Eternal Security in Graphs of Fixed
Independence Number

William F. Klostermeyer! and Gary MacGillivray*

t Dept. of Computer and Information Sciences
University of North Florida
Jacksonville, FL 32224-2669

t Dept. of Mathematics and Statistics
University of Victoria
Victoria, Canada

Abstract

We show that if the independence number of a graph is a, then
the eternal security number of the graph is at most (®}'), solving a
problem stated by Goddard, Hedetniemi, and Hedetniemi [JCMCC,
vol. 52, pp. 160-180).

1 Introduction

Let G = (V, E) be a simple graph with independence number c. The open
neighborhood of vertex v is denoted by N(v), and its closed neighborhood
N(v)U {v} is denoted by N[v]. A dominating set of G is a set D C V such
that, for all v, N[vJnD # 0.

Considerable recent interest has been given to problems concerned with
protecting the vertices in a graph from a series of one or more attacks, see
for example [1, 2, 5]. In such a problem, guards are located at vertices, can
protect the vertices at which they are located, and can move to a neigh-
boring vertex to defend an attack there. Under this set of rules, a guard
located at each vertex of a dominating set suffices to defend a graph against
a single attack. Several variations of this problem have been proposed in-
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cluding Roman Domination (3], Weak Roman Domination [4] and k-secure
sets/eternal secure sets [1, 2, 5, 6).

Let R denote a sequence of vertices, with first element R(1) and it*
element R(i). The elements of R are interpreted as the locations of a
sequence of consecutive attacks at vertices, each of which must be defended
by a guard. At most one guard is allowed to move to defend each attack.

Let Do be the set of initial locations of the guards and let D; be the
set of locations of the guards after R(i) is defended (so R(i) € D;). We
refer to D; as a configuration of the guards. If R(i) € D;, then D; =
(Di-1\ {v}) U{R(3)}, where v € D;_; and R(i) € N(v). We say that the
guard at v has moved to R(i).

A set D is an eternal secure set if, for all possible sequences R, there
exists a sequence Do, Dy,... such that D; = D;_; \ {v} U R(i) (possibly
v = R(3)), R(¢) € N[v], and each D; is a dominating set. The size of a
smallest eternal secure set in G is denoted v,(G), or simply 7o {2].

It is not hard to prove that v, > a for all graphs G (just imagine a
sequence of attacks at independent vertices). Goddard et al. proved that
if @ = 2 then v, < 3 [5]. They conjectured that there is a constant ¢ such
that 7, < c for all graphs with & = 3 [5]. In this paper, we prove that
Yoo < (*37), for all graphs with independence number o > 1. It is not
known if this bound is best possible. We construct connected graphs with

3
Yoo = 'é'a.

2 Proofs

Theorem 1 For any graph G with independence number a > 1, v <
(a+1)
2 )

Proof: The result is clearly true if [V]| < (*}'), so assume that |V| >
(*}). Define disjoint independent sets Sa,Sa—1,...,S) such that S, is a
maximum independent set of G (so |S,| = @) and, fort = a—1,a—2,...1,
the set S, is either empty or an independent set of size ¢ (not necessarily a
maximal independent set). Among all collections of such sets, choose one
such that | U, S| is maximum. Since [V| > (°3?), the set S; # 0.

Start with Dp equal to the initial location of the guards. Suppose
D;_y = U S, for some ¢ > 1.

Strategy: Suppose R(i) = v. If there is a guard at v, then it is defended
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by the guard located at v. Otherwise, a guard from the set S; with the
smallest subscript among those with a vertex adjacent to v moves to v.
Such a set exists because S, is a dominating set.

We will show that D; = (D;_; \ {v}) U{R(?)} can be “partitioned” into
disjoint independent sets, as above. Suppose R(i) = v. If v € D;_; then
D; = D;_; and the statement is true in this case. If v € D;_,, then a
guard at g € S; moves to v according to the above strategy. There are
two possibilities. If (S; — {g}) U {v} is independent, then replacing S;
by (S; — {g}) U {v} gives another collection of disjoint independent sets
with the same maximality properties as in the definition. Otherwise, v is
adjacent to at least two vertices in S;. This implies that j > 1. Let k be the
greatest subscript less than j such that Sy is non-empty. It must be that
k = j — 1; otherwise the fact that Si U {v} is independent (by definition of
J no vertex in Si is adjacent to v) contradicts the maximality of | Ug_, Skl
Replacing S; by S;—1U{v} and S;_; by S; —{g} gives another collection of
independent sets with the same maximality properties as in the definition.
The claim is now proved.

Thus, for all ¢ > 1, the strategy allows the guards to defend an attack at
R(i). Therefore, 700 < |U%, S| < 1+2+---+a = (°3?). This completes
the proof. O

Theorem 2 Let n > 2 be an integer. There exists a connected graph G
with independence number a and eternal security number voo(G) 2> %a.

Proof: Tt is easy to see that C; has independence number two and eternal
security number three [2]. Let G1,Ga,...,Gn, n > 2, be disjoint copies
of Cs, and let v be a new vertex adjacent to each other vertex. Let G
be the graph resulting from this construction. The graph G clearly has
independence number a = 2n. We claim that it has v, = 3n.

Suppose G has eternal security number less than 3n. Then there exists
some G; containing fewer than three guards. Let the vertices of G; be
consecutively numbered around the cycle as vy,vs,...,v5 and we assume
without loss of generality that G; contains exactly two guards (the proof
will proceed similarly if there are less than two guards in G;).

According to Burger et al. (2], we can assume that sufficiently many
attacks have occurred that no two guards occupy the same vertex. There
are two cases depending on the location of the two guards within G;.

If the guards are on adjacent vertices, assume without loss of generality
they are on v; and v, and in order that the guards induce a dominating
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set, there must be a guard at v. If there is an attack at v4, the guard at
v must move to v4. Since there are fewer than 3n guards, there is another
Gj,j # i, with at most two guards. Since there is now no guard on v, these
guards in G; are not adjacent, else the guards do not induce a dominating
set. If there is then an attack at the vertex on the path of length two
Joining these two guards, the configuration resulting from defending the
attack cannot be a dominating set.

Thus, the guards must be on nonadjacent vertices that are distance two
from each other in the subgraph G;, say v; and vs. We claim that this
reduces to the previous case. Attack at vo. Suppose either a guard at v; or
vz moves to v2. Then this is exactly the previous case. So suppose a guard
at v moves to vz. Then, there is another Gj;, j # i, with at most two guards
and now there is no guard at v, so we may apply the argument above. O

We note that the eternal security number of the graph in Theorem 2 is
in fact 3n. In addition, the technique used proves the following. Let G be
a graph. Take n disjoint copies of G. Add a new vertex v and join it to
all vertices in these copies. Call this graph H. Then a(H) = na(G), and
Yoo (H) = 70 (G).

3 Future Directions

Our main question is whether the bounds in Theorem 1 are tight (even in
the case a = 3); however, we are unable to prove it as of yet and suspect it
may require fairly complex or large graphs to prove better lower bounds. It
may be worth considering graph with a = 3 and, for example, A = n — 1.
We suspect there is no constant ¢ such that 7,,(G) < ca, for all G.

We note that when a(G) = 2, 7,,(G) < 3, one can determine the eternal
security number of such graphs in polynomial time, due to Theorem 5 of
[2]. We leave open the complexity of computing the eternal security number
of graphs with independence number three (or of any fixed independence
number). The general problem of deciding if a set of vertices is an eternal
secure set is complete for co-NPN? [7].
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