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Abstract

A vertex subset X of a simple graph is called OC-irredundant (re-
spectively CO-irredundant) if for each v € X, N (v) - N [X — {v}] #
0 (respectively N{v] — N(X — {v}) # 0). Sharp bounds involving
order and maximum degree for the minimum cardinality of a maxi-
mal OC-irredundant set and a maximal CO-irredundant set of a tree
are obtained and extremal trees are exhibited.
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1 Introduction

We first define four types of vertex subsets of a simple graph G = (V, E).
Theset X CVis

CC-irredundant N[v] - N[X - {v}]
OC-irredundant | . N (v) - N[X - {v}]
CO-irredundant ( T1rAhvEX N NET_ N (o) 7 0
00-irredundant N @) - N(X - {v})

For example the prefix CO is used in the name CO-irredundant set because
the first neighbourhood used in its definition is Closed and the second is
Open.

These sets may be characterised in terms of existence of private neigh-
bours which we now define. For v € X, the vertex ¢ is
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an X-external private neighbour (X-epn) of v if
teV-X and N@E)NX = {v};
an X-internal private neighbour (X-ipn) of v if
teX and N(t)NX = {v};
an X-self private neighbour (X-spn) of v if
t=wv and v is isolated in G [X].

The following four characterisations are easily proved:

CC X-spn or X-epn.
. OC | . . X-epn.
X is co -irredundant iff each v € X has an X-epn, X-ipn or X-spn.
00 X-epn or X-ipn.

The property of CC-irredundance (usually the CC prefix is omitted) has
been well studied due partially to its intimate connection with domination.
For a survey of this theory, the reader is directed to [8].

The other three types of sets defined above were studied in [5]. We
note that OC-irredundance was originally introduced in [4] usingr the term
“open irredundance.” The reader is referred to [1, 6] for results concerning
these sets, further generalisations and extensive bibliography.

The present work is concerned with lower bounds involving order n and
maximum degree A for the smallest cardinality of maximal sets with these
properties. Let

ir(G) CC-

oir (G) - . OoC-

coir (G) denote the smallest cardinality of a maximal CO-

ooir (G) 00-
irredundant set. The following sharp bounds are known for general graphs.

2_n
3A°
A more elegant proof of Theorem 1 is given in [7].

Theorem 2 [6] If G has no isolated vertex, then

Theorem 1 [3] For A > 2, ir (G) >

(z A=2
n A=3

i >
oir (G) > ¢ n A=d
(BA-1)n A>S

\ 2A3 —-5A2 +8A -1
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Theorem 3 [6]

n A=2
) 4n A=3
coir (G) > ¢ 13
2n
-3 42

The bound of Theorem 1 has been improved for trees with A > 3.

Theorem 4 [2] If a tree T has A > 3, then

. 2(n+1)
> —_ 7
ir(T) AT

In Section 2 (respectively Section 3) we prove sharp bounds for oir (T')
(respectively coir (T')) thus improving Theorem 2 (respectively Theorem 3)
for the class of trees.

Each of the proofs will involve the basic partition (X,B,C,R) of V
induced by the vertex subset X, where

B={weV-X:|Nw)nX|=1}
C={weV-X:INwnX|>2)
R={weV-X:|N(w)nX|=0}.

In each proof cardinalities of sets denoted by upper case letters will be
denoted by the corresponding lowercase letter. The only exception to this
notation will be that (as usual) |V| is denoted by n.

2 OC-irredundance and maximum degree

Recall that X is an OC-irredundant set of an arbitrary graph if every v € X
has an X-epn and observe that the set of X-epns of v € X is precisely
N (v) N B. The following condition for maximality of an OC-irredundant
set X (involving the basic partition) was proved in [6].

Proposition 5 [6] The OC-irredundant set X is mazimal if and only if
for each w € N (R)

there exists v € X such that N(v)N B C N [w]. (1)

We now confine our attention to trees and state our first principal result.

