A Linear Time Algorithm for the Role
Assignment of Trees

Jeremy Lyle
Clemson University

1 Introduction

The concept of role assignments takes its roots from both the application
of social network theory and a variation in the theory of graph homomor-
phisms. Everett and Borgatti, in [EB91], developed role assignments as a
way to map a social network so that all individuals of a similar role interact
with individuals of different roles in a similar manner. Role assignments
also follow naturally as refinements of graph homomorphisms, as evidenced
by the definition.

A role assignment is a mapping r from an input graph or network, Gy,
to a set of roles, Gp (a role graph), ie. r : Gy — Gpr. For § C V, we define
r(S) = {r(s) : s € S}. Each role assignment must additionally satisfy the
following condition,

Vv e V(Gr), m(N(v)) = N(r(v)) (1)

where N(v) is the open neighborhood of a vertex v in V(G). Note that
a role graph Gr may have loops. If a vertex v € V(G,) has a loop, then
each vertex u € r~!(v) must be adjacent to a vertex in r~!(v). If a vertex
v € V(G,) does not have a loop, 7~!(v) is an independent set in G;. If Ggr
is a complete graph (with no loops), then a role assignment is a partition
of G into independent dominating sets.

As a subset of graph homomorplisms, role assignments first appeared in
work by Sailer [Sai78] and by White and Reitz [WR83]. It has reappeared
in many places, surfacing again as a particular variety of the generalized
H-colorings of Kristiansen and Telle, (see [KT00]), and a generalization
of fall colorings, partitions of the vertex set of a graph into independent
dominating sets, as in [DHH*00).

In general, the task of determining which graphs have a role assignment
to a given role graph Gg is a very difficult one. In [RSO01], Roberts and
Sheng considered the complexity of determining whether a graph has a role
assignment to one of the 6 non-isomorphic graphs on two vertices (allowing
loops), and showed that for two cases, the question is NP-complete, and

JCMCC 64 (2008), pp. 155-162



3 1

Figure 1: A sample assignment of roles 1, 2, and 3 (the vertices of Gr) to
the graph Gy.

in fact, determining if there is any assignment to some graph on two ver-
tices is an NP-complete question. In [FP05], Fiala and Paulusma further
demonstrated the difficulty of finding role assignments by showing that for
any connected fixed graph G which is not Kj, the question of whether an
arbitrary graph G has a role assignment to Gr is NP-complete.

Because of the inherent difficulty of this problem, we restrict our atten-
tion to the problem of determining role assignments on subclasses of graphs.
In [She03], Sheng considered role assignments on the class of triangulated
graphs to role graphs with two vertices. In this paper, we will consider the
problem of determining a role assignment for any input tree T to a role
graph Gp.

1.1 Role assignments of Trees

We begin by considering the structure of graphs G, for which there is a
role assignment r from some tree T to Gr. We note that for any connected
graph, there is always a trivial role assignment to a single vertex with a
loop, and a trivial identity map. Since every tree is bipartite, it additionally
has a role assignment to K. These three graphs are either trees, or in the
case of a single vertex with a loop, a tree with a loop, and we can prove
that for a tree T', any role graph Gr must be of this form.

Theorem 1.1. Let T be any tree, and r be a role assignment, such that
T : T — GR, for some role graph Gr. Then Gr has no cycles of length
greater than or equal to 3.

Proof. We can assume for contradiction that there is some tree T and
role assignment r : T — Gpg, such that Gr has a cycle C; with vertices
€0,C1,---,Ck—1, for k > 3. We can then choose a sequence of vertices from
T in the following way. Let vg € 77(cg) and v;4; € r‘l(c(,«+1) mod k), Such

156



that (v;,v;41) € E(T). We note that such a v;;; must always exist since
T is a role assignment, and also, since T is finite, then for some 7 and j we
have v; = v;, which forms a cycle in T, a contradiction. a

This does not preclude Gg from having loops, but every other cycle is
forbidden. Therefore, if a tree T has a role assignment to a role graph Gg,
then Gg is a tree, with the addition of loops on some subset of its vertices.

2 Algorithm

In this section, we present an algorithm which, when given an input tree
T and a role graph Gpg, determines if there is a role assignment r, such
that r : T — Ggr. We let ny be the number of vertices in T and ng be
the number of vertices in Gr, and we note that |E(T)| = nr — 1, and
|E(GRr)| < 2ng — 1 by Theorem 1.1.

For the graph G g, create a set by taking each loop edge, and _gonsidering
each non-loop edge as two directed edges, and define this set as E(Gg) (See
Figure 2 for an example). Then for each vertex u; € V(Gpg), we construct
the set A; = {a; : eq, = (uk,u;) € E"(G’R)}. This set holds the indices of
all directed edges whose head is the vertex u;. For the graph T', we order
the vertices by a post-order traversa_l) of the tree. For each vertex, v;, we
construct a boolean array of size | E(GRg)|, which we will denote P;, an
array representing the possibility that the edge from a vertex to its parent
can be assigned to each directed edge e; € E(G r). Additionally, we form
the sets C;, which hold the indices of the children of vertex v; in T.

