All Pairs Maximum Path Algorithms
for an Average Path Value
Gordon Beavers, University of Arkansas
Wing-Ning Li,University of Arkansas

Abstract

Let G(V, E) be a weighted connected simple graph. Given a pair
of vertices u,v € V, let Maz(u,v) denote the maximum average path
value over all simple paths from « to v. For a given simple path from
u to v the average path value, apvp(u,v) = min(P)/length(P) where
min(P) is the weight of the minimum weight edge in the path P and
length(P) is the number of edges in P. This notion of average path
value has been used in the analysis of social networks. Algorithms
are presented for the calculation of average path value.

Key Words: Combinatorial optimization, optimum path weight, average
path weight, graph algorithms.

1 Introduction

Let G(V, E) be a weighted connected simple graph. Given a pair of vertices
u,v € V, let Maz(u,v) denote the maximum average path velue over all
simple paths from u to v. For a given simple path P from u to v the average
path value, apvp(u,v) = min(P)/length(P) where min(P) is the weight of
the minimum weight edge in the path P and length(P) is the number of
edges in P. This notion of average path value has been used in the analysis
of social networks [1].

Algorithms are provided for undirected graphs. In most cases it is obvi-
ous how the algorithm may be modified for directed simple graphs. Single
source maximum average path algorithms are provided which provide the
method for all pairs maximum average path algorithms. For dense graphs
a matrix multiplication method can be used for all pairs maximum paths.
The size of the set of edge weights relative to the size of the set of vertices
is a parameter that can affect the run time of the algorithms. Edge weights
are restricted to non-negative real numbers.

The principle of optimality is exemplified by the shortest paths problem
in that subpaths of shortests paths are themselves shortest paths. When the
principle of optimality holds more efficient greedy or dynamic programming
algorithms can be used. The optimality principle fails to hold for this notion
of average as the following example demonstrates. Nevertheless we have
been able to provide polynomial time algorithms for this type of average.

Optimality fails because there are two criteria for determining the opti-
mal path: a smaller number of edges and a larger least weight edge. Either
of these criteria can dominate the other. We present two examples (Figure

JCMCC 64 (2008), pp. 121-126

1) in which the optimal path does not use the optimal subpath. In the
first example the optimal path is the one with the smaller minimum, but a
smaller number of edges, that is, the optimal path from a to f is adef while
the optimal path from a to e is abce. In the second example the optimal
subpath has more edges but a larger minimum, that is, the optimal path
from a to c utilizes the subpath containing 12 edges with a minimum weight
of those edges being 23, while the optimal path from a to b utilizes the path
containing 5 edges with a minimum weight of those edges being 10.

Figure 1: Examples where optimal path do not use optimal subpaths.

The structure of the paper is as follows. In section 2 a version of breadth
first search, developed specifically for this problem, is presented that con-
siders the weight of an edge as a criterion for inclusion in the breadth first
tree. The new version is called WEIGHTED -BFS. In section 3 a special case
of the problem, when the edge weights are equal, is considered for which a
more efficient algorithm is given. Section 4 considers algorithms for simple
connected graphs. The results are summarized in the conclusion.

2 Breadth First Search

We provide a version of breadth first search that determines both the numn-
ber of edges in a shortest path from a source vertex s to another vertex w,
d(u), and the weight of the minimum weight edge in the BFS path. The
procedure has an added parameter wg. Only edges of weight at least as
large as wp are considered. The run time is O(|V| + | E]).
WEIGHTED-BFS(G, s, wp) returns shortest paths (least number of edges)
from s to all other vertices such that all edges in the paths have weight at
least as large as wg. WEIGHTED-BFS(G, s,0) is equivalent to standard
breadth first search if all edge weights in the graph are non-negative.

122

WEIGHTED-BFS(G, s, wp)

1. for each u

2. d(u) =

3. m(u) = NIL

4. color(u) = white

5. min{u) =0

6. d(s)=0

7. min(s) =0

8. color(s) = gray

9. ENQUEUE(Q, s)

10. while Q # 0

11. u =DEQUEUE(Q)

12. for each v € adj(u)

13. if color(v) == white and w(u,v) > wy
14. color(v) = gray

15. d(v) =d(u) +1

16. m(v) =u

17. min(v) = min(min(u), w(u, v))
18. ENQUEUE(Q, v)

WEIGHTED-BFS(G, s, wy) is basically the breadth first search algorithm
found in Introduction to Algorithms [2] by Cormen et. al. modified to
consider only edges having a weight of at least wp where wg > 0, and with
an added variable min(u) which is the value of the minimum weight edge in
the shortest path. The modification essentially causes the BFS algorithm
to run on a subgraph of G containing only the edges of G with weight at
least wp. See [2] for proof of correctness and justification of the run time.

3 Equal Edge Weights Case

In this special case, all the edges of the graph have the same weight. Let
d(u) denote the length (number of edges) of the shortest path (least number
of edges) from the source vertex s to the vertex u. Let w be the weight
of each edge. Let apv(u) denote the average path value for the BFS path
from the source s to vertex uw. If w > 0 the following algorithm solves the
special case.