165



Theorem 6 For an n-vertez tree T with mazimum degree A,

2 as3
oir (T) 2 n+A-3 A>4
2A -2 ="

Proof. Suppose that a tree T with n vertices and maximum degree A
has a maximal OC-irredundant set X. We refine the basic partition of V
induced by X as follows. Let

X1 = {u € X : u has precisely one X-epn}

X2 =X—X1
B;=BNN(X;) (i=1,2)
Ci=CnN(R)
Y=BzﬂN(R).
Observe that
b=0b; + by
<z + Axy
=z+(A-1)x,. (2)

Since T has no cycles, if v and w satisfy (1), then v € X;. Note that
C1UY C N (R). Hence by Proposition 5 each vertex of C; UY is adjacent
to a vertex of B;. The presence of these edges enables us to estimate 7.

Each vertex of Y sends an edge to both X and By, hence

IN(Y)NR|<(A-2)y. @)
Each vertex of C sends an edge to B; and at least two edges to X, hence
IN(C1)NR| < (A-3)g. 4)

The vertices of By send b; = x; edges to X; and at least ¢; + y edges to
C1 UY, hence

IN(B1)NR| <Az —z1—c; — ¥y
=(A-D(z-=z)—c -y (5)
Now r is bounded above by the sum of the right hand sides of the
inequalities (3), (4) and (5). We use these and (2) to obtain
n=z+b+r+c
Sz+(z+(A-1)z,)
+((A-3y+(A-1)(z—z:)+(A-Dca)+c
=(A+1)z+(A-3)y+(A-4) a1 +e (6)
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We now estimate y by using the fact that H = T [X U B U C] is a forest.
In H there are at least ¢; + y edges from C; UY to By, at least 2¢ edges
from X to C and precisely x; + by edges from X to B. Hence

2ct+erty+zi+br<z+(z1+b)+c—1
i.e. y<az—c —c—1. )

There are now two cases to consider.

Casel A>4:
Elimination of y from (6) and (7) gives:
n<(A+Dz+(A-3)(z—c1—c=1)+{(A-4)c +¢
=2A-2)z—(A-4)c—c1 - (A-13) (8)
<(2A-2)z—-(A-3).

n+A-3 .
> —_— .
Hence z > 5A =9 as required
Case2 A=3.

In this case ¢; = 0 (since a vertex of C} sends two edges to X and one edge
to each of R and Bj;). Therefore (6) and (7) become

n<dr+ec
and y<zx—c—-1.

Elimination of ¢ from these two inequalities gives

n<br—y—-1<56z-1. 9)
Therefore z > nT-i-l as required. ]

We show that the bounds of Theorem 6 are sharp. If T is an extremal
tree and X is a maximal OC-irredundant set of cardinality oir (T'), then we
have equality in all of the inequalities used in the derivation of the bounds.

Equality in (2) shows that each v € X, has A neighbours in B and so
there are no edges from X3 to C. Hence the forest T [X; U C] has at least
2c edges and we deduce 2c < c+x; — 1 ie.

c<z -1 (10)
First assume that A = 3. Then ¢; = 0 and equality in (9) shows that

y = 0. From (10) and equality in (7) it follows that z; —1 > z; + 23 — 1, so
that x5 = 0. Equality in (5) shows that each w € B; joins two vertices in R.
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The maximum value of ¢ = z; — 1 (from (10)) is attained when T [C U X ]
is a path. Hence there is precisely one extremal tree T for each value of
oir (T'). The extremal tree with oir (T) = 4 is depicted in Figure 1.
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Figure 1 Extremal Tree of Theorem 6 with A = 3.

Next, let A > 4. Figure 2 depicts an extremal tree for A = 4 where

c#0.
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Figure 2 An extremal tree for Theorem 6 with A =4 and ¢ # 0.

Equality in (8) shows that ¢ = 0 for A > 5 and it will be seen that there
are also extremal trees for A = 4 with ¢ = 0. Using this and (7) we deduce
that such a tree has y = z — 1. For given A there is flexibility in the choice
of z; and x5. We now present a family of extremal trees, one for each A.
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Fix A>4,letx =A+1and zo = 1. Then by = by = y = A. Let
T'[B] be a matching from B; to B;. Form R by joining A —2 leaves to each
vertex of B so that r = 2A (A —2). It is easily seen that X is maximal
OC-irredundant in T and that T is an extremal tree for Theorem 6.

