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1 Introduction

The graphs considered here are simple (that is, they have no loops or
multiple edges). A component of a graph is a maximal connected
subgraph. The total chromatic number, y{G), of G is the least number
of colours required to colour the edges and vertices of G so that no two
adjacent or incident elements receive the same colour.

In 1965 and 1968 Behzad [1] and Vizing [6] independently
conjectured that, for any graph G,

AG) + 1< 2(G) S AG) +2

where A(G) is the maximum degree of any vertex of G. A graph G is
said to be of type I if 7{(G) = A(G) + 1, and of type 2 otherwise (it is
clear that 3,(G) > A(G) ).

In this paper, a type ] total colouring of a graph G is a total colouring
that uses just A + 1 colours; thus G is of type 1 if and only if it
possesses such a colouring.

In 1986 Chetwynd and Hilton [2] made a conjecture, later modified by

Hamilton, Hilton and Hind [5], based on the following concept: a

(proper) vertex colouring of G with A(G) + 1 colours is conformable if

the number of colour classes of parity different from that of |/(G)| is at

most def(G) = Y (A(G)— d(v)) where d(v) is the degree of a vertex v.
veV(G)

The modified Conformability Conjecture is:
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Conjecture 1.1 Let G be a graph satisfying A(G) 2 V2(IV(G)| + 1).
Then G is type 2 if and only if G contains a subgraph H with

A(G) = A(H) which is either non-conformable or, when A(G) is even,
consists of K ;w1 with one edge subdivided.

We note that for graphs of low degree compared with |/(G)),
conformability of G (rather than of all its subgraphs with the same
maximum degree, as would be required by the conjecture) does not
provide a particularly good predictor that G is type 1. Of the first fifty
total-colouring critical graphs in the catalogue provided by Hamilton,
Hilton and Hind ([4], also in [5]), thirty-one are conformable (see
Appendix for further details). The purpose of this paper is to discuss a
stronger variant of the conformability concept, according to which only
one of the above fifty is conformable.

2 Spined graphs

A spined graph is a graph in which some vertices may possess spines
(sometimes known as dangling edges or semi-edges in the literature),
that are incident with only one vertex rather than two. (Spines are not
loops, since a loop contributes 2 to the degree of a vertex.) For any
vertex v of an un-spined graph G, we define def(v) = A(G) — d(v). It is
convenient in this paper to replace G by the spined graph (still denoted
by G) where each vertex v has def(v) spines; thus every vertex of G
now has exactly A(G) incident edges or spines, and the total number of
spines is def(G). We make this assumption throughout the paper. The
edge degree of a vertex v of the spined graph G is the number of
incident edges at v (that is, the degree of the original graph); the spines
do not contribute, but the new terminology aids clarity. We continue,
however, to refer to the maximum degree of a graph G, since the above
construction does not alter this.

The vertices and spines of G together are the vesps of G; the vesps and
edges together are the parts of G. The subgraph of G induced by a set
of vertices of G includes any incident spines.

A vesp colouring of a graph G of maximal degree A is a colouring of
the vesps, using up to A + 1 colours, such that the vertex colours form a
proper vertex colouring of G and, moreover, the spine colours at any
vertex v are distinct from each other and from that of v.

The concept of type 1 total colouring now extends as follows. A fpe ]
total colouring of a spined graph G is a colouring of the parts of G
using A + 1 colours, whose restriction to the vertices and edges is a
total colouring and whose restriction to the vesps is a vesp colouring.
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Clearly, a type 1 total colouring of a graph G (not spined) extends to a
type 1 total colouring of the corresponding spined graph, since at each
vertex there are just enough spare colours to deal with the spines. Thus

adding spines as described above does not change y{G).

