On the Total Number of Parts in
Various Partitions

Neville Robbins
Department of Mathematics
San Francisco State University
San Francisco, CA 94132 USA
robbins@math.sfsu.edu

ABSTRACT: Let n be a natural number. We obtain convolution-type
formulas for the total number of parts in all partitions of n of several different
kinds.
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Introduction

Let s(n) denote the total number of parts in all pertitions of the natural number
n. In [3), it was shown that if d(n) is the number of divisors of n, and p(n) is
the number of partitions of n, then

s(n) = Y- d(k)pln — K)
k=1

Let the integer 7 > 2. In this note, we derive analogous identities for the total
number of parts in (i) partitions in r colors; (ii) partitions with distinct parts
in r colors; (iii) partitions with odd parts in r colors; (iv) overpartitions;
(v) overpartitions with odd parts; (vi) partitions into parts not divisible by
r; (vii) partitions such that no part occurs r or more times.
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Definitions

pr(n) is the number of partitions of n in r distinct colors

g-(n) is the number of partitions of n with distinct parts in r distinct colors
g.(n) is the number of partitions of n with odd parts in r distinct colors
P(n) is the number of overpartitions of n

g(n) is the number of overpartitions of n with odd parts

b,(n) is the number of partitions of n such that no part is divisible by
b2(n) is the number of partitions of n such that no part occurs 7 or more times.
d(n) is the number of divisors of n

dy(n) is the number of odd divisors of n

do(n) is the number of even divisors of n

e(n) = di(n) — do(n)

wiy_ J dn) if n is odd
d(n)—{ 0 if n is even

Remarks: We define d(0) = 0, hence d)(0) = dp(0) = e(0) = d*(0) = 0.

Identities LetzeC, |z| < 1.

nZ);)Pr(n)m" = };[1(1 -z")" (1)
:L:qu(n)x" = 1—;11(1 +z") (2)
g;;(n)z" = J;_[l(-l -z ®3)
res = 1 125 (@

gﬁ(n)z" =11 :_++::i )
nzzobr(n)z" = };[1 1—}:2,, 6)
;)b:(n)z" = 1:[1(1 +2" 4 22 e 4 (T (7
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Y dmen =Y 27 @)

n>0 i>1 1-a7
xﬂ-
e(n)z" = 9)
nzgo ’é 1+4+zn
27 z2-1
din)z" =) —=) —— (10)
nzz% gl_” -
Y (e = Y (11)
n)yr = —
— 42
n>0 i1 1-z%

Remarks: Identities (1) through (7) are well-known generating functions
for the partition functions under consideration. (See [1].) Identity (8) is a well-
nown Lambert series. Identities (9) through (11) are analogs of (8). Note that
g.(n) = g-(n) and that b_(n) = b.(n).

3. The Main Results

If f(n) counts the number of partitions of n of a certain type, let its generating
function be

F(z) =Y f(n)z"

n20

where z € C, |z|] < 1. Let f(n,k) denote the number of that type of partition
with k parts, where 1 < k < n. Let s(r) denote the total number of parts in all
partitions of n of that type, so that

s(n) =Y _kf(n,k) .
k=1

Let the generating function of s(n) be

S(z) = Z s(n)z™ .

n20

Consider the bivariate generating function

P(z,u) =) f(n,kpura" .

£>0n20
Then we have
oF
S@=5| (12)

(For more details concerning bivariate generating functions, see (5], p. 133-137.)
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Often, the right member of (12) has the form D(z)F(x), where D(x) is the
generating function of a divisor function é(r), that is,

D(z) = Z&(n)x“ .

n>0

Thus we have

Y s(ne” = (3 6(ne™)(3 fln)z) -

n20 n20 n>0

This implies that s(n) is the convolution of §(n) and f(n), that is,
s(n) =Y (k) f(n—k) .
k=1

(For more details concerning convolutions, see [2], p. 31.)

We begin by considering partitions in r distinct colors.

Theorem 1 If r > 2, let s,(n) denote the total number of parts in all
partitions of n in r distinct colors. Then

sp(n)=r Ed(k)p,.(n —k).
k=1

Proof: If 1 < k < n, let p.(n, k) denote the number of partitions of » into
k parts in r distinet colors. Then

sr(n) = kar(nv k)

k=1
Let

Pr(z) = ¥ pelm)a” = [[(1- =)

n>0 n>1

Consider the bivariate generating function

P (z,u) = H(l —uri)™",

i>1

Then we have

e (Pr(aw) = Y =r(t - )1 (-o) [[(2 - uai)~ =

i21 i

3 o o -

izl i1
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Let .
Sr(z) = Z sp(n)z™ .

n>0

Then

o -
=‘r‘z:l_xjH(1—I‘) .

u=l 31 i>1

51(z) = = (Pr(z, )

Invoking (8) and (1), we have
Se(@) = (D d(n)z™)(Y_pr(n)z") .

n>0 n20

The conclusion now follows if we match coefficients of like powers of z. B

Next, we consider partitions into distinct parts in r distinct colors.

