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ABSTRACT. Most computer algebra packages for Weyl groups use generators
and relations and the Weyl group elements are expressed as reduced words in the
generators. This representation is not unique and leads to computational prob-
lems. In [HHRUG6], the authors introduce the representation of Weyl group ele-
ments uniquely as signed permutations. This representation is useful for the study
of symmetric spaces and their representations.

A computer algebra package enabling one to do computations related to sym-
metric spaces would be an important tool for researchers in many areas of mathe-
matics, including representation theory, Harish Chandra modules, singularity the-
ory, differential and algebraic geometry, mathematical physics, character sheaves,
Lie theory, etc. In this paper, we use the representation of Weyl group elements
as signed permutations to improve the algorithms of [DH05]. These algorithms
compute the fine structure of symmetric spaces and nice bases for local symmetric
spaces.

1. INTRODUCTION

Until recently very few algorithms existed for computations in symmetric spaces.
The first algorithms for computations related to symmetric spaces were developed a
few years ago (see [H96, H0O, DHO5, DH07, GH06]). The representation of Weyl
group elements as signed permutations can be used to speed of the implementation
of these algorithms.

A Weyl group is a reflection group of a root system ®. Given @ in a Euclidean
vector space, for each vector a in ®, define s, as the reflection through a. The
Weyl group, W (®), is the group generated by all the reflections s, with a € ®.
Weyl group elements are usually given in terms of generators and relations. This
representation is not unique and therefore leads to computational problems. Given
two Weyl group elements, w;, we € W(®), one usually has to compute the product
w Wy ! to determine if w; and w,, represent the same element. In [HHROG], the au-
thors introduce the representation of Weyl group elements as signed permutations.

The classical Weyl groups are those that correspond to Dynkin diagrams of type
A, B, C, and D. The roots of a classical Weyl group are sums or differences of
at most two standard basis vectors, e;. An element w in W(®) can be described
completely by its action on the e;. In this paper, we use signed permutations to
represent Weyl group elements related to symmetric spaces.
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2. SYMMETRIC SPACES, RESTRICTED WEYL GROUPS, AND §-DIAGRAMS

In {DHOS5] it was shown that the fine structure of the real Riemannian symmetric
spaces is the same as that of the symmetric varieties over algebraically closed fields.

2.1. Symmetric spaces. Let G denote a reductive algebraic group over an alge-
braically closed field, # € Aut(G) an involution, K the fixed point group of 4,
and P = {A0(A)~! | A € G}. The variety P is called a symmetric variety or
also a reductive symmetric space. If G is semisimple, P is also called a semisimple
symmetric space. Let g denote the Lie algebra of G and denote the involution of g
induced by 6 also by 8. Theng = ¢ @ p, where ¢ = {z € g | 6(z) = z} is the Lie
algebra of K and p = {z € g | (z) = —=z} is the tangent space in the identity of
P. p is called a local symmetric space.

2.2. Root space decomposition. Let t be a maximal toral subalgebra of the Lie
algebra g. Fora € t*, letg, = {z € g | [t,z] = a(t)z forall ¢ € t} and let
O(t) = {a € t* | go # 0}. The elements of O(t) are called roots and the subspaces
9. are called root-subspaces. Then

=909 ) o
acd(t)

2.3. Root space decompeosition for a local Symmetric space. Let a be a maximal
toral subalgebra in p and consider the root space decomposition

9=00® Y o
A€ED(a)
Here gy = {z € g | [t,z] = AM#)z forallt € a}and B(a) = {A € a* | A #
0 and g, # 0}.
2.3.1. Root systems and Weyl groups. 6|t induces an involution on t* and hence on

®(t). By abuse of notation, we will denote the restricted involution also by 8. The
Weyl group of a root system ®(t) will be denoted by W (®(t)) .

Notation 1. Let A(t) denote a basis for ®(t).

Definition 1. For a subset S C ®(t), we let W(S) denote the subgroup of W (®(t))
generated by the reflections s, witha € S.