3 Factor-conformability

Let o be a vesp colouring of a spined graph G using colours

Cy, ..., Ca+1 (O could of course be a restriction of a type 1 colouring).
For each ve V(G) we denote by C4(v) the set of colours at v; that is, the
colours on v and its attached spines. Then, fori=1, ..., A(G)+ 1, we
denote by S(0) the set {v € V(G): c; € C4v)}, and by G{o) the
spined subgraph of G induced by ¥(G) — S{0). When there is no risk
of confusion, we drop the reference to o

In similar vein, for all pairs /, j (i, j = 1, ..., A(G) + 1), we denote by G;;
the spined subgraph of G induced by ¥(G) — (S; wS); we shall use

this notation in Theorem 4.2 and thereafter.

Let obe a vesp colouring of G. Then o'is said to be factor-
conformable if G; has a 1-factor foreach i = 1, ..., A+ 1; and the graph

G is said to be factor-conformable if it has a factor-conformable vesp
colouring.

Lemma 3.1 [fG is type 1, then G is factor-conformable.

Proof. Let ube atype 1 total colouring of G. Then for each
i=1,...,A+ 1, theset {e € E(G): le)=c;}isa l-factorof G, W

Lemma 3.2 If'G is factor-conformable, then G is conformable.

Proof. Let obe a factor-conformable vesp colouring of G. For

i=1, ..., A(G) + 1, the number of vesps coloured c; has the parity of
|(G)|. Thus for every vertex colour class whose cardinality differs in
parity from that of |[/(G)|, there must be at least one spine of that
colour. Therefore def(G) is at least the number of such classes. ]

We observe that the graph numbered 12 of the list in [4], [5] is the
8-cycle with edges added so that opposite vertices are adjacent. (Note
that, being regular, this graph has no spines.)
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Up to isomorphism, there are just three factor-conformable vertex
4-colourings, which are (taking the vertices in cyclic order):

€y, C2, Cy, C3, C4, C3, C4, C2;
Cy, €2, €3, €y, C4, C3, Ca, Ca;
Cy1, €2, C3, Cyy C4, C3, C2, Ca.

However, it may be checked that none of the other forty-nine critical
graphs listed in [4], [5] has any factor-conformable (A + 1)-colouring.
(See Appendix for further observations.) Thus, factor-conformability
strengthens the concept of conformability in a manner that seems to

improve considerably its ability to predict whether a graph is of type 1
or2.

We now consider in detail graphs of maximum degree at most 3, and
propose some conjectures concerning conditions under which such

graphs are type 1. There is no loss of generality in considering only
connected graphs.

4 Grapbhs of low degree
We dispose first of graphs of maximum degree at most 2.

Theorem 4.1 Every factor-conformable, connected graph of
maximum degree at most 2 is type 1.

Proof. Let G be a connected graph of maximum degree A <2. If

A =0 then G is a singleton vertex and is type 1; if A=1then G =K,
and is not factor-conformable. Thus we may assume A =2. Paths, and
cycles of order divisible by 3, are type 1, so we need only consider
cycles of order 3g + 1 or 3g + 2 (where g > 0). But any vertex
3-colouring of such a cycle must have three successive vertices
coloured ¢, ¢;, ¢; for some pair i, j of {1, 2, 3}. This colouring is clearly
not factor-conformable. [ ]
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Now let G be a connected graph of maximum degree 3. The truncate
of G is the graph obtained by successively deleting vertices of edge-
degree 0 and 1 until there are no such vertices. Then G is type 1 if and
only if its truncate is type 1, and it is thus reasonable to restrict our
attention to connected graphs with A = 3 and minimum edge-degree at
least 2. In this case each vertex of edge-degree 2 lies on a unique path
vwiwy...wx such that v and x have edge-degree 3, all intermediate
vertices being of edge-degree 2. Then, provided that g > 3, we may
prune G, to a graph H, by deleting the w; and all the edges of the path
(so that the edge-degrees of v and x are now 2, and v and x each acquire
a spine). A straightforward check of the possible colours at v and x
shows that G is type 1 if and only if H is type 1. Thus it is reasonable
to restrict our attention still further, to connected graphs all of whose
edge-degrees are 2 or 3 and such that there are no sequences of three or
more successive vertices of edge-degree 2. Such a graph is said to be
cubic if it is regular of degree 3; we shall say that it is semi-cubic
otherwise.

