7 Magma code segments for the doubling
method

In this section, we present Magma code segments that can be used as
building blocks for efficient implementations of the doubling method with
its variants and heuristic optimizations.

73



7.1 Randomized and non-randomized doubling
Step (a) in the pseudo-code for the doubling method can be realized:

¢ by randomly picking permutations from S,, (using a default or a cus-
tomizable seed)

G := SymmetricGroup(n); x := Random(G);

P := RandomProcess(G : Slots:= m, Scramble := s);
x := Random(P);

met := ElementToSequence(x) ;

H:=Transpose (Matrix(Transpose (H) [met]));
¢ by constructing sets of permutations systematically

G := SymmetricGroup(n);
f := NumberingMap(G);

finv := Inverse(f);
for k := lowerBound to upperBound do
x := finv(k);

met := ElementToSequence(x);
H:=Transpose (Matrix(Transpose (H) [met]));
end for;

7.2 4-profile criterion and graph isomorphism crite-
rion with buckets

Step (b) in the pseudo-code for the doubling method can be realized:

e by using the necessary (for Hadamard inequivalence) 4-profile cri-
terion. The 4-profiles of the doubled matrices are computed using
the Magma command HadamardInvariant and saved into a text file.
The resulting text file is then processed with the operating system
commands sort, uniq to identify the different 4-profiles. It is more
efficient to use operating system commands to identify the different
4-profiles, as opposed to using Magma commands for that.

e by using the necessary and sufficient (for Hadamard inequivalence)
graph isomorphism criterion and buckets. During the formation of
doubled matrices, we maintain a list of inequivalent matrices. Each
new matrix is checked for inequivalence with all the matrices in the
list using the Magma command IsHadamardEquivalent. If the new
matrix is found to be equivalent with a matrix in the list, then it is
discarded, otherwise it is added to the list [17).
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When we use the 4-profile criterion, we discover a lot of inequivalent ma-
trices in a short period of time, but we also miss inequivalent matrices
which happen to have the same profiles. For this reason there seems to be
a fast saturation in the number of inequivalent matrices discovered using
the 4-profile criterion.

When we use the graph isomorphism criterion with buckets we discover
more inequivalent matrices and we do not miss any inequivalent matri-
ces but a longer period of time is needed because we are working with a
necessary and sufficient condition for Hadamard inequivalence.

7.3 Subgroup and centralizer group-theoretical heuris-
tics

The Magma code segment for the subgroup heuristic is

G :=SymmetricGroup(n); x := Random(G);
xSubgroup := sub<G | x>; for y in xSubgroup do

The Magma code segment for the centralizer heuristic is

G :=SymmetricGroup(n); x := Random(G);
xCentralizer := Centralizer(G,x); for y in xCentralizer do

Using the subgroup and centralizer group-theoretical heuristics, we can
discover the same amount of inequivalent matrices as with the un-optimized
code, but in far less execution time.

8 Some Results for small and large orders of
Hadamard matrices

Using these Magma procedures, we constructed several millions of new
inequivalent Hadamard matrices of orders 48, 56, 64, 72, 80, 88, and 96.
We also constructed inequivalent Hadamard matrices of orders 672 and
856. The number of the constructed inequivalent Hadamard matrices of
these orders, are given below.

The computations have been perforrx}ed using Magma 2.11 remotely at the
Centre de calcul formel MEDICIS, Ecole Polytechnique Paris, France. The
inequivalent matrices produced are available from the web page http://
www.math.ntua.gr/people/ckoukouv/en_index.html under the menu item
designs/hadamard and in addition from the MEDICIS mirror web page
http://www.cargo.wlu.ca/doubling/.

We denote by n the order of the Hadamard matrices used as the input of the
doubling method. We denote by Na,, the number of inequivalent Hadamard
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matrices of order 2n we have constructed by the doubling method. These re-
sults represent a drastic improvement of the known inequivalent Hadamard
matrices for these orders. We whould like to make it clear that these re-
sults are far from the theoretical lower bounds on the number of inequiva-
lent Hadamard matrices. The different and very useful concept is that the
inequivalent Hadamard matrices mentioned in this paper are constructed
and are available in the web to anyone who might need them.

We applied the doubling method for two different sets of orders of Hadamard
matrices, that can be categorized as the set of small orders and the set of
large orders. The results for small and large orders are described in the
tables below.

(n,2n) | (24,48) _ (28,56) _ (32,64) _ (36,72) _ (40,80)
Na, |3,013,006 2,216,264 1,696,940 1,339,890 4,025, 308
(n,2n) | (44,88) (48,96)
No, |3,196,189 1,508,441

Table 1. Small orders Profile-inequivalent Hadamard matrices constructed by
the doubling method

(n,2n) | (336,672) (428,856)
N | 334 689

Table 2. Large orders Profile-inequivalent Hadamard matrices constructed by
the doubling method

The initial sets of inequivalent matrices that we used as input in the dou-
bling method, came from different sources, that we list below.

¢ / 60 inequivalent Hadamard matrices of order 24
v 487 inequivalent Hadamard matrices of order 28
N. J. A. Sloane web page
e /19 inequivalent Hadamard matrices of order 32
v/ 217 inequivalent Hadamard matrices of order 36
v 98 inequivalent Hadamard matrices of order 40
v/ 500 inequivalent Hadamard matrices of order 44
v 53 inequivalent Hadamard matrices of order 48
C. Koukouvinos web page
¢ 4 inequivalent Hadamard matrices of order 336, see (3]
¢ the Hadamard matrix of order 428, see [13).

The main computational overhead of the doubling method is in the com-
putation of the profiles of the Hadamard matrices. This can be seen in the
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case of the large orders 336 and 428, for which the computation of the pro-
file for one Hadamard matrix in Magma, takes approximatively 35 minutes
and 1 hour, respectively.
The Hadamard matrices found by the doubling construction are profile-
inequivalent to the Hadamard matrices constructed in [18] and [19)].
Moreover, the Hadamard matrices presented in this paper is a small,
but useful, a sample of the matrices that can be found by applying in
practice the proposed method. We think that the procedure presented is
very useful to anyone applying inequivalent Hadamard matrices of orders
8t because by using our algorithm, any interested researcher can generate
his own huge list of inequivalent Hadamard matrices of the desired order.
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