Let Xo(8) = {x € the root lattice of ®(t) | 8(x) = x}, Po(8) = 2(t)NXo(8),
and Ag(8) = A(t) N Xo(6). Identify Wyp(6) with the subgroup W (Po(8)) of
W (®(t)). Let

W1(0) = {w € W(2(1)) | w(Xo(8)) = Xo(6)}-
Let ® = 7(®(t) — ®o(0)) denote the set of restricted roots of d(t) relative to 6.
Define the projection 7 by m(a) = (o — 6(c)). All w € W (6) induce a mapping
w(w) such that 7(w(x)) = 7(w)(7(x)). Define W = {n(w) | w € W, ()}
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Notation 2. Let W (a) denote the Weyl group of the restricted root system ®(a).
Theorem 1 ([H881). Let ®, W, etc. be as above. Then

(1) ® = ®(a).
(2) W(a) =W = Wy(8)/Wo(6)

Definition 2. W (a) is called the restricted Weyl group with respect to the action of
0 on R(t).

Let wo(8) € Wy(8) be the involution wo(8)(Ao(0)) = —Ao(f) and 6* =
—id of o wy(#). As in [H88] we make a diagrammatic representation of the action
of 8 on a basis for ®(t). Color black those vertices of the ordinary Dynkin diagram,
which represent roots in Ag(d) and indicate the action of 6* on A — Ag(6) by
arrows. This diagram is called the §-diagram. An example in type D,, is:

*—0O—@---0O 9')

A classification of involutions, reductive algebraic groups, and their associated
Lie algebras using these #-diagrams is given in [H88]. For the simple Lie algebras
of classical type we list in Table | below the type of the Lie algebra and involution
and its #-diagram.

Table 1: #-diagram

Type 6 #-diagram
1 2 -1 13
Al o—O0----0—0
1 i
All 0O o -O—e
1 2 P
A, ” ’
(AIV (p=1)) ®
(1<2p<i)
1 2 -1
Alll, o .
(29 o]

continued on next page
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Table 1: continued

Type 8 #-diagram
Bl
(Bl (p =1)) OO O e
(1=22,1<p<)
CI 1 2 -1 4
Cll,
(123) 1 b4
(1<p<3(-1)
C1, 1 -1 1
(t>2) *—O0—@ - O0—e—=—0
Di, »
(DI (p = 1)) OO
(1>24,1<p<i-1)
-1
(lD>Ib4) 1 2 -3 -2
- l
l
Dm“ 1 -2 -1
(1>2) *—O0—e -
l
D1, 1 -1
t22) *—0O—=o---- 6

In [DHOS], the authors give an algorithm to compute the fine structure of each
of these local symmetric spaces, which is roughly as follows:

(i) For each case, recover the action of the involution on the original root
system from the f-diagram.

(ii) Determine all the positive roots that project down to each root in the base
for the restricted root system.
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(iii) Find representatives in the original Weyl group for each element in the
restricted Weyl group.

(iv) Use the Weyl group representatives to find a complete list of positive roots
in the restricted root system.

(v) Determine all the positive roots of g that project down to each root in the
base for the restricted root system using the restricted Weyl group and the
representatives of its elements in the original Weyl group as in (iii).

Using signed permutations in steps (i) and (iii) will speed up the computation of
steps (iv) and (v). In (i), 8 can be recovered from the diagram by the computation
0 = —id 08* owy(#) where — id, 8*, and wy(#) commute and wy () is represented
as a signed permutation. In (iii), each Weyl group representative will be a signed
permutation.

3. WEYL GROUPS AND SIGNED PERMUTATIONS

From [B81], the classical Lie algebras over a vector space V' consist of roots that
can be written as a sum or difference of at most two standard basis vectors e;.

Table 2: Basis for the Classical Root Systems

Lie algebratype V Basis
Au R Qi =& — €it1
B, R* a;=¢€—eyifori=1,---,n-1
and o, = e,.
Cn R" ai=8i—ei+1fori=1,...’n_1
and a,, = 2e,,.
D, R* ai=ei—eqifori=1,---,n—-1

and o, = €,,_1 + €,,.