In addition we note that the stars K3 o (A > 4) are also extremal trees
for Theorem 6 with oir (T') = 1.

3 CO-irredundance and maximum degree

Recall that X C V is a CO-irredundant set of an arbitrary graph if and
only if for each v € X,

PN (v,X) = {t:tis an X-spn, X-epn or X-ipn of v} # 0.

Define Z = {v € X|v is isolated in G [X]}. Note that Z is precisely the
set of X-spns.

The following maximality condition was proved in [6].

Proposition 7 [6] In any graph the CO-irredundant set X is mazimal if
and only if for each w € N (Z)U N [R]

there ezists v € X such that PN (v, X) C N (w). (11)

When (11) is satisfied we say that w annihilates v. We now state and
prove the second principal result.

Theorem 8 For an n-vertex tree T with mazimum degree A > 3,

% (coir(T) even)

coir (T') > {

2l (coir (T) odd).

Proof. Suppose that X is a maximal CO-irredundant set of the tree T.
We define a variety of sets from the basic partition induced by X. First let

X1 = {v € X : v has precisely one X-epn, no X-ipn and no X-spn}.

Denote by v’ the unique X-epn of v € X, define § = N (X;) N B and
partition X, into P;, P, P; where
Py ={ve X;:v € N(R) and V' is isolated in T'[S]},
Py ={ve X,:v € N(R) and v' has degree > 1 in T'[S]}
and Py={ve X;:v' ¢ N(R)}.
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Let

B;=N(P)NB,i=1,23
and B*=N(Z)nB.

Next we deduce some properties from the maximality of X and Propo-
sition 7. Since there are no cycles,

if (11) is satisfied, then |PN (v, X)| = 1. (12)

Let w € R. By Proposition 7, w annihilates some v € X. No X-ipn or
X-spn is in N (w). Hence by (12),

v€ PLUP, and w is adjacent to v’ € B; U Bs. (13)

Let w € B*. By Proposition 7, w annihilates some v € X. If v € Z, then
the X-spn v is in N (w), therefore w is an X-epn of v. But w ¢ N (w) and
hence (11) is not satisfied. We conclude that v ¢ Z. Moreover no X-ipn is
in N (w). We deduce (by (12)) that

v € X; and w is adjacent to v’ € B; U By U Bj. (14)

Next consider v € B; where v’ is the unique X-epn of v € P;. By
Proposition 7, v’ annihilates some v € X. Now v does not annihilate v
because v’ ¢ N (v’). Further v’ is not adjacent to the X-epn of any other
vertex of X;. Hence u ¢ X;. Further v’ is not adjacent to X-spns and
so w ¢ Z. Using (12) we conclude that u has the unique X-ipn v and
no X-epn. If u had degree one in T [X], then u would be an X-ipn of v,
a contradiction with v € X;. Hence u has degree at least two in T [X].
Further no two vertices of B; can annihilate the same vertex u (since u has
only one X-ipn). Define

X, = {u € X : u is annihilated by some v’ € B, }.
Then by the above
each u € X5 has a unique X-ipn in Pj, has no X-epn
and has degree at least two in G[X]. Also z; = p;. } (15)
We now define additional sets. Let

X3 ={ve X — (X1 U X2): v has degree at least two in T [X]},
Xa ={v € X — (X1 UXz): v has degree one in T [X]} N N (C)
and X5 = {v € X — (X; U X32): v has degree one in T [X]} — N (C).

Observe that Z, X, Xo, X3, X4, X5 is a partition of X.

170



We now estimate r. Each w € B; U B, joins a vertex of X and each
w € By joins a vertex of S, hence by (13),

r <|N(B1)NR|+|N(Bz)NR]
S(A-1)b+(A-2)b (16)
=(A-1)p1 +(A-2)ps.

