On the Total Number of Parts in Various Partitions

Neville Robbins

Department of Mathematics
San Francisco State University
San Francisco, CA 94132 USA
robbins@math.sfsu.edu

ABSTRACT: Let n be a natural number. We obtain convolution-type formulas for the total number of parts in all partitions of n of several different kinds.

Introduction

Let s(n) denote the total number of parts in all partitions of the natural number n. In [3], it was shown that if d(n) is the number of divisors of n, and p(n) is the number of partitions of n, then

$$s(n) = \sum_{k=1}^{n} d(k)p(n-k) .$$

Let the integer $r \geq 2$. In this note, we derive analogous identities for the total number of parts in (i) partitions in r colors; (ii) partitions with distinct parts in r colors; (iii) partitions with odd parts in r colors; (iv) overpartitions; (v) overpartitions with odd parts; (vi) partitions into parts not divisible by r; (vii) partitions such that no part occurs r or more times.

Preliminaries

Definitions

 $p_r(n)$ is the number of partitions of n in r distinct colors

 $q_r(n)$ is the number of partitions of n with distinct parts in r distinct colors

 $q'_{-}(n)$ is the number of partitions of n with odd parts in r distinct colors

 $\overline{p}(n)$ is the number of overpartitions of n

 $\overline{q}(n)$ is the number of overpartitions of n with odd parts

 $b_r(n)$ is the number of partitions of n such that no part is divisible by r

 $b_r^*(n)$ is the number of partitions of n such that no part occurs r or more times.

d(n) is the number of divisors of n

 $d_1(n)$ is the number of odd divisors of n

 $d_0(n)$ is the number of even divisors of n

$$e(n) = d_1(n) - d_0(n)$$

$$d^*(n) = \begin{cases} d(n) & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}$$

Remarks: We define d(0) = 0, hence $d_1(0) = d_0(0) = e(0) = d^*(0) = 0$.

<u>Identities</u> Let $x \in C$, |x| < 1.

$$\sum_{n\geq 0} p_r(n)x^n = \prod_{n\geq 1} (1-x^n)^{-r} \tag{1}$$

$$\sum_{n>0} q_r(n)x^n = \prod_{n>1} (1+x^n)^r \tag{2}$$

$$\sum_{n\geq 0} q'_r(n)x^n = \prod_{n\geq 1} (1-x^{2n-1})^{-r} \tag{3}$$

$$\sum_{n\geq 0} \overline{p}(n)x^n = \prod_{n\geq 1} \frac{1+x^n}{1-x^n}$$
 (4)

$$\sum_{n\geq 0} \overline{q}(n)x^n = \prod_{n\geq 1} \frac{1+x^{2n-1}}{1-x^{2n-1}}$$
 (5)

$$\sum_{n\geq 0} b_r(n)x^n = \prod_{n\geq 1} \frac{1-x^{rn}}{1-x^{rn}}$$
 (6)

$$\sum_{n\geq 0} b_r^*(n) x^n = \prod_{n\geq 1} (1 + x^n + x^{2n} + \dots + x^{(r-1)n})$$
 (7)

$$\sum_{n>0} d(n)x^n = \sum_{j\geq 1} \frac{x^j}{1-x^j}$$
 (8)

$$\sum_{n>0} e(n)x^n = \sum_{n\geq 1} \frac{x^n}{1+x^n}$$
 (9)

$$\sum_{n\geq 0} d_1(n)x^n = \sum_{j\geq 1} \frac{x^j}{1-x^{2j}} = \sum_{j\geq 1} \frac{x^{2j-1}}{1-x^{2j-1}}$$
 (10)

$$\sum_{n>0} d^*(n)x^n = \sum_{j\geq 1} \frac{x^{2j-1}}{1-x^{4j-2}} \tag{11}$$

Remarks: Identities (1) through (7) are well-known generating functions for the partition functions under consideration. (See [1].) Identity (8) is a well-nown Lambert series. Identities (9) through (11) are analogs of (8). Note that $q'_r(n) = q_r(n)$ and that $b'_r(n) = b_r(n)$.

3. The Main Results

If f(n) counts the number of partitions of n of a certain type, let its generating function be

$$F(x) = \sum_{n \ge 0} f(n) x^n$$

where $x \in C$, |x| < 1. Let f(n, k) denote the number of that type of partition with k parts, where $1 \le k \le n$. Let s(n) denote the total number of parts in all partitions of n of that type, so that

$$s(n) = \sum_{k=1}^{n} k f(n,k) .$$

Let the generating function of s(n) be

$$S(x) = \sum_{n \geq 0} s(n)x^n.$$

Consider the bivariate generating function

$$F(x,u) = \sum_{k>0} \sum_{n>0} f(n,k)u^k x^n.$$

Then we have

$$S(x) = \frac{\partial F}{\partial u} \bigg|_{u=1} \tag{12}$$

(For more details concerning bivariate generating functions, see [5], p. 133-137.)

