Correction to: Codes, Designs and Graphs from the Janko Groups J_1 and J_2 , J. D. Key and J. Moori, JCMCC 40 (2002), 143–159

J. D. Key and J. Moori School of Mathematical Sciences University of KwaZulu-Natal Pietermaritzburg 3209, South Africa

Proposition 1 on page 145 is incorrect and should be replaced with the following:

Proposition 1 Let G be a finite primitive permutation group acting on the set Ω of size n. Let $\alpha \in \Omega$, and let $\Delta \neq \{\alpha\}$ be an orbit of the stabilizer G_{α} of α . If

$$\mathcal{B} = \{\Delta^g: \ g \in G\}$$

and, given $\delta \in \Delta$,

$$\mathcal{E} = \{\{\alpha,\delta\}^g \ : \ g \in G\},$$

then $\mathcal{D}=(\Omega,\mathcal{B})$ forms a symmetric 1- $(n,|\Delta|,|\Delta|)$ design. Further, if Δ is a self-paired orbit of G_{α} then $\Gamma=(\Omega,\mathcal{E})$ is a regular connected graph of valency $|\Delta|$, \mathcal{D} is self-dual, and G acts as an automorphism group on each of these structures, primitive on vertices of the graph, and on points and blocks of the design.

Proof: The first paragraph of the proof is correct. For the second and third paragraphs we need Δ to be self-paired for those statements to be correct; that is, looking at the action of G on $\Omega \times \Omega$, if $\bar{\Delta}$ is an orbit in this action then $\bar{\Delta}^* = \{(\alpha, \beta) \mid (\beta, \alpha) \in \bar{\Delta}\}$ is called the paired orbit of $\bar{\Delta}$. In the proposition, $\Delta = \{\delta \mid (\alpha, \delta) \in \bar{\Delta}\}$. If $\bar{\Delta} = \bar{\Delta}^*$, i.e. the orbit is self-paired, then Γ is a graph rather than only a digraph. \Box