The algorithm processes vertices by working up from the leaves of the
tree T. At each step, we consider the edge between a vertex v; and its
parent, say vp, and determine the possible edges in G that this edge
can be mapped to. In order to aid our discussion, we define a partial role
assignment on a subtree of T. We say that the subtree generated by a vertex
v;, denoted T'(v;), is the subtree of descendants of v;. A mapping r; ; is
a partial role assignment on T'(v;), extendable with edge e; = (uq,up) €

E(Gr), if

13, (N(v)) = N(r;;(v)) for v € T(v;) — {v;}; and
N(ug) = {up} C rij(N(vi) — {vp}) € N(ua) where 7;;(vi) = ua @
2

Now the key point is if there is a partial role assignment on T{v;},

extendable with edge e; = (uq,up) € E(GR), then there must be some
mapping of the children of v; to partial role assignments extendable on

157



each of the adjacencies into u, (with the possible exception of edge e;),
and each child must be mapped. The task of constructing and solving this
bipartite matching problem is handled by the subroutine MATCHING.

Procedure 1 MATCHING (C’, A")
Va={si:i<|A},) Ve={t:;:i<|C|}, E=0, M* =0
if |A'| <|C’| then
for k=1to |V4|,l=1to |Vp| do
if P, [ax} =1 then
Add edge (sk, t1) to E.
Find a max matching, M*, of G = (V4 UV, E)

Algorithm 1 TRA (Tree Role Assignments)
INITIALIZATION
for i=1to nT;1 do
for j=1to|E(Gg)| do
For e; = (u;,,uj,), let e, = (uj,, ;)
if every v, € Cj, has some a; € Aj, such that P,[a;] =1 then
M* = MATCHING(C;, 4;, — {r;})-
if [M*| = |A;, — {r;}| then
Ailj] =1.
for j=1tongdo
M* = MATCHING(C;, A;).
if |[M*| = |A;| then
There is a valid role assignment.

At vertex vy, the root of T, we must determine whether there is some
role u, € V(GRr) which we can assign v,, so that partial role assignments
on the child subtrees of v, , can be found where one child is assigned to each
of the adjacencies of u, in Gg, accomplished by a final matching problem.
If a suitable matching is found, then there exists a role assignment from T°
to G g, and if no matching is found, there is no such role assignment.

2.1 Correctness

In order to prove the correctness of the Algorithm TRA , we need to show
that the array P; for each vertex in T; correctly reflects the fact that a
partial role assignment either does or does not exist.

158



5 ! 01010 10001 01010

/
T: 00100 00100 Ao
g Z 10001 10001

U2 e5 U3 10001 10001 10001 10001

Figure 2: Algorithm execution, with P; vectors shown for each vertex in T,
where A = {2}, A2 ={1,3,5}, and A3 = {4}.

Lemma 2.1.1. For a processed vertexr v; € V(T) and e; = (uq,up) €

E(G R), then P;[j] = 1 if and only if there exists a partial role assignment
on T'(v;), extendable with edge e;.

Proof. We proceed by induction on i. First, consider the case where v;
is a leaf. If Pj[j] = 1, then |A;| - 1 < |C;] = 0, implying u, is a leaf
in Gg, and we can define a partial role assignment which simply takes
v; t0 ug. On the other hand, if there is a partial role assignment, then
[N(vi)] =1 =02 [N(ug)| — 1, so |N(ug)| = 1, which implies u, is a root,
and the conditions to set P;[j] =1 are trivially satisfied.

Now, we assume that Pi[j] = 1 if and only if there exists a partial role
assignment on T'(vi), extendable with edge e; for all vertices vx such that
k < i. If P[] = 1, then a matching exists, which implies that there is a
matched assignment of edges e,; into u, (possibly excluding e;) to children
of v;, say v, such that P [a;] = 1. Using our induction assumption, we
can then define the partial role assignment r;; to be r;;(v) = 7¢,.q,(v)
where v € T(v.;), and r; j(v;) = 1e. On the other hand, if a partial role
assignment exists, then there must be some partial role assignments on each
of the subtrees generated by the children, and by the inductive assumption,
they must have P [a;] = 1. This then creates a matching of the correct
cardinality, and P;[j] = 1. m]

Finally, we just need to prove that the final step in the algorithm cor-
rectly determines a role assignment for the entire tree.

Theorem 2.1. Algorithm TRA determines whether a role assignment ez-
ists from an input tree T to a role graph Gg.