Thus, a non-cubic graph of maximum degree 3 is type 1 if and only if
the graph obtained by truncating, then successively pruning until the
resulting graph is semi-cubic, is type 1. (Note that the result of
truncating and pruning a non-cubic graph of maximum degree 3 is
never cubic.)

In this context, it is useful to introduce a special definition of
connectivity and to import some ideas from vertex colouring theory.

Let S be a set of parts of a spined graph. We say that S is chain-
connected if it cannot be partitioned into two non-empty sets S, Sz
such that no element of S, is incident with any element of S, and no
edge or spine of S; is adjacent to any edge or spine of S,. For example,
consider vertices v, w, x, edges ¢ = vw, /= wx, and a spine s at v. Then
{e, f} is chain-connected, as are {s, ¢, f}, {v, e, f}, {v, e, w} and {s, v},
but {v, w} is not chain-connected.

Now let 1 be a type 1 total colouring of a spined graph G using the
colours cy, ..., ca- If ¢; and c; are two colours, then an (i, j) Kempe
chain is a maximal chain-connected set of parts coloured c; or ¢;. Thus,
any Kempe chain is either:
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(i) the edge set of a cycle, or

(ii) the edge set of a path, together with either a vertex or a spine at
each end of the path.

We describe these chains as Kempe cycles and Kempe patbhs,
respectively. The length of such a chain is the number of edges that it
contains. The internal vertices of a Kempe path are the vertices (if any)
incident with two edges of the path. If X is such a chain, we denote

byi’ the union of X with the incident vesps.

A Kempe path is short if it contains no internal vertices; that is, if it has
length 0 or 1. There are four kinds of short Kempe paths: a single
vertex with an attached spine; an edge with an incident vertex at each
end; an edge with an incident vertex at one end and an incident spine at
the other end; and edge with an incident spine at each end. (A Kempe

path is defined by two colours, so a single vertex cannot be such a
path.)

We now show that any type 1 graph G that is cubic or semi-cubic must
obey three simple counting conditions, and conjecture that these
conditions, together with factor-conformability, are sufficient to ensure
that G is type 1. It is convenient to begin with cubic graphs. (In the
statement of this and succeeding theorems and conjectures, component
means ‘connected component with respect to the usual definition of

connectivity’, and odd component means ‘component with an odd
number of vertices’.)

Theorem 4.2 Let G be a cubic graph. Then a necessary condition for
G to be type 1 is that G should have a factor-conformable vertex

colouring such that, for every pair i, j from {1, ..., 4}, the subgraph G
has:

(i) at least (|S| +| S})/2 components;

(i) at most (|S)| + |S;))/2 components that have fewer than four
vertices,

(iii) an even number 2q of odd components, where
29 = min{|S}, IS1}.

Proof. Note that G has an even number of vertices. Suppose that G is

type 1 and let u be a total 4-colouring of G; then the restriction of zto
V(G) is a factor-conformable vertex colouring,
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Let {/, j} be a pair from {1, ..., 4}, and let {k, I} = {1, ..., 4} \ {4, j}.
The (i, j) Kempe chains partition the set of all edges coloured ¢; or ¢;; if
X is such a chain, then:

if X is a cycle, all the vertices of X have colour ¢; or ¢;

if X is a path, all the internal vertices of X have colour ¢, or ¢;and at
each end there is a vertex of colour ¢; or ¢;. (Since G is cubic, there are
no spines or short paths.)