EQUALWEIGHTAPV(G, s)
1. WEIGHTED-BFS(G, s,0)
2. foreachveV

3. apu(v) = F o)

123

The correctness of the algorithm follows from the fact that if edge
weights are non-negative and equal then the maximum average path is
the shortest path in terms of the number of edges. WEIGHTED-BFS can
be used to solve the single source all destinations shortest path problem
in time O(|V| + |E|). WEIGHTED-BFS is called |V| times to get all pairs
shortest path lengths with a run time of ©(|V|(|V| + |E|)). Therefore,
for sparse graphs, that is for graphs with |E| = O(|V]), the overall time
complexity of the algorithm is ©(|V]) or ©(|V|?) for all pairs. For dense
graphs, using a matrix multiplication algorithm [3] to determine shortest
paths (least number of edges) between pairs of vertices, results in a run
time of O(|V|>37%1g|V]), which becomes the overall time complexity for
dense graphs. For the general case, we will not likely do better in time
complexity than the special case.

4 Algorithms for Simple Graphs

As the following algorithm progresses, a path s ~+ u is chosen just in case
every shorter path from u to v contains an edge of sufficiently lesser weight
to cause the value of the function apv(u) to decrease. Let k denote the
number of distinct edge weights. The uppper bound for k& is |E| and is
achieved when edge weights are distinct. The runtime of the algorithm
is O(k(|V| + |E])) for a single source and thus O(k|V|(|V| + |E|)) for all
pairs. This algorithm checks each edge for being the minimum weight edge
in a path yielding Maxz(s,u). When the algorithm terminates apv(u) =
Maz(s,u). The algorithms works by progressively removing edges of lesser
weight from consideration in BFS paths.

SHRINKINGMETHOD(G, s)
1. sort edge weights in increasing order (no duplicates)
2. for each vertex u € V
3. apv(u) =0
4. for each weight w in sorted order
WEIGHTED-BFS(G, s, w)
for each vertex u
temp = min(u)/d(u)
if temp > apv(u)
0. apu(u) = temp

5 © oo

Consider an optimal path P from u to v. Let w' be the weight of the
least weight edge in P. Then P is a path with the least numbers of edges
from u to v containing only edges of weight w’ or greater. The correctness
of the algorithm follows from the observation that the algorithm determines

124

shortest paths (in terms of the number of edges) containing only edges of
weight at least w for every edge weight w. WEIGHTED-BFS(G, s,w’) may
determine a path different from P, but that path will have the same length
and same average path value as P. The following theorem formalizes this
reasoning.

Theorem When SHRINKINGMETHOD(G, s) terminates M Az(s, u) = apv(u).
Proof We show that if Maz(s,u) = w’'/k and there is a path of length k
with minimum weight edge w’, then at the stage of the algorithm when w
is set to w’ apv(u) = w'/k and the value of apv(u) remains unchanged for
the remainder of the algorithm.

Suppose that Maz(s,u) = w'/k, there is a path of length k£ with min-
imum weight edge w’, and that when w is set to w' apv(u) # w'/k. Since
there is a path of length k£ with 2 minimum weight edge of weight w’ that
will be discovered at this stage (if it has not been discovered before) this can
only occur if apv(u) > w’/k which means that apv(u) has been set to the
larger value at an earlier stage of the algorithm and thus Maz(s, u) # w'/k
contrary to the assumption.

Once apv(u) has achieved the maximum value, it is not altered. QED

The following matrix multiplication method runs faster on dense graphs
with a runtime of O(kn?37¢ Ign) [3], where k is the number of distinct edge
weights and n is the number of vertices. In the following code n = |V, Adj
is the matrix of edge weights, APV is the current best average path value,
and D is the matrix of the number of edges in a shortest path between pairs
of vertices.

ALL PAIRS MAX PATHS(W)

1. sort edge weights in increasing order
2. initialize matrices Adj and APV

3. for each edge weight w in sorted order
3 update matrix Adj (remove edges of weight less than w)
4 D =MATRIXSHORTESTPATHS(Adj)

5 fori=1ton

6. forj=1ton

7 if w/d(i, j) > apv(i,)

8. apu(i, §) = w/d(i, 5)

9. return APV

The correctness of the algorithm can be argued as for the previous
algorithm in that the only difference is that a matrix method is being used
to find the shortest path (least number of edges) between vertices, rather
than BFS.

125

5 Conclusion

This paper has provided algorithms to find the maximum average path val-
ues between vertices of a weighted simple connected graph G(V, E), where
given a pair of vertices u,v € V, Maz(u,v) denotes the maximum aver-
age path value over all simple paths from u to v. For a given simple path
P from u to v the average path value, apvp(u,v) = min(P)/length(P)
where min(P) is the weight of the minimum weight edge in the path P and
length(P) is the number of edges in P.

6 References

[1] S. Yang and D. Knoke, Optimal connections: strength and distance in
valued graphs, Social Networks23 (2001) 285-295.

[2] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to
Algorithms, Second Edition, McGraw-Hill (2001).

[3] R. Seidel, On the all-pairs-shortest-path problem in unweighted undi-
rected graphs, J. Comput. Sys. Sci. 51 (1995) 400-403.

126