Theorem 2 If r > 2, let s*(n) denote the total number of parts in all
partitions of n into distinct parts in r distinct colors. Then

si(n) = ri e(k)gr(n - k) .
k=1

Proof: 1If1 <k < n, let g-(n, k) denote the number of partitions of n into
k distinct parts in r distinct colors. Then

st(n) = 3 kar(n, k)

k=1
Let

Qr(@) = g ()" = [J(1+2").

n>0 n2>1

Consider the bivariate generating function

Q- (z,u) = [J(1 +ua®)" .

i>1

Then we have

(@) = Yo r{1 + 02y e [[(1+ sy =

j21 i#j

J ,
i

i>1
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Let
8:(e) = Y sim)a”

n>0

Then

52(2) = 2-(@rla,w)

=rzl:jzj [Ta+.
i1

u=1 i>1

Invoking (9) and (2), we have

Sp(@) =7} e(m)z)(Y_ gr(n)z™) .

n>0 n>0

The conclusion now follows if we match coefficients of like powers of z. W

Next, we consider partitions with odd parts in = distinct colors.

Theorem 3 If r > 2, let s.(n) denote the total number of parts in all
partitions of » into odd parts in r distinct colors. Then

s.(n) =1y di(K)g-(n - k).
k=1

Proof: If 1<k < n, let g.(n, k) denote the number of partitions of n into
k odd parts in r distinct colors. Then

s.(n) = ka,(n. k)
k=1

Let
Q=)= g (n)z" = [[(1-2>1)".

n20 n>1

Consider the bivariate generating function

Quz,u) = [Ja-w®).

i>1
Then we have
= (@r(@,)) = 2 =r(1 = w7 (<5 [ 1 - uat) T =

i1 i%j

2j-1
T i—1\—
rz ——_Il(l—uzz‘ l) T,
1—ux2i-1
i>1 i>1
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Let
S;(:z:) = z: s:.(n):r" .

n20

Then

5,(2) = 5 (@(@0)

g 2i-1y-r
=rz T H(l -z
u=l j>1 i1
Invoking (10) and (3), we have
> s(m)z" = (Y dima") (Y g (n)z") -
n>0 n20 n>0

The conclusion now follows if we match coefficients of like powers of z. W

We now consider overpartitions. (An overpartition of n is a partition such that
one part of each size may be overlined. See [4].) If B(n) denotes the number of
overpartitions of n, then the generating function for 5(n) is given by:

142"
1-2zn

Pz) = 3 p(n)s" =

n20 n>1

The next theorem is a formula. for 3(n), which denotes the total number of parts
in all overpartitions of n.

Theorem 4
3(n) = 2}_": dy(k)p(n— k) .

k=1

Proof: If1 < k < n, let B(n, k) denote the number of overpartitions of n
into k parts . Then

n
3(n) =) _kp(n, k)
k=1
Consider the bivariate generating function

— 14 uz'
P(z,u) = T
i>1

Then we have

7] (1 —uad)d - (1 +uzd)(—ad) 1 +uat
FaP@m) =2 A= ul)? i~

i1 iy
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Z 277 1+ uzt
= 1 — u2z? 1 1— uzt
Let

S(z) = ZE(n)z" .

n>0

Then

Se) = 5 (Pla) | 21 =t

Invoking (10) and (4), we have

D8z =20 di(n)z")(Y Bln)z") .

n>0 n2>0 n2>0
The conclusion now follows if we match coefficients of like powers of z. W
Next, we consider overpartitions of n with odd parts. If §(n) denotes the number

of overpartitions of n with odd parts, then the generating function for g(n) is
given by:

14 z?n-1

Q=) =) _gn)z" = =

n>0 n2>1

The next theorem is a formula for 3 (n), which denotes the total number of
parts in all overpartitions of n into odd parts.

