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Abstract

For any k € N, a graph G = (V, E) is said to be Z-magic if there
exists a labeling ! : E(G) — Z — {0} such that the induced vertex set
labeling (¥ : V(G) — Z defined by

tw) = Z (uv)
weE(G)

is a constant map. For a given graph G, the set of all k € N for which
G is Z -magic is called the integer-magic spectrum of G and is denoted
by IM(G). In this paper we will consider the functional extensions of
P, (n=2,3,4) and will determine their integer-magic spectra.
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1 Introduction
For any abelian group A, written additively, any mapping ! : E(G) — A— {0}
is called a labeling. Given a labeling on the edge set of G one can introduce a

vertex set labeling I*:V(G) — A by
Foy= Y luww).

uve E(G)
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A graph G is said to be A-magic if there is a labeling [ : E(G) —» A — {0}
such that for each vertex v, the sum of the labels of the edges incident with v
are all equal to the same constant; that is, {*(v) = ¢ for some fixed ¢ € A.
In general, a graph G may admit more than one labeling to become A-magic;
for example, if |[A| > 2 and ! : E(G) —» A — {0} is a magic labeling of G
with sum ¢, then [ : E(G) — A — {0}, the inverse labeling of !, defined by
{(uv) = —l(uwv) is another magic labeling of G with sum —c. At present, given
an abelian group, no general efficient algorithm is known for finding magic
labelings of general graphs. A graph G = (V, E) is called fully magic if it is
A-magic for every abelian group A. For example, every regular graph is fully
magic. Also, a graph G = (V, E) is called non-magic if for every abelian group
A, the graph is not A-magic. The most obvious example of a non-magic graph
is P, (n 2 3), the path of order n. As a result, any graph with a pendant
path of length n > 3 would be non-magic. Here is another example of a non-
magic graph: Consider the graph H Figure 1. Given any abelian group A4, a
potential magic labeling of H is illustrated in that figure. Since [*(u) =z # 0
and I*(v) =0, H is not A-magic. This fact can be generalized as follows:

o-t—-o0—8 v
!a a
uOo— G vxo

Figure 1: An example of a non-magic graph H for which IM(H) = 0.

Observation 1.1. Every even cycle C,, with 2k+1 (< n) consecutive pendants
is non-magic.

Observation 1.2. Every odd cycle C, with 2k (< n) consecutive pendants is
non-magic.

Certain classes of non-magic graphs are presented in [1].
The original concept of an A-magic graph is due to J. Sedlacek [13, 14], who
defined it to be a graph with a real-valued edge labeling such that

1. distinct edges have distinct nonnegative labels; and

2. the sum of the labels of the edges incident to a particular vertex is the
same for all vertices.

The Z-magic graphs were considered by Stanley [15, 16], who pointed out
that the theory of magic labeling can be put into the more general context
of linear homogeneous diophantine equations. Doob [2, 3, 4], also considered
A-magic graphs where A is an abelian group and determined the wheels that
are Z-magic. Also, a graph G is said to be IN-magic if there exists a labeling
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I : BE(G) —» IN such that [*(v) is a constant, for every v € V(G). It is well-
known that a graph G is IN-magic if and only if every edge of G is contained
in a 1-factor (a perfect matching) or a {1, 2}-factor [6, 12].

When the group is Z, we shall refer to the Z-magic graph as k-magic.
Recently, there has been considerable research articles in graph labeling, in-
terested readers are directed to [5, 17]. For convenience, we will use 1-magic
instead of Z-magic. Clearly, if a graph is h-magic, it is not necessarily k-magic
(h # k). For a given graph G the set of all positive integers h for which G is
h-magic is called the integer-magic spectrum of G and is denoted by IM(G).
Since any regular graph is fully magic, then it is h-magic for all positive inte-
gers h > 2; therefore, IM(G) = IN. On the other hand, the graph H, Figure 1,
is non magic, hence IM(H) = 0. Integer-magic spectra of certain classes of
graphs have been studied in (7, 8, 9, 10, 11].