To estimate b, observe that vertices of X;, X5 have one X-epn, no X-
epn respectively. Vertices of X3, X, X5 have at most A — 2, A — 2 and
A — 1 X-epns respectively. Therefore

bel+(A—2)$3+(A—2)$4+(A—1)$5+b‘. (17)

In order to estimate c, we use the tree property. Let Yi,...,Y}; be the
vertex sets of the components of T [X;]. If Y; = {v}, then v is adjacent
to u € X — X and since v has no X-ipn, we conclude that v € Xy U X3.
Otherwise suppose that v is an end vertex of T'[Y;] and w € Y; is adjacent
to v. Since w has no X-ipn, v is also adjacent to u € XU X3. We conclude

there is an edge from each ¥; to X, U Xj. (18)

For i = 1,...,k let T; be the subtree T [Y; U (N (¥;) N B)]. Consider
the family F of subtrees which contains T1,...,T}; and the single vertices
of CUZUB*U X, U X3 U Xy. Joining these subtrees we have & edges by
(18), 2¢ edges by definition of C, b* edges from B* to Z, b* edges from B*
to the T;’s by (14). These edges number less than the number of subtrees
of F (except when this number is zero), hence

2+ 2" +k<c+z+b"4rotzztry+k-1
ie. V+c<z+zgtazt+ay—1. (19)

From (17) and (19)

bte<zi+za+(A-1)(zs+zs+z5)+2—1. (20)

5
Now n = (z4+7) + (b+c). Using z = Zz,— + 2, (16), (20) and a little
i=1

arithmetic we obtain
n < [2:1:1 +(A-2)(;m +P2)]+[P1 + 2z0] + A (z3 + 24 + x5) +22-1. (21)

Now p; + p2 < 7, so that the first square bracket in (21) is at most Axz;
and by (15) the second square bracket is equal to 3zo. Hence

n< Az +z3+2z4+735) + 329 + 22— 1.
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Since A > 3, we deduce that provided F has at least one subtree,
n< Az -1 (22)

If F is empty, then (by (19)) c =2 =b* =) = 290 = 3 = 74 = 0.
Therefore z = z5. Each v € X has at most A — 1 X-epns and hence

n < Az, (23)
Note that X = Xj is impossible with z odd. This completes the proof. #

If the bound (23) is attained (see above discussion), then z = z; is even,
T [X] = £K, and each v € X has precisely A —1 neighbours in B. Hence T
contains 3 disjoint subtrees T', where T” is obtained by joining the central
vertices of two copies of the star K; ao—;. Then T is completed by adding
5 — 1 edges incident with vertices of B, in any manner which avoids cycles
and maintains maximum degree A. An example with A = 4 is shown in
Figure 3.

AALARN

Figure 3 An extremal tree of Theorem 8 with even coir (T).

We finally show that the bound (22) may be attained for any odd =
(= 3) and any A (> 3). Let T” be formed from P; by adding A — 1 leaves
to the end vertices and A — 2 leaves to the central vertex. Form T from
T"U (25%) T’ by adding 253 edges incident with the leaves in any manner
which avoids cycles and maintains maximum degree A. Then T attains the
bound (22).

Acknowledgement

The authors gratefully acknowledge research support from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC).

References
[1] E.J. Cockayne, Generalized irredundance in graphs: hereditary prop-

erties and Ramsey numbers, J. Combin. Math. Combin. Comput. 31
(1999), 15-31.

172



[2] E.J. Cockayne, Irredundance, secure domination and maximum degree
in trees, Discrete Math., to appear.

(3] E.J. Cockayne, C.M. Mynhardt, Irredundance and maximum degree in
graphs, Combin. Prob. Comput. 6 (1997), 153-157.

[4] AM. Farley, N Shacham, Senders in broadcast networks: open irredun-
dancy in graphs, Congr. Numer. 38 (1983), 47-57.

[5) M.R. Fellows, G.H. Fricke, S.T. Hedetniemi, D. Jacobs, The private
neighbour cube, STAM J. Discrete Math. 7 (1994), 41-47.

[6] S. Finbow, Generalizations of irredundance in graphs, Ph.D. Thesis,
University of Victoria, 2003.

[7) P.J.P. Grobler, Critical Concepts in Domination, Independence and Ir-
redundance in Graphs, Ph.D. Thesis, University of South Africa, 1998.

[8] T.W. Haynes, S.T. Hedetniemi, P.J. Slater. Fundamentals of Domina-
tion in Graphs. Marcel Dekker, New York, 1998.

173