Often, the right member of (12) has the form D(x)F(x), where D(x) is the generating function of a divisor function $\delta(n)$, that is,

$$D(x) = \sum_{n>0} \delta(n) x^n .$$

Thus we have

$$\sum_{n>0} s(n)x^n = (\sum_{n>0} \delta(n)x^n)(\sum_{n>0} f(n)x^n) .$$

This implies that s(n) is the convolution of $\delta(n)$ and f(n), that is,

$$s(n) = \sum_{k=1}^{n} \delta(k) f(n-k) .$$

(For more details concerning convolutions, see [2], p. 31.)

We begin by considering partitions in r distinct colors.

Theorem 1 If $r \geq 2$, let $s_r(n)$ denote the total number of parts in all partitions of n in r distinct colors. Then

$$s_r(n) = r \sum_{k=1}^n d(k) p_r(n-k) .$$

Proof: If $1 \le k \le n$, let $p_r(n, k)$ denote the number of partitions of n into k parts in r distinct colors. Then

$$s_r(n) = \sum_{k=1}^n k p_r(n,k) .$$

Let

$$P_r(x) = \sum_{n>0} p_r(n) x^n = \prod_{n>1} (1-x^n)^{-r} .$$

Consider the bivariate generating function

$$P_r(x,u) = \prod_{i\geq 1} (1-ux^i)^{-r}$$
.

$$\frac{\partial}{\partial u}(P_r(x,u)) = \sum_{j\geq 1} -r(1-ux^j)^{-r-1}(-x^j) \prod_{i\neq j} (1-ux^i)^{-r} =$$

$$\sum_{j\geq 1} \frac{rx^j}{1 - ux^j} \prod_{i\geq 1} (1 - ux^i)^{-r} .$$

$$S_r(x) = \sum_{n>0} s_r(n) x^n .$$

Then

$$S_r(x) = \frac{\partial}{\partial u}(P_r(x,u)) \Big|_{u=1} = r \sum_{j>1} \frac{x^j}{1-x^j} \prod_{i>1} (1-x^i)^{-r}$$
.

Invoking (8) and (1), we have

$$S_r(x) = r(\sum_{n\geq 0} d(n)x^n)(\sum_{n\geq 0} p_r(n)x^n).$$

The conclusion now follows if we match coefficients of like powers of x.

Next, we consider partitions into distinct parts in τ distinct colors.

<u>Theorem 2</u> If $r \geq 2$, let $s_r^*(n)$ denote the total number of parts in all partitions of n into distinct parts in r distinct colors. Then

$$s_r^*(n) = r \sum_{k=1}^n e(k) q_r(n-k)$$
.

Proof: If $1 \le k \le n$, let $q_r(n, k)$ denote the number of partitions of n into k distinct parts in r distinct colors. Then

$$s_r^*(n) = \sum_{k=1}^n kq_r(n,k) .$$

Let

$$Q_r(x) = \sum_{n\geq 0} q_r(n)x^n = \prod_{n\geq 1} (1+x^n)^r$$
.

Consider the bivariate generating function

$$Q_r(x,u) = \prod_{i>1} (1+ux^i)^r.$$

$$\frac{\partial}{\partial u}(Q_r(x,u)) = \sum_{j\geq 1} r(1+ux^j)^{r-1} x^j \prod_{i\neq j} (1+ux^i)^r =$$

$$\sum_{j\geq 1} \frac{rx^j}{1+ux^j} \prod_{i\geq 1} (1+ux^i)^r .$$

$$S_r^*(x) = \sum_{n \ge 0} s_r^*(n) x^n$$

Then

$$S_r^*(x) = \frac{\partial}{\partial u}(Q_r(x,u)) \bigg|_{u=1} = r \sum_{j \geq 1} \frac{x^j}{1+x^j} \prod_{i \geq 1} (1+x^i)^r \ .$$

Invoking (9) and (2), we have

$$S_r^*(x) = r(\sum_{n\geq 0} e(n)x^n)(\sum_{n\geq 0} q_r(n)x^n)$$
.

The conclusion now follows if we match coefficients of like powers of x.