Definition 1.3. Let G be a graph and f : V(G) — IN. The functional
extension of G by f, is a graph H with

VIHy=U{u; :ueV(G) andi=1,2, -, f(u)}

E(H)=Wu;v;:w e E(G), i=1,2,---, f(u), and j=1,2,---, f(v)}
We will use Ext(G, f) to denote the functional extension of graph G by f. Also,
when f(u) = 1, in Ext(G, f) we will use u instead of u,.

Examples 1.4. Consider P,, the path of order 2, with vertices a and b.

(a) If we define the function f : {a,b} — IN by f(a) =1 and f(b) = n, then
Ext(P;, f) would be a star, the complete bipartite graph K(1,n), with
central vertex a that has n leaves, Figure 2.

by
b,

bl& A O bn

Figure 2: Ext(P,, f) is a star with n leaves.

(b) If we define the function g : {a,b} — IN by f(a) = m and f(b) = n, then
Ext(Pz, g) would be the complete bipartite graph K (m,n).

Examples 1.5. Consider P3, the path of order 3, with vertices a,b and c.

(2) If we define the function f : {a,b,c¢} — IN by f(a) = 1, f(b) =2, and
f(c) = 3, then Ext(Ps, f) is the graph illustrated in Figure 3, which is
isomorphic to K(2,4).

(b) If we define the function g : {a,b,c} — IV by g(a) = g(c) = 1 and
g(b) = n, then Ext(Ps, g} = K(2,n), Figure 4.
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Figure 3: Ext(Ps, f)

Figure 4: Ext(Ps, 9) = K(2,n)

2 Functional Extensions of P,

As indicated in Example 1.4, the functional extension of P, is the complete
bipartite graph K(m,n). In this section we will determine the integer-magic
spectra of these graphs. Note that K(1,1) = P» is a regular graph, fully magic,
and IM(P,) = IN. Also, K(1,2) = P, is the path of order three, which is non-
magic and JM(Ps) = §. When n > 2, the complete bipartite graph K(1,n),
or star, is denoted by ST'(n), for which we have the following theorem [9]:

Theorem 2.1. Let n > 3, and py'p3*---pp* be the prime factorization of
n—1. Then

k
IM(ST(r)) = | J pilNV.

i=1
Examples 2.2.
(a) IM(K(1,65))=2IN; heren —1 =64 = 25,
(b) IM(K(1,7))=2INU3IN; heren—1=6=2x 3.
(c) IM(K(1,151)) = 2INU3IN U5IN; heren —1 =150 = 2 x 3 x 52.
Theorem 2.3. Let m,n > 2. Then

_[ N if m+n is even;
IM(K(m,n))—{ IN—{Z} if m+nisodd.
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Moreover, in each case the labeling can be done so that the sum is 0.

Proof. Let S = {uj,ug, -+ ,um} and T = {vy,va, - ,vn} be the partite sets.
In labeling of edges u; v;, with elements of Zj (h > 3), we will consider three
cases:

Case I. m, n are both even. We label the edges by I(u;v;) = (—1)*+. This
will result in I* = 0.

Case II. m is even and n is odd. We label the edges by

2(-1)1 if j=1
l(uguj) = (-1)’: . if J =2,3
(=1)+7 otherwise

This labeling is illustrated in table (2.1).

(51 k%] v3 Vg ... Unp
Ul 2 -1 -1(-1 ... 1
Uug -2 1 1 1 ... -1
u3 2 -1 -1]-1 ... 1
w (-2 1 1| 1 ... -1 (21)
Umn—1 2 -1 -1(-1 ... 1
U -2 1 1 S -1

Case III. m, n are both odd. We label the edges by using the following table
(2.2):

v VY2 Uz | Y4 Vs .o Un
u1 2 -1 -1 2 -2 . =2
ug | -1 2 -1]-1 1 1
ug | -1 -1 2| -1 1 1
u | 2 -1 -1| " (2:2)

Us -2 1 1
. . . . (—l)'.'l'j

Um 2 -1 -1

Finally, we observe that if m,n have different parities, the graph would not be
2-magic. : 0O

3 Functional Extensions of P;
Consider Ps, the path of order 3, with vertices a,b and ¢, the middle vertex
being b. Also, let f : {a,b,c} — IN be defined by f(a) = r, f(b) = s, and

f(c) = t. Then Ext(Ps, f) = K(r + t,s) and its integer-magic spectrum has
been determined in Theorem 2.3.
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4 Functional Extensions of P,