Since each vertex coloured ¢; or ¢ is incident with an edge of each

colour ¢;, c;, then each such vertex belongs to a unique such X. Thus,
for every component Z of G;, V(Z) is the set of vertices of an (i, /)
Kempe cycle or the set of internal vertices of an (i, j) Kempe path.
(The vertices at the end of such a path do not belong to G;; at all.)
Moreover, each vertex of colour ¢; or ¢; is at the end of a unique (i, j)
Kempe path (and does not belong to ¥(Z) where Z is the corresponding
component of G;;). This proves part (i); indeed, the number of
components that are paths is exactly (|Si| + [S])/2.

Since every component of G;; that is a cycle is an even cycle (and
hence of order at least 4), part (ii) is also proved.

Where a component Z of G; is a path with both end vertices the same
colour, ¢; or ¢;, it is of even order. Thus each odd component has
exactly one vertex of each colour ¢;, ¢;; so there must be at most
min{|S;, |S;|} of these. Now, since [/(G)] is even and x is factor-
conforming, |S;| and |S;| must be even, and hence the number of odd
components of G; must be even. This proves part (iii). n

Remark This result gives insight into why the graph HHH12 is type 2.
Up to isomorphism this graph has just the three distinct factor-
conformable vertex colourings given above. Although in each
colouring, for all choices of ¢; and ¢; we have an even number of odd
components, it is also the case that, for each colouring, there are some
choices of ¢; and ¢; such that G;; has either (i) fewer than (|S;| + |S;])/2
components, or (ii) more than (|S;| + |S;|)/2 components that have
fewer than four vertices.

Conjecture 4.3 Let G be a cubic graph. Then the necessary condition
Jor G to be type 1, stated in Theorem 4.2, is also sufficient.

147



A proper vertex k-colouring of a graph G is acyclic if for each pair of
colours, the subgraph induced by that pair of colour classes has no
cycles [3]. The following conjecture (which is implied by Conjecture
4.3) may perhaps be easier to prove.

Conjecture 4.4 Let G be a cubic graph. If G has an acyclic factor-
conformable vertex 4-colouring such that, for every pair i, j from
1, ..., 4, the subgraph G;; has:

() exactly (|Si| + |S/|)/2 components;

(if) an even number 2q, of odd components, where
29 = min{|S), IS|I};

then G is a type | graph.

In order to extend the above results to semi-cubic graphs, we require to
account for short paths.

Let G be a type 1, semi-cubic graph with a vesp colouring o using the
colours ¢y, ..., cs. For each pair {i, j} of distinct elements of {1, ..., 4}
we denote by {{{i, j}) the number of short (i, j) paths with respect to o.
These may be enumerated as follows. For each spine s of G, let v, be
the incident vertex and define a function ¢ taking values on the pairs
{i, j} of distinct elements of {1, ..., 4}, as follows:

¢({i, j}) = 1 if there is a short (i, j) path involving s and no other spine
(that is, with one end at s and the other end at v, or a vertex adjacent to
Vo)

¢({i, j}) = % if there is a short (i, /) path involving the spine s and
another spine (which will be incident with one of the vertices adjacent
to vy);

&({i, j3) = 0 otherwise.

Clearly, {({i, j}) = Y {s({i, j}) for each pair {i, j}, since each
saspineof G

short path is summed by a | or two Ys.
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Theorem 4.5 Let G be a semi-cubic graph. Then a necessary
condition for G to be type 1 is that G should have a factor-
conformable vesp colouring such that, for every pair i, j from 1, ..., 4,
the subgraph Gj; has:

(i) atleast (|S; + |S;)/2 — {({i, j}) components;

(i) at most (|S;| + 112 — {({i, j}) components that have fewer than
Jfour vertices;

(iii) at most min{|S;|, |S;|} — {({i, j}) odd components, the parity being
that of {{i, j})-

Proof. Suppose that G is type 1 and let u be a total 4-colouring of G;
then the restriction of x to the vesps is factor-conformable.

Let {i, j} be a pair from {1, ..., 4}. As in the proof of Theorem 4.2,
the (i, /) Kempe chains partition the edges coloured ; or c; and there
are exactly (|Sj| + |S,))/2 such chains that are paths; moreover, any
components of Gj; arise from such paths. However, {({i, j}) of these
paths are short and do not therefore contribute components of G;.

