Eternal Security in Graphs of Fixed Independence Number William F. Klostermeyer[†] and Gary MacGillivray[‡] † Dept. of Computer and Information Sciences University of North Florida Jacksonville, FL 32224-2669 [‡] Dept. of Mathematics and Statistics University of Victoria Victoria, Canada #### Abstract We show that if the independence number of a graph is α , then the eternal security number of the graph is at most $\binom{\alpha+1}{2}$, solving a problem stated by Goddard, Hedetniemi, and Hedetniemi [*JCMCC*, vol. 52, pp. 160-180]. # 1 Introduction Let G = (V, E) be a simple graph with independence number α . The open neighborhood of vertex v is denoted by N(v), and its closed neighborhood $N(v) \cup \{v\}$ is denoted by N[v]. A dominating set of G is a set $D \subseteq V$ such that, for all v, $N[v] \cap D \neq \emptyset$. Considerable recent interest has been given to problems concerned with protecting the vertices in a graph from a series of one or more attacks, see for example [1, 2, 5]. In such a problem, guards are located at vertices, can protect the vertices at which they are located, and can move to a neighboring vertex to defend an attack there. Under this set of rules, a guard located at each vertex of a dominating set suffices to defend a graph against a single attack. Several variations of this problem have been proposed in- cluding Roman Domination [3], Weak Roman Domination [4] and k-secure sets/eternal secure sets [1, 2, 5, 6]. Let R denote a sequence of vertices, with first element R(1) and i^{th} element R(i). The elements of R are interpreted as the locations of a sequence of consecutive attacks at vertices, each of which must be defended by a guard. At most one guard is allowed to move to defend each attack. Let D_0 be the set of initial locations of the guards and let D_i be the set of locations of the guards after R(i) is defended (so $R(i) \in D_i$). We refer to D_i as a configuration of the guards. If $R(i) \notin D_i$, then $D_i = (D_{i-1} \setminus \{v\}) \cup \{R(i)\}$, where $v \in D_{i-1}$ and $R(i) \in N(v)$. We say that the guard at v has moved to R(i). A set D is an eternal secure set if, for all possible sequences R, there exists a sequence D_0, D_1, \ldots such that $D_i = D_{i-1} \setminus \{v\} \cup R(i)$ (possibly v = R(i)), $R(i) \in N[v]$, and each D_i is a dominating set. The size of a smallest eternal secure set in G is denoted $\gamma_{\infty}(G)$, or simply γ_{∞} [2]. It is not hard to prove that $\gamma_{\infty} \geq \alpha$ for all graphs G (just imagine a sequence of attacks at independent vertices). Goddard et al. proved that if $\alpha=2$ then $\gamma_{\infty}\leq 3$ [5]. They conjectured that there is a constant c such that $\gamma_{\infty}\leq c$ for all graphs with $\alpha=3$ [5]. In this paper, we prove that $\gamma_{\infty}\leq {\alpha+1\choose 2}$, for all graphs with independence number $\alpha\geq 1$. It is not known if this bound is best possible. We construct connected graphs with $\gamma_{\infty}=\frac{3}{2}\alpha$. # 2 Proofs **Theorem 1** For any graph G with independence number $\alpha \geq 1$, $\gamma_{\infty} \leq {\binom{\alpha+1}{2}}$. **Proof:** The result is clearly true if $|V| \leq {\alpha+1 \choose 2}$, so assume that $|V| > {\alpha+1 \choose 2}$. Define disjoint independent sets $S_{\alpha}, S_{\alpha-1}, \ldots, S_1$ such that S_{α} is a maximum independent set of G (so $|S_{\alpha}| = \alpha$) and, for $t = \alpha - 1, \alpha - 2, \ldots 1$, the set S_t is either empty or an independent set of size t (not necessarily a maximal independent set). Among all collections of such sets, choose one such that $|\bigcup_{t=1}^{\alpha} S_t|$ is maximum. Since $|V| > {\alpha+1 \choose 2}$, the set $S_1 \neq \emptyset$. Start with D_0 equal to the initial location of the guards. Suppose $D_{i-1} = \bigcup_{t=1}^{\alpha} S_t$, for some $i \geq 1$. Strategy: Suppose R(i) = v. If there is a guard at v, then it is defended by the guard located at v. Otherwise, a guard from the set S_j with the smallest subscript among those with a vertex adjacent to v moves to v. Such a set exists because S_{α} is a dominating set. We will show that $D_i = (D_{i-1} \setminus \{v\}) \cup \{R(i)\}$ can be "partitioned" into disjoint independent sets, as above. Suppose R(i) = v. If $v \in D_{i-1}$ then $D_i = D_{i-1}$ and the statement is true in this case. If $v \notin D_{i-1}$, then a guard at $g \in S_j$ moves to v according to the above strategy. There are two possibilities. If $(S_j - \{g\}) \cup \{v\}$ is independent, then replacing S_j by $(S_j - \{g\}) \cup \{v\}$ gives another collection of disjoint independent sets with the same maximality properties as in the definition. Otherwise, v is adjacent to at least two vertices in S_j . This implies that j > 1. Let k be the greatest subscript less than j such that S_k is non-empty. It must be that k = j - 1; otherwise the fact that $S_k \cup \{v\}$ is independent (by definition of j no vertex in S_k is adjacent to v) contradicts the maximality of $|\bigcup_{k=1}^{\alpha} S_k|$. Replacing S_j by $S_{j-1} \cup \{v\}$ and S_{j-1} by $S_j - \{g\}$ gives another collection of independent sets with the same maximality properties as in the definition. The claim is now proved. Thus, for all $i \geq 1$, the strategy allows the guards to defend an attack at R(i). Therefore, $\gamma_{\infty} \leq |\bigcup_{t=1}^{\alpha} S_t| \leq 1 + 2 + \cdots + \alpha = {\alpha+1 \choose 2}$. This completes the proof. \square **Theorem 2** Let $n \geq 2$ be an integer. There exists a connected graph G with independence number α and eternal security number $\gamma_{\infty}(G) \geq \frac{3}{2}\alpha$. *Proof:* It is easy to see that C_5 has independence number two and eternal security number three [2]. Let $G_1, G_2, \ldots, G_n, n \geq 2$, be disjoint copies of C_5 , and let v be a new vertex adjacent to each other vertex. Let G be the graph resulting from this construction. The graph G clearly has independence number $\alpha = 2n$. We claim that it has $\gamma_{\infty} \geq 3n$. Suppose G has eternal security number less than 3n. Then there exists some G_i containing fewer than three guards. Let the vertices of G_i be consecutively numbered around the cycle as v_1, v_2, \ldots, v_5 and we assume without loss of generality that G_i contains exactly two guards (the proof will proceed similarly if there are less than two guards in G_i). According to Burger et al. [2], we can assume that sufficiently many attacks have occurred that no two guards occupy the same vertex. There are two cases depending on the location of the two guards within G_i . If the guards are on adjacent vertices, assume without loss of generality they are on v_1 and v_2 , and in order that the guards induce a dominating set, there must be a guard at v. If there is an attack at v_4 , the guard at v must move to v_4 . Since there are fewer than 3n guards, there is another $G_j, j \neq i$, with at most two guards. Since there is now no guard on v, these guards in G_j are not adjacent, else the guards do not induce a dominating set. If there is then an attack at the vertex on the path of length two joining these two guards, the configuration resulting from defending the attack cannot be a dominating set. Thus, the guards must be on nonadjacent vertices that are distance two from each other in the subgraph G_i , say v_1 and v_3 . We claim that this reduces to the previous case. Attack at v_2 . Suppose either a guard at v_1 or v_3 moves to v_2 . Then this is exactly the previous case. So suppose a guard at v moves to v_2 . Then, there is another G_j , $j \neq i$, with at most two guards and now there is no guard at v, so we may apply the argument above. \square We note that the eternal security number of the graph in Theorem 2 is in fact 3n. In addition, the technique used proves the following. Let G be a graph. Take n disjoint copies of G. Add a new vertex v and join it to all vertices in these copies. Call this graph H. Then $\alpha(H) = n\alpha(G)$, and $\gamma_{\infty}(H) = n\gamma_{\infty}(G)$. ### 3 Future Directions Our main question is whether the bounds in Theorem 1 are tight (even in the case $\alpha=3$); however, we are unable to prove it as of yet and suspect it may require fairly complex or large graphs to prove better lower bounds. It may be worth considering graph with $\alpha=3$ and, for example, $\Delta=n-1$. We suspect there is no constant c such that $\gamma_{\infty}(G) \leq c\alpha$, for all G. We note that when $\alpha(G)=2$, $\gamma_{\infty}(G)\leq 3$, one can determine the eternal security number of such graphs in polynomial time, due to Theorem 5 of [2]. We leave open the complexity of computing the eternal security number of graphs with independence number three (or of any fixed independence number). The general problem of deciding if a set of vertices is an eternal secure set is complete for co- NP^{NP} [7]. # References [1] A. Burger, E. Cockayne, W. Gründlingh, C. Mynhardt, J. van Vuuren, and W. Winterbach (2004), Finite Order Domination in Graphs (2004), - J. Comb. Math. Comb. Comput., vol. 49, pp. 159-176 - [2] A. Burger, E. Cockayne, W. Gründlingh, C. Mynhardt, J. van Vuuren, and W. Winterbach (2004), Infinite Order Domination in Graphs (2004), J. Comb. Math. Comb. Comput., vol. 50, pp. 179-194 - [3] E. Cockayne, P. Dreyer, S. M. Hedetniemi, and S. T. Hedetniemi (2004), Roman domination in graphs *Discrete Math.*, vol. 278, pp. 11-22 - [4] E. Cockayne, O. Favaron, and C. Mynhardt (2003), Secure domination, weak roman domination and forbidden subgraphs, Bull. Inst. Combin. Appl., vol. 39, pp. 87-100 - [5] W. Goddard, S. M. Hedetniemi, and S. T. Hedetniemi (2005), Eternal Security in Graphs, J. Comb. Math. Comb. Comput., vol. 52, pp. 160-180 - [6] W. Klostermeyer and G. MacGillivray (2005), Eternally Secure Sets, Independence Sets, and Cliques, AKCE International Journal of Graphs and Combinatorics, vol. 2 (2005), pp.119-122 - [7] W. Klostermeyer (2006), Complexity of Eternal Security, to appear in J. Comb. Math. Comb. Comput.