In this section we will consider P, the path of order 4, with vertices a, b, ¢,
and d, Figure 5. The integer-magic spectra of Gy = Ext(Py, f), with different
functions f : {a,b,c,d} — IN, will be determined. Note that if f(a) = f(b) =
f(c) = 1, then Ext(P,, f) would be non-magic and IM(G;) = 0. Depending on
the function f, there are 8 other non-isomorphic cases which will be considered.

b ¢
o—o0—od

ao
Figure 5:

Theorem 4.1. Using the above notation, let f(a) = f(b) = f(d) = 1, and
f(c) =n. Also, let p{*p3?® - --pi* be the prime factorization of n — 1. Then

] if n=1,2;
IM(Gy)=¢ upiN —{2,3} if 2ln orn=1 (mod 4);
UpilN — {2,3,4} if n=3 (mod 4).

Figure 6: A typical magic labeling of G;.

Proof. We observe that for n = 1 or 2, the functional extension G; is non-
magic. Therefore, assume that n > 3. A typical magic labeling of Gy requires
at least two distinct nonzero elements z,y;, as illustrated in Figure 6. The
graph Gy is not 2-magic, because the vertices a and c; have degrees of different
parity. The two conditions [*(a) = I*(b) and {*(a) = I+ (d) will provide two
equations

0 (mod h); 4.1)
0 (mod h). (4.2)

n+y+--+yn
(n- 1z
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The graph Gy is not 3-magic, because the above system of equations becomes

ny =0 (mod 3);
{ (n—1)z =0 (mod 3),

which does not have non-zero solutions for z,y € Z3.

Now, assume that G is h-magic. From equation (4.2) we realize that ged(hk, n—
1) > 1. Therefore, h € Up;IN — {2,3}.

Conversely, let h € Up; IN — {2, 3}. To find a magic labeling for G that satisfies
the above equations (4.1) and (4.2), we will consider the following cases:
Case I. n is even, as a result h is odd and h > 5. Let p be a prime factor of
ged(h,n — 1). With the choice of z = h/p the equation (4.2) is automatically
satisfied. Now, choose a € Zp — {0,z,—z} and let y; = (—~1)*a. Then y; +
Yo+ +yn =0 (mod h).

Case II. n is odd, as a result h is even, assume that h > 6. Let h = 27 (r > 3)
and label the edges of Gy by z = r and

2 if i=1
=4 -1 if i=23;
(-1 if i>a4.

This labeling satisfies the equations (4.1) and (4.2).
Finally let h = 4. If n = 4k + 1, then Gy is 4-magic; Because, the choices of

z=1and
[ 3 i i=1,2
V=12 if 83<i<n,

would satisfy the above equations (h = 4).

But if n = 4k + 3, the only non-zero solution for (n — 1)z = (4k +2)z =0
(mod 4) in Z4 would be £ = 2. Then the equation y; +y2 + -+ yo = 0
(mod 4) does not have solutions in Z4 — {0,z} = {1,3}. Therefore, in this
case, Gy would not be 4-magic. O

Using the notation of Figure 5, let f(b) = f(c) = 1, f(a) = m and f(d) =
n (m,n > 2). The resulting graphs Ext(G, f) are trees of diameter three, also
known as double-stars. The integer-magic spectra of double-stars are examined
in [9]. For the sake of completeness of our discussion, we will mention the major
results. For the proof of theorems 4.2, 4.3, 4.4, and corollary 4.5, we refer
the interested readers to [9].

Theorem 4.2. The graph DS(m,n) is Z -magic (or 1-magic) if and only if
m=n.

Theorem 4.3. IM(DS(m,m))=IN—{h€ N : h>1 and h|(m — 2)}.

Theorem 4.4. Let m —n = p{'p§? - -pp* andn—2 = p’la‘pg2 .- ~pf" be the
prime factorizations of these two numbers. Then IM(DS(m,n)) = UL, A;,
where
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PN ifai> 620
0 ifBi 20 20

Corollary 4.5. If m — n is a divisor of n — 2, then IM(DS(m,n)) = 0.
Examples 4.6.