Thus {({i,j}) must be subtracted from each of the expressions given in
the statement of Theorem 4.2. The result follows. [ |

We now make the equivalent conjectures as in the case of regular
graphs.

Conjecture 4.6 Let G be a semi-cubic graph. Then the necessary
condition for G to be type 1, stated in Theorem 4.5, is also sufficient.

Conjecture 4.7 Let G be a semi-cubic graph. If G has an acyclic
Jactor-conformable vesp colouring such that, for each pair S,, S; of
colour sets, the subgraph G;:

(i) has exactly (n; + n))/2 — {({i, j}) components;

(i) has at most min{|S|, |S;|} — {{i, j}) odd components, the parity
being that of {({i, j});

then G is a type | graph.
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Note

In [5], some consideration was given to a somewhat stronger condition

than conformability, namely the existence of a proper vertex-colouring
of G such that

Al
def(G)> Y&,
i=l
where, fori =1, ..., A+ 1, & is the number of vertices of G whose
neighbourhoods consist entirely of vertices with colour c;, and £ is
defined as follows. Let ¥, be the set of vertices of G coloured c;; then

ff is equal to & or & + 1 according to the parity of & + |V} - |(G)| .

(The significance of this condition is that, if G is conformable, the
minimum degree of G is at least 2 and A(G) > |V(G)|/2 + 4, then G has
such a vertex colouring if and only if G is not a complete graph of odd
order with one edge subdivided; see [5], Theorem 2.5.)

Clearly this condition implies conformability. We now show that
factor-conformability in turn implies the condition.

Suppose o'is a factor-conformable vesp colouring of G. Then for each
i=1,..,A+1,letS{0)=T; \U V,where T; is the set of vertices
having c; as a spine colour and V; is as above. Clearly |T}|> & and

ITA+ Vil =|V/(G)| (mod 2). Thus there are at least & spines coloured

A+l
¢ (i=1,..,A+1),andsodef(G)> & .
i=l|

The authors are grateful to the referee for drawing their attention to this
feature of factor-conformability, and also for comments that have very
considerably improved the presentation of this paper.

Appendix: fifty critical graphs

In [4] and [5] there is given a Catalogue of Critical Graphs, containing
the fifty graphs on at most ten vertices that are critical with respect to
total colouring. Both of these references remark that the seventeen
graphs numbered 1, 3, 7, 10, 14, 16, 27, 28, 29, 30, 31, 44, 45, 46, 48,
49 and 50 are non-conformable. In fact a further two, namely those
numbered 4 and 25, are also non-conformable.
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The graph numbered 4 is the 5-cycle graph, which has deficiency 0 and
is easily seen to be non-conformable as no colour class can contain
more than two vertices.

The graph numbered 25 also has deficiency 0; it has nine vertices, is
regular of degree 4 and contains two disjoint copies of K. It follows
easily that any proper vertex colouring using at most five colours has at
least two colour classes containing two vertices, and so this graph is
not conformable.

The remaining thirty-one graphs are conformable. The first-named
author’s PhD thesis [7] gives conformable colourings of all of these
except the graph numbered 21; a conformable colouring of this graph
(which has deficiency 2) is shown below.

.62 ¢y <) ¢y

; ol—~ -o *——¢
et | a
i i

] ° R IR )

< ¢ 6 Cq

By Lemma 3.2, the nineteen non-conformable graphs are not factor-
conformable. Ofthe thirty conformable graphs other than that
numbered 12, it is straightforward to check that the vertex colouring
above, and those given in [4] (augmented by spine colours where
necessary) are not factor-conformable. In order to verify that these
graphs are not factor-conformable, it necessary to carry out this check
for every isomorphism class of proper vertex colourings; this was done
by hand by the first-named author as unpublished work towards her
doctoral thesis.
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