Next, we consider partitions with odd parts in r distinct colors.

Theorem 3 If $r \geq 2$, let $s'_r(n)$ denote the total number of parts in all partitions of n into odd parts in r distinct colors. Then

$$s'_r(n) = r \sum_{k=1}^n d_1(k) q_r(n-k)$$
.

<u>Proof:</u> If $1 \le k \le n$, let $q'_r(n,k)$ denote the number of partitions of n into k odd parts in r distinct colors. Then

$$s'_{r}(n) = \sum_{k=1}^{n} k q'_{r}(n, k)$$
.

Let

$$Q'_r(x) = \sum_{n>0} q'_r(n)x^n = \prod_{n>1} (1-x^{2n-1})^{-r}$$
.

Consider the bivariate generating function

$$Q'_r(x,u) = \prod_{i \ge 1} (1 - ux^{2i-1})^{-r}$$
.

$$\frac{\partial}{\partial u}(Q_r^{'}(x,u)) = \sum_{j\geq 1} -r(1-ux^{2j-1})^{-r-1}(-x^{2j-1})\prod_{i\neq j} (1-ux^{2i-1})^{-r} =$$

$$r\sum_{j\geq 1}\frac{x^{2j-1}}{1-ux^{2j-1}}\prod_{i\geq 1}(1-ux^{2i-1})^{-r}.$$

$$S'_{r}(x) = \sum_{n \geq 0} s'_{r}(n)x^{n}$$
.

Then

$$S_r^{'}(x) = \frac{\partial}{\partial u}(Q_r^{'}(x,u)) \; \bigg|_{u=1} = r \sum_{j \geq 1} \frac{x^{2j-1}}{1-x^{2j-1}} \prod_{i \geq 1} (1-x^{2i-1})^{-r} \; .$$

Invoking (10) and (3), we have

$$\sum_{n\geq 0} s'_r(n)x^n = r(\sum_{n\geq 0} d_1(n)x^n)(\sum_{n\geq 0} q'_r(n)x^n).$$

The conclusion now follows if we match coefficients of like powers of x.

We now consider overpartitions. (An overpartition of n is a partition such that one part of each size may be overlined. See [4].) If $\overline{p}(n)$ denotes the number of overpartitions of n, then the generating function for $\overline{p}(n)$ is given by:

$$\overline{P}(x) = \sum_{n \ge 0} \overline{p}(n)x^n = \prod_{n \ge 1} \frac{1 + x^n}{1 - x^n} .$$

The next theorem is a formula for $\overline{s}(n)$, which denotes the total number of parts in all overpartitions of n.

Theorem 4

$$\overline{s}(n) = 2\sum_{k=1}^n d_1(k)\overline{p}(n-k) .$$

<u>Proof:</u> If $1 \le k \le n$, let $\overline{p}(n,k)$ denote the number of overpartitions of n into k parts. Then

$$\overline{s}(n) = \sum_{k=1}^{n} k \overline{p}(n, k)$$
.

Consider the bivariate generating function

$$\overline{P}(x,u) = \prod_{i \ge 1} \frac{1 + ux^i}{1 - ux^i} .$$

$$\frac{\partial}{\partial u}(\overline{P}(x,u)) = \sum_{j \geq 1} \frac{(1-ux^j)x^j - (1+ux^j)(-x^j)}{(1-ux^j)^2} \prod_{i \neq j} \frac{1+ux^i}{1-ux^i} =$$

$$\sum_{j\geq 1} \frac{2x^j}{1 - u^2 x^{2j}} \prod_{i \geq 1} \frac{1 + ux^i}{1 - ux^i} \ .$$

$$\overline{S}(x) = \sum_{n \ge 0} \overline{s}(n) x^n .$$

Then

$$\overline{S}(x) = \frac{\partial}{\partial u}(\overline{P}(x,u)) \bigg|_{u=1} = \sum_{i \geq 1} \frac{2x^j}{1 - x^{2j}} \prod_{i \geq 1} \frac{1 + x^i}{1 - x^i}.$$

Invoking (10) and (4), we have

$$\sum_{n\geq 0} \overline{s}(n)x^n = 2(\sum_{n\geq 0} d_1(n)x^n)(\sum_{n\geq 0} \overline{p}(n)x^n) .$$

The conclusion now follows if we match coefficients of like powers of x.