Proof. From Lemma 2.1.1, each child of the root node contains a list of
partial role assignments. A suitable matching implies that we can extend

159



these partial role assignments to a full role assignment, where every the
mapping of each vertex satisfies the condition of a role assignment, and
furthermore, since G is connected, every role is assigned. Additionally, a
possible role assignment implies there are partial role assignments on each
of the children of the root node, which will yield a suitable matching. O

2.2 Complexity Analysis

The dominant factor involved in the Algorithm TRA. is the work involved
in solving a bipartite matching problem for every combination of a directed
edge of G and a vertex of T'. At each step, we consider the graph G = (VU
VB, E), where [V4| = |Aj| or |A4;| — 1 and |Vg| = |C;|, with |4;| -1 < |Cy|.
This allows us to consider this problem as an unbalanced bipartite graph, in
which one bipartition is larger, first considered in [AOST94]. In particular,
Kao et al. in [KLSTO1] give a simple adaptation of a bipartite matching
algorithm by Gabow and Tarjan [GT89], which yields a running time of
O(y/nsmlogn,) where n, is the cardinality of the smallest bipartition for
the bipartite matching problem.

Theorem 2.2. For any graph Ggr and any tree T, Algorithm TRA runs
in O (nrn%®logng)

Proof. The work involved in the initialization for the algorithm is at most
O(ntnRg), the initialization of each array P;, and this is overshadowed by
the rest of the of the algorithm, solving a matching problem for every
combination of an edge in Ggr and a vertex in 7. Therefore, we get that
the running time of the algorithm, RT (TRA), is given by,

nr
01>, > RT(MATCHING(C;,4;,))
€ c‘i=(2‘,uj2)
e;€ E(GR)

RT (TRA)

0 (nzT: ZVE d(u;)RT (MATCHING(C;, Aj)))

4 7

From [KLSTO01], the unbalanced bipartite matching problem can be solved
in O(\/nymlogn,) time, where n, < |A;| < 2d(u;), and m < |4;]|C;| <
2d(u;)d(v;). Since constructing the bipartite graph takes only O(d(v;)d(u;))
time, we get that RT(MATCHING(C;j, A;)) = O(d(vi)d(u;)+/d(u;) log d(uy)).

160



Substituting this into the running time of Algorithm TRA, we get

? (Z D d(uy) (d(vi)d(u;)"* log d(uj)))

nr
= 0 (Z d(v;) (n%° log nR)) = O (nyn%’ logng)

RT(TRA)

a

Corollary 2.1. Algorithm TRA runs in linear time for any fized graph
Gg.

2.3 Conclusions

In this paper, we have presented the Algorithm TRA , which for any fixed
graph G will decide in linear time if an input tree T has a role assignment
to Gr. Additionally, if we allow G to be considered as part of the input,
Algorithm TRA runsin O (ncpnﬁi5 logn R) . We note at this point, that with
a slight modification, we can recover a role assignment if one exists by saving
the matchings at each point. Also, if we consider input graphs G; where
G| is tree with loops on some subset of its vertices, then Theorem 1.1 still
holds, and in fact gives an exact characterization of the role graphs which
can result. The algorithm can be modified by simply requiring vertices in
G with loops to be assigned to roles in Gg with loops, and a loop in Gy
is present, relaxing the condition that a child subtree must be assigned to
the loop edge in Gg.

References

[AOST94] Ravindra K. Ahuja, James B. Orlin, Clifford Stein, and
Robert E. Tarjan. Improved algorithms for bipartite network
flow. SIAM J. Comput., 23(5):906-933, 1994.

[DHH*00] J. E. Dunbar, S. M. Hedetniemi, S. T. Hedetniemi, D. P. Jacobs,
J. Knisely, R. C. Laskar, and D. F. Rall. Fall colorings of graphs.
J. Combin. Math. Combin. Comput., 33:257-273, 2000. Papers
in honour of Ernest J. Cockayne.

[EB91] Martin G. Everett and Steve Borgatti. Role colouring a graph.
Math. Social Sci., 21(2):183-188, 1991.

161



[FPOS]

[GT89]

[KLSTO1]

[KT00)

[RS01]

[Sai78]

[She03]

[WRS3)

Jifi Fiala and Daniél Paulusma. A complete complexity classi-
fication of the role assignment problem. Theoret. Comput. Sci.,
349(1):67-81, 2005.

Harold N. Gabow and Robert E. Tarjan. Faster scaling algo-
rithms for network problems. SIAM J. Comput., 18(5):1013-
1036, 1989.

Ming-Yang Kao, Tak-Wah Lam, Wing-Kin Sung, and Hing-
Fung Ting. An even faster and more unifying algorithm for
comparing trees via unbalanced bipartite matchings. J. Algo-
rithms, 40(2):212-233, 2001.

Petter Kristiansen and Jan Arne Telle. Generalized H-coloring
of graphs. In Algorithms and computation (Taipei, 2000), vol-
ume 1969 of Lecture Notes in Comput. Sci., pages 456-466.
Springer, Berlin, 2000.

Fred S. Roberts and Li Sheng. How hard is it to determine if a
graph has a 2-role assignment? Networks, 37(2):67-73, 2001.

Lee D. Sailer. Structural equivalence: Meaning and defini-
tion, computation and application. Social Networks, 1(1):73-90,
1978.

Li Sheng. 2-role assignments on triangulated graphs. Theoret.
Comput. Sci., 304(1-3):201-214, 2003.

Douglas R. White and Karl P. Reitz. Graph and semigroup
homomorphisms on networks of relations. Social Networks,
5(2):193-234, 1983.

162