The standard generators for the Weyl groups correspond to reflections. For type
A, we have that a; = e; — e;41 so the Weyl group element s,,, corresponds to the
transposition (z,7 + 1). Likewise s, corresponds to the transposition (%, ¢ + 1) for
i =1,---,n — 1 when the root system is of type B,, or C,,, and s,,, corresponds
to the transposition (n, —n). For type D,, we have that s,, corresponds to the
transposition (i,7 + 1) fori = 1,--- ,n — 1 and 3,,, corresponds to the product of
transpositions (n, —(n — 1))(n — 1, —n).

An element w € W(®) can be described entirely by its action on the e;, i.e.,

ifa >0,
w(e;) = e, foralli. Asin [HHR06], fora € R*, define sgn(a) = + ffa <0
1a .
Represent w € W (®) by the vector (a1, az, - - - ,an) where w(e;) = sgn(a;)eq,)-

This signed permutation corresponds (o the first n places in the bottom row of the
standard matrix representation of the permutation.

Example 1. For the Lie algebra Dy, consider (8, —T7)(7, —8), a representative for
Sag- Notice that this representation is not unique. The matrix representation for
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Sag in Sg is

1 23 45 6 -8 -7

The bottom row of this matrix, (1,2, 3,4,5,6, ~8, —7), is the unique representation
of Sag in signed permutation notation.

(1234567 8)

The next proposition from [HHO5] describes multiplication using signed permu-
tation notation.

Proposition1. For1 <i<n,

)] (alaa2"" 1an)sa,- = (ay, a2, - s Big1, Qiy 4 Gy)
(ii) Ifax =1i,and a; = i + 1 then s4,(a1,a2, - ,an) =
(alaa2,"' ,ak—llsgn(ak)lallaak-i-l’“' 1al—lvsgn(al)|ak|7a'l+la"' aan)
(i“) (a11a27' .t 1an)san = (01,02,"‘ 1an-lr_a'n)
(lV) (al,a2a' o aan)ga,. = (alsGZa" ©y —Qn, _an—-l)
(V) Ifa'l = n then san(alra21"' ,an) = (01,0.2,"' y —Qly - 1a'n)

(vi) Ifar =n —1and a; = nthen s, ,(a1,02, -+ Gk, ,a,-+* ,ay) =
(a1,a2, -+, —sgn(ar)|ail, - - - , —sgn(a)lax|,- - - , an).

4. RESULTS

For each of the §-diagrams in Table 1, the Weyl group element wo(8) € Wy (6)
must be computed. Recall that wg(#) is the involution that satisfies wo () (Ao (8)) =
—Ag(6). Let m = |Ag(6)].

Example 2. Consider the 0-diagram of type A3,(Ill,). Recall from [H88) that
the notation A3((1ll,) means that the original root system, ®(t), is of type Ao, 0

is a type Ill, involution in [H78), and the resulting restricted root system satisfies
|A(a)| = 3.

Here m = 4, the number of roots fixed by 8, and Ao(0) = {4, as,as, ar}.
From [DHO5), a representative in Wy () for wo(8) is

SasSasSasSacSasSasSarSagSas Saq-

Notice that this representation is not unique. Writing as a product of transpositions
and multiplying, we get

(4,5)(5,6)(4,5)(6,7)(5, 6)(4,5)(7,8)(6, 7)(5, 6)(4,5) = (4,8)(5,7).
The unique representation of wo(9) is (1,2, 3,8,7,6,5,4,9,10,11).

Table 3 summarizes the results for each §-diagram.

180



Table 3: wo(6)

Type 6 wo(6)

Ai(l) (1)25"' alal+1)
Al (D) (2,1,4,3,++ i+ 1,4, -, 20+ 2,20 +1)
AP(II,)

l=2+m Q,---,pp+m,--- ,p+2,p+1,p+m+1,---,14+1)

{
Ay, (11I) 1,2,---,20 - 1,20)

(t=2)
A (12 \p~(p+ 1)y, ~(p+m)
cly) (1,2,---,1 - 1,0)
i Sl’;gl_i)m 2,1,4,3,---,2p,2p - 1,-(2p+ 1),--- , —(2p + m))
Ci,(11,) (2,1,4,3,--- ,i+1,i,---,2,20 — 1)
,f”;,(lj)m 1,2, p=Lp=(p+1),---, ~(p+m))
(lz)'lz(l'i)) (1,2, 1=1,0)

continued on next page
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Table 3: continued