Next, we consider overpartitions of n with odd parts. If $\overline{q}(n)$ denotes the number of overpartitions of n with odd parts, then the generating function for $\overline{q}(n)$ is given by:

$$\overline{Q}(x) = \sum_{n>0} \overline{q}(n)x^n = \prod_{n>1} \frac{1+x^{2n-1}}{1-x^{2n-1}}$$
.

The next theorem is a formula for $\overline{s}'(n)$, which denotes the total number of parts in all overpartitions of n into odd parts.

Theorem 5

$$\overline{s}'(n) = 2\sum_{k>0} d^*(2k+1)\overline{q}(n-2k-1)$$
.

<u>Proof:</u> If $1 \le k \le n$, let $\overline{q}(n,k)$ denote the number of overpartitions of n with k odd parts. Then

$$\overline{s}'(n) = \sum_{k=1}^{n} k \overline{q}(n,k)$$
.

Consider the bivariate generating function

$$\overline{Q}(x,u) = \prod_{i>1} \frac{1+ux^{2i-1}}{1-ux^{2i-1}}$$
.

Then we have

$$\frac{\partial}{\partial u}(\overline{Q}(x,u)) = \sum_{j \geq 1} \frac{(1-ux^{2j-1})x^{2j-1} - (1+ux^{2j-1})(-x^{2j-1})}{(1-ux^{2j-1})^2} \prod_{i \neq j} \frac{1+ux^{2i-1}}{1-ux^{2i-1}} =$$

$$\sum_{i \geq 1} \frac{2x^{2j-1}}{(1-ux^{2j-1})^2} \prod_{i \neq j} \frac{1+ux^{2i-1}}{1-ux^{2i-1}} = 2 \sum_{i \geq 1} \frac{x^{2j-1}}{1-u^2x^{4j-2}} \prod_{i \geq 1} \frac{1+ux^{2i-1}}{1-ux^{2i-1}} \ .$$

Let

$$\overline{S}'(x) = \sum_{n\geq 0} \overline{s}'(n)x^n$$
.

Then

$$\overline{S}'(x) = \frac{\partial}{\partial u}(Q(x,u)) \bigg|_{u=1} = 2 \sum_{j \ge 1} \frac{x^{2j-1}}{1 - x^{4j-2}} \prod_{i \ge 1} \frac{1 + x^{2i-1}}{1 - x^{2i-1}} .$$

Invoking (10) and (5), we have

$$\sum_{n\geq 0} \overline{s}'(n)x^n = 2(\sum_{n\geq 0} d(2n+1)x^{2n+1})(\sum_{n\geq 0} \overline{q}(n)x^n) .$$

The conclusion now follows if we match coefficients of like powers of x.

Next, we consider partitions such that no part is divisible by r. Let $b_r(n)$ denote the number of partitions of n such that no part is divisible by r. The generating function for $b_r(n)$ is given by:

$$B_r(x) = \sum_{n \ge 0} b_r(n) x^n = \prod_{n \ge 1} \frac{1 - x^{rn}}{1 - x^n} .$$

The following theorem gives a formula for $s^{(r)}(n)$, the total number of parts in all partitions of n into parts not divisible by r.

Theorem 6

$$s^{(r)}(n) = \sum_{k=1}^{n} (d(k) - d(\frac{k}{r}))b_r(n-k) .$$

<u>Proof:</u> If $1 \le k \le n$, let $b_r(n,k)$ denote the number of partitions of n into k parts, none divisible by r. Then

$$s^{(r)}(n) = \sum_{k=1}^{n} k b_r(n,k)$$
.

Consider the bivariate generating function

$$B_r(x,u) = \prod_{i \ge 1} \frac{1 - ux^{ri}}{1 - ux^i} .$$

Then

$$\frac{\partial B_r(x,u)}{\partial u} = \sum_{j \geq 1} \frac{(1 - ux^j)(-x^{rj}) - (1 - ux^{rj})(-x^j)}{(1 - ux^j)^2} \prod_{i \neq j} \frac{1 - ux^{ri}}{1 - ux^i} =$$

$$\sum_{j\geq 1} \left(\frac{-x^{rj}}{1 - ux^{rj}} + \frac{x^j}{1 - ux^j} \right) \prod_{i\geq 1} \frac{1 - ux^{ri}}{1 - ux^i} .$$

Let

$$S^{(r)}(x) = \sum_{n>0} s^{(r)}(n) x^n .$$

Then

$$S^{(r)}(x) = \frac{\partial B_r(x,u)}{\partial u} \bigg|_{u=1} = \sum_{j>1} \left(\frac{x^j}{1-x^j} - \frac{x^{rj}}{1-x^{rj}}\right) \prod_{i>1} \frac{1-x^{ri}}{1-x^i} \ .$$

Invoking (8) and (6), we have

$$\sum_{n\geq 0} s^{(r)}(n)x^n = \sum_{n\geq 0} (d(n) - d(\frac{n}{r})) \sum_{n\geq 0} b_r(n)x^n.$$

(Note that $d(\alpha) = 0$ if α is not a positive integer.) The conclusion now follows if we match coefficients of like powers of x.