Theorem 5

F(n)=2) d'(2k+1)7(n~2k-1).
k>0

Proof: 1If1 < k < n, let g(n, k) denote the number of overpartitions of n
with k£ odd parts. Then

n
3 (n) =) _ kg(n,k)
k=1
Consider the bivariate generating function

1+ uz?-1

5(33, u) = 1

T — un2i=1
ux
i>1
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Then we have

(Q(:c ) = Z (1 — uz?—1)z2-1 — (1 4 ug?~1)(—2%1) H 1+uzg?i-1

— r2i-1)2 —gr2i-1
51 (1 — ux?-1) #jl ux?i
2g2i-1 1 + uz? z%-1 14 uz?-!

E — ug?i-1)2 T R Z 1 - u2g4i-2 H 1 — uzg2i-1°

,>1 i >1
Let

S(z)= Zﬁ'(n)x" .
n>0

Then

) F;) 2_1 -1 1+m2i-l
S @) = 5,Q@w) | -221 w5 L T

Invoking (10) and (5), we have

Y F @)z =23 d2n + 1)z (Y q(n)z") -

n2>0 n>0 n>0
The conclusion now follows if we match coefficients of like powers of z. W
Next, we consider partitions such that no part is divisible by r. Let b,(n) denote

the number of partitions of n such that no part is divisible by r. The generating
function for b.(n) is given by:

B.(z) = Z b.(n)a™ = H 11:'::: .

n20 n21

The following theorem gives a formula, for s("}(n), the total number of parts in
all partitions of n into parts not divisible by r.

Theorem 6

) = 3 (d(k) = d()ben — k)
k=1

Proof: If1 <k <mn, let b.(n, k) denote the number of partitions of n into
k parts, none divisible by ». Then

sM(n) = z": kbe(n, k) .

k=1
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Consider the bivariate generating function

B,(z,u) = ll uz,’
Y A
Then
0B (e,1) _ 5~ (1= w0)(-2) ~ (L —wa"l)(o) py 1 —wa”t
Ou Jzzl (1 — uzd)? oy 1 - uzi
_x".'i
J_Z;(l — uzry l—u:z:J)H l—ux‘ )
Let
8N (z) = Z s (n)z™
n>0
Then
8B, (z,u) 2
(r) = T\ 7 =
57(=) Bu |y j;(l—xj z'J)H 1-z °

Invoking (8) and (6), we have

> sMm)am = 3 (dlm) - d(2) Y belm)a

n>0 n>0 n>0

(Note that d(a) = 0 if & is not a positive integer.) The conclusion now follows
if we match coefficients of like powers of z. W

Finally, we consider partitions such that no term appears r or more times. The
number of such partitions of n is b2(n) = b.(n). The following theorem gives a
formula for s{"(n), the total number of parts in all partitions of » such that no
part occurs 7 or more times.

Theorem 7

s (n) = D (d(k) - rd(é))b,'.(n -k).
k=1

Proof: If1 < k < n, let b:(n, k) denote the number of partitions of n into
k parts such that no part occurs r or more times. Then

sN(n) = Zu: kb(n, k) .

k=1
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Let
Biz) =Y bi(m)a" = [[(1+2"+* 4o+ 2(r=m) |

n>0 n2l
Consider the bivariate generating function

B:(x’ u) = H(l +uz' + w2 4. ur—lz(r-l)i)
i>1

Let fi(u,z,7) = 14+ uz’ + w2z 4 ... + " 12("~1)_ Then we have

B}(z,u) = [] fi(w,z,7) and B,(z,1) = [[ fi1,2,7) = B}(=) -

i21 i21
Then
8B} (z,u) _
o =
Z(-’EJ + 2uz 4 3u?z¥ - 4 (r — D271 Hf"(u’ z,r) =
721 i#i
o + 2uz® + 3ug¥ 4o+ (r — 1)ur—2g(r-1)
.Z: 1+ uzd +u2z 4 .- 4 ur—lglr=1)i Hfi(u’x,r) .
izl 21
Let
57(z) = Y s (n)a"
n20
Then
0B (z,u)
S(z) = 228 o
6‘“ u=1

z7 +22% 4 32% + -+ (r = 1)1
2 1+ +29 +...+z0-1J l;[lf*(l””') =
iz

2l +2% =¥ 42— (= 1)z,
> B =

1-zm

zd re+i
(——=- )B;(z) .
,-Z>; 1-—x7
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Therefore, invoking (8), we have

> s m)a" = (3 (d(m) - rd(2)(Y b (m)a™) -

n>0 n2>0 n>0
The conclusion now follows if we match coefficients of like powers of z. W
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