(a) IM(DS(14,14)) = IN — {2,3,4,6,12}; here m —2 = 12, and we need to
exclude its divisors that are bigger than one: namely, 2, 3,4,6,12.

(b) IM(DS(18,10)) = 0; here m — n = 8 is a divisor of n — 2 = 8.

(¢c) IM(DS(28,8)) = 4INUSIN; here m —n = 20 = 22 x 5, whilen — 2 =
6=2x3.

Theorem 4.7. Using the notation of Figure 5, let f(b) = f(d) =1, f{a)=m
and f(c) = n (m,n > 2). Also, let p{*py? - - -pp* be the prime factorization of
m+n—2. Then

Up:IN — {2,3,4} C IM(Gy) C up;IN — {2}.
Moreover,
(a) Gy is 3-magic if and only if m =0 (mod 3) and n =2 (mod 3).

(b) Gy is 4-magic if and only if m,n are both even or m,n are both odd and
m =n (mod 4).

Figure 7: A typical magic labeling of Gy.

Proof. A typical magic labeling of G requires at least two distinct nonzero
elements z, y, as illustrated in Figure 7. The graph Gy is not 2-magic, because
the vertices a; and ¢; have degrees of different parities. The two conditions
I*(ay) = I*(b) and I+ (a;) = I*(d) will translate to equations

(m-Dz+y1+y2+-+yn = 0 (modh); (4.3)
(n—Dz—(n1+y2+-+yn) 0 (mod h), (4.4)
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which will provide
(m+n-2x=0 (mod h). (4.5)

Now, assume that Gy is h-magic. Then from equation (4.5) we realize that
ged(h,m +n — 2) > 1. Therefore, h € Up;IN — {2}.

Conversely, let h € Up;IN — {2,3,4}. To find a magic labeling for Gy that
satisfies the above equations (4.3) and (4.4), we will consider the following
cases:

Case I. h is odd (h > 5). Let p be a prime factor of gcd(k,m + n — 2) and
z = h/p, which implies that 2z # 0 (mod h). Also, let a € Zj — {0, z, —z, 2z}
If n is even, we choose

2z —a if i1=1;
vi={ z+(-1)ia if 2<i<n-2
(-1)ia if i=n-1,n

If n is odd, we choose

2z if i=1;
yi={ z+(-1)ia if 2<i<n-2
(-1)ia if i=n-1,n

These labelings will satisfy the equations (4.3) and (4.4).

Case II. ged(h,m +n — 2) = 2"q, where ¢ is odd and greater than 1, and

2 if r=1;

q if r>2

the labelings for y; described in Case I, will work.

This proves that Up;IN — {2,3,4} C IM(Gy) Cc Up;IN — {2}.

The graph Gy is 3-magic if and only if =1, y; =2 or z = 2, y; = 1. Either

choices will convert the equations (4.3) and (4.4) to { : ; g E$g§ g;’

For Gy to be 4-magic, we need ged(m + n — 2,4) = 2 or 4. Therefore, m,n

must have the same parity.

Suppose m, n are both even. Let z = 2. If n =2 (mod 4), we choose y; = 1. If

n =0 (mod 4), we choose y; = { :; :g : ;;’

Suppose m,n are both odd. If m,n =3 (mod 4), we choose z =1 and y; = 2.
3 if 1=1,2;

If m,n=1 (mod 4), we choose z = 1 and y,-={ 2 if i>3

These labelings will satisfy the equations (4.3) and (4.4).

Ifm=1 (mod 4) and n = 3 (mod 4), then we will be forced to choose z = 2

and will end up with the equation y; +y2+---+yn, =0 (mod 4), which does

not have solution in {1, 3}. (]

r>1.Letz= which guarantees that 2z # 0 (mod k), and

Theorem 4.8. Using the above notation, let f(a) = f(d) = 1, and f(b) =
f(c) =m. Then IM(Gy) = IN — {2}.
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Figure 8: A typical magic labeling of G;.

Proof. First observe that deg(a) = m and deg(b;) = m+1, which have different
parity. Therefore, the graph is not 2-magic. Next, given h > 3, we choose
T € Z}, such that 220 (mod h) and label all the edges of G5 by z except

2z ifj=1

-z fj=i+11<i<n-1;
Wbiey) =\ _, ifj=1, i=n;

z otherwise.