Finally, we consider partitions such that no term appears r or more times. The number of such partitions of n is $b_r^*(n) = b_r(n)$. The following theorem gives a formula for $s_*^{(r)}(n)$, the total number of parts in all partitions of n such that no part occurs r or more times.

Theorem 7

$$s_*^{(r)}(n) = \sum_{k=1}^n (d(k) - rd(\frac{k}{r}))b_r^*(n-k) .$$

Proof: If $1 \le k \le n$, let $b_r^*(n, k)$ denote the number of partitions of n into k parts such that no part occurs r or more times. Then

$$s_*^{(r)}(n) = \sum_{k=1}^n k b_r^*(n,k)$$
.

$$B_r^*(x) = \sum_{n\geq 0} b_r^*(n)x^n = \prod_{n\geq 1} (1+x^n+x^{2n}+\cdots+x^{(r-1)n}).$$

Consider the bivariate generating function

$$B_r^*(x,u) = \prod_{i \ge 1} (1 + ux^i + u^2x^{2i} + \dots + u^{r-1}x^{(r-1)i}) .$$

Let $f_i(u, x, r) = 1 + ux^i + u^2x^{2i} + \dots + u^{r-1}x^{(r-1)i}$. Then we have

$$B_{\tau}^{*}(x,u) = \prod_{i\geq 1} f_{i}(u,x,\tau) \text{ and } B_{\tau}(x,1) = \prod_{i\geq 1} f_{i}(1,x,\tau) = B_{\tau}^{*}(x) .$$

Then

$$\frac{\partial B_r^*(x,u)}{\partial u} =$$

$$\sum_{j\geq 1}(x^{j}+2ux^{2j}+3u^{2}x^{3j}+\cdots+(r-1)u^{r-2}x^{(r-1)j})\prod_{i\neq j}f_{i}(u,x,r)=$$

$$\sum_{j\geq 1} \frac{x^j + 2ux^{2j} + 3u^2x^{3j} + \dots + (r-1)u^{r-2}x^{(r-1)j}}{1 + ux^j + u^2x^{2j} + \dots + u^{r-1}x^{(r-1)j}} \prod_{i\geq 1} f_i(u, x, r) .$$

Let

$$S_{\star}^{(r)}(x) = \sum_{n\geq 0} s_{\star}^{(r)}(n)x^n$$
.

Then

$$S_*^{(r)}(x) = \frac{\partial B_r^*(x,u)}{\partial u} \bigg|_{u=1} =$$

$$\sum_{j\geq 1} \frac{x^j + 2x^{2j} + 3x^{3j} + \dots + (r-1)x^{(r-1)j}}{1 + x^j + x^{2j} + \dots + x^{(r-1)j}} \prod_{i\geq 1} f_i(1, x, r) =$$

$$\sum_{j\geq 1} \frac{x^j + x^{2j} = x^{3j} + \dots + x^{(r-1)j} - (r-1)x^{rj}}{1 - x^{rj}} B_r^{\bullet}(x) =$$

$$\sum_{j>1} \left(\frac{x^j}{1-x^j} - \frac{rx^{rj}}{1-x^{rj}} \right) B_r^*(x) \ .$$

Therefore, invoking (8), we have

$$\sum_{n\geq 0} s_*^{(r)}(n)x^n = (\sum_{n\geq 0} (d(n) - rd(\frac{n}{r}))(\sum_{n\geq 0} b_r^*(n)x^n) .$$

The conclusion now follows if we match coefficients of like powers of x.

4. References

- 1. G. Andrews The Theory of Partitions (1984) Cambridge University Press
- 2. G. M. Constantine Combinatorial Theory and Statistical Design (1987) Wiley
- 3. A. Knopfmacher & N. Robbins Identities for the total number of parts in partitions Util. Math. 67 (2005) 9-18
- 4. N. Robbins Some properties of overpartitions JP J Algebra, Number Theory, Appl. 3 (2003) 95-104
- 5. R. Sedgewick & P. Flajolet Introduction to the Analysis of Algorithms (1996) Addison-Wesley