Type 6 wo(f)
D}, (1,) o
(i>2) (2,1,4,3,- i+ 1,4,---,2[,20 — 1)
D§l+1(mb) . .
(l22) (2,1)4,3,—.-)1¢+1,l’-oo’21—2,21,2l_1,21+1)

From Theorem |, we have that W (a) ~ W;(8)/Wy(6). For each J; in ®(a),
we find a representative w; € W;(0) for sy, and represent it in signed permutation
notation.

Example 3. Recall from [H88)] that the notation A3(II) means that the original root
system, ®(t) is of type Az, the involution 0 is 0(A) = J(—A)TJ~! where

(0 I,
7= (1, %)

which is a type Il involution in [H78], and that the resulting restricted root system
satisfies |A(a)| = 3. The restricted root system has basis roots M1, Az and A3, given
by

1
5(0:1 +2a2 + az) = Ay,

1
§(a3 + 204 + a5) = Ag, and

1
5(0:5 + 206 + a7) = A3,
A representative in W1(8) for sy, is W1 = SaySaySazSa,- Writing wy as a product
of transpositions and multiplying, we get
wi = (2,3)(1,2)(3,4)(23) = (1,3)(2,4).

1 23 45 6 7 8
3412567 8)'”’”’""
tom row of this matrix (3,4,1,2,5,6,7,8) is the unique representation of sy, in
signed permutation notation.

The matrix representation for sy, in Ss is

Table 4 summarizes the results for each §-diagram.
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Table 4: W (a)

Type 6 S),-representative

A w;=(1,2,--,i—-1,i+1,4,i+2,--- ,,I1+1)

ALy, (M) w; = (1,2, , 20— 2,20+ 1,20 + 2,2 — 1,2i,2i +3,--- , 2l + 2)
AMa) (e e L Ly i 42 =i+ 2— il 41— iyl 3= dee L+ 1)
l___2p+m 12 b b k) g | b 9 k] 3 3 . b

wp=(,---,p-Lp+m+2,p+1,--- ,p+m+Lpp+m+3,---.I+1)

Al2[—l (IHb)
(t=2)

wi=(1, -, i-1i+1,4i+2,-,20—-i-1,2-i+1,20—i,20 —i+2,.--,2])

w = (1, ,20 - 2,202l - 1)

Br(D)
l=p+m

w;=(1,2,---,i-14i+1,4,i+2,--- 1)

wp=(1y"'7p_11_psp+la"'ap+m)

ety

wi = (1,2, ,i—1i+1,i,i+2,- 1)

1U[=(1,"‘,l—1,—l)

Cy (1)
l=2p+m

wi = (1,2, ,2—2,2i4+ 1,28+ 2,2 — 1,2{,2 +3,--- , 1)

continued on next page
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Table 4: continued

Type 6 s, -Tepresentative
wy=(1,---,2p-2,—-(2p),—-(2p—1),2p+1,---,1)
C4,(1y) wi= (1,2, ,2—2,2i+1,2+2,2—1,2,2 +3,--- ,2)
w = (1,---,20-2,—-(20),—(2l - 1))
D} (1) P
l=p+m wi=(1,2,---,i—-1,i+1,4,i+2,--- 1)
wp=(1a"',P“1s"PaP+1,"',l—l,—l)
Dy(1s) 1o i it
(124) w:—(1,2, 2 1,2+1,’L,'L+2, ,l)
w =, ,1-2,—(),—(-1))
DR it mtmenzenzotmEee
(22 w;=(1,2,---,20-2,20+ 1,20+ 2,2i — 1,2{,2i + 3,--- ,2l)
w = (1,---,20 - 2,—(2l), (2L — 1))
!
Dﬁ‘,*;(g)“’) w; =(1,2,---,20—2,2i+ 1,20 +2,2i — 1,24,2i + 3,--- ,2[ + 1)

w=(1,--,20—2,—(2),—(2 —1),20 + 1)
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