The labeling of the edges b;c; is illustrated in the following table.

C1 €2 C3 € ... Cn-1 Cm

b 2c —z = =z ... T T

by r 22 -z =z T T

b3 z z 2z -z ... T z
by T T =z 2z T T (4.6)

bny| z 0z z =z ... 22 —x

bm -z T z T ... z 2z
a

Problem 4.9. Find the integer-magic specirum of Ext(Py, f), where f(a) =
f(d)=1, £(b) =m, and f(c) =n (m £ n).

Theorem 4.10. Using the notation of Figure 5, let f(a) = f(b) = 1, and
f(e)= f(d) =n. Then
IM(Gy) C IN — {h|h =2 or h is a divisor of one of n % 1}.

Proof. First observe that deg(b) = n+1 and deg(c;) = n, which have different
parity. Therefore, the graph is not 2-magic. Next, this graph is isomorphic to
K(n,n+1) having a pendant attached to one of the vertices of the partite set
that has n + 1 elements.
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Figure 9: Gy and K(n,n + 1) with a pendant attached to one of its vertices.

Now consider the complete bipartite graph K (n,n+1) with the partite sets A =
{c1,¢2, --¢cn} and B = {d,da, - - - dn, b}. We will label the edges of K(n,n+1)
in such a way that I*(¢;) = I*(d;) =n + 1 and {*(b) = 0. Then, we will label
the edge ab by n + 1. This labeling is illustrated in the following table:

dy da ds dpn b | ()
3] 1 1 1 1 1 n+1
e 1 1 1 1 1 |n+1
c3 1 1 1 1 1 n+1
c4 1 1 1 1 1 n+1
Cn—-1 1 1 1 1 1 n+1
Cn 2 2 2 2 l1-n{n+1
I*(d)|n+1 n+l1 n+l ... n+l1| O

To guarantee that this is a valid labeling, we need to make sure that n + 10
(mod k), and that is why we are excluding the divisors of n + 1. ]

Problem 4.11. Using the notation of the Theorem 4.10, show that
IM(Gs)y=IN —{h|h =2 or h is a divisor of one of n £ 1}.

Problem 4.12. Using the notation of Figure 5, find the integer-magic spec-
trum of Ext(Py, f), where f(a) = f(b) =1, f(c) =m, and f(d) =n (m # n).

Problem 4.13. Using the notation of Figure 5, find the integer-magic spec-
trum of Ext(Py, f), where f(a) =1 and f(b) = f(c) = f(d) = n. Solve this
problem when f(b), f(c), and f(d) are distinct integers bigger than 1.

Problem 4.14. Using the notation of Figure 5, find the integer-magic spec-
trum of Ext(Py, f), where f(b) = 1 and f(a) = f(c) = f(d) = n. Solve this
problem when f(a), f(c), and f(d) are distinct integers bigger than 1.

We conclude this paper with the following theorem, that can easily be gener-
alized to P, (n > 4).
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Theorem 4.15. Using the notation of Figure 5, let f(a) = m, f(b) =
n, f(c) = p, and f(d) = q, where m,n,p, and q are distinct integers bigger
than 1. Then

_J N if n, m+p, n+gq, p have the same parity ;
IM(Gy) = { IN — {2} otherwise.

PT‘OOf. Let A = {0,1,0.2,"' :am}t B= {bltb2)"' ,bn}; C = {01302" o 1cp}a
and D = {d,,ds,--- ,d,} be the vertices of G;. Consider the complete bipartite
graphs K(m,n) with partite sets A, B; K(n,p) with partite sets B,C; and
K(p,q) with partite sets C,D. The graph G; can be viewed as these three
complete bipartite graphs combined in such a way that their corresponding
vertices, same partite sets, are identified. By the theorem 2.3, one can label the
edges of these complete bipartite graphs so that the sum be 0. Therefore, when
the corresponding vertices are identified, the sum still would be 0. To determine
whether Gy is 2-magic or not, we observe that deg(a;) = n, deg(b;) = m +
p, deg(c;) = n + ¢, and deg(d;) = p. And Gy is 2-magic if and only if the
numbers n, m + p, n + g, and p have the same parity. O
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