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Abstract

Let C be the set of distinct ways in which the vertices of a 5-
cycle may be coloured with at most two colours, called colouring
types, and let S C C. Supposc we colour the vertices of K, with at
most two colours. If D is a 5-cycle decomposition of K, such that
the colouring type of each 5-cycle is in S, and every colouring type in
S is represented in D, then D is said to have a proper colouring type
S. For all S, |S| £ 2, we determine some necessary conditions for
existence of a 5-cycle decomposition of K, with proper colouring type
S. In many cases, we show that these conditions arc also sufficient.

1 Introduction

Let G and H be graphs. A G-decomposition of H is a set G = {G1,Go, ...,
Gp} such that G; is isomorphic to G, for 1 < i < p, and G partitions
the edge set of H. Most commonly, H = K,, the complete graph on v
vertices. The problem of determining all values of v for which there exists
a G-decomposition of K, is called the spectrum problem for G.

An m-cycle, denoted by (zi1,z2,...,Zm), is the graph with vertex set
{z1,72,..., %} and edge sct {{z1, 72}, {72,73},..., {Tm,71}}. The spec-
trum problem for m-cycles has recently been solved; see (1] and [3].

A variant of the spectrum problem for m-cycles arises when the vertices
of K, have been coloured and there are demands on how each m-cycle in the
decomposition must be coloured. An m-cycle is said to be monochromatic
if all m vertices are the same colour, and a weak colouring of an m-cycle
decomposition results in no monochromatic m-cycles While most work has
considered weak colourings, new colouring systems are emerging.
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Suppose that the vertices of K, have been coloured with at most two
colours, say black and white (denoted by B and W respectively), and sup-
pose that there exists an m-cycle decomposition of K, denoted D.

Let C,C;...Cp, denote the colouring of an m-cycle which assigns the
colour C; to the vertex z;, where C; € {B, W}, for i = 1,2,...,m. Then
C1Cz...C,, is said to be a colouring type.

We let C be the set of all distinct colouring types, and we let S be a
non-empty subset of C. Then the decomposition D is said to be of proper
colouring Type S if both the colouring type of every m-cycle in D is in S,
and every colouring type in S is represented in D. (Some colouring types
can be obtained from other types by interchanging the colours of all vertices.
If 51 and S are sets of such colouring types, then we write S; = S2.)

The existence problem for 4-cycle decompositions of K, with proper
colouring Type S has been completely settled for all possible S; see [4], [7]
and [8]. In this paper, we extend this work by considering 5-cycle decom-
positions of K,. As such, we often use the following well-known theorem.

Theorem 1.1 [5] A 5-cycle decomposition of K, exists if and only if v =
1,5(mod 10), v = 5.

Definition 1.2 Let the colouring BBBBB be denoted Type Al, WWWWW
be denoted Type A2, BBBBW be denoted Type Bl, WWWWB be denoted
Type B2, BBBWW be denoted Type C1, WWWRBB be denoted Type C2,
BBWBW be denoted Type D1 and WWBWB be denoted Type D2.

Let § C {Al, A2, Bl, B2, C1, C2, D1, D2}. (For the sake of brevity,
we omit the word Type.) Our main results are Theorems 1.3 and 1.4 .

Theorem 1.3 If there exists a 5-cycle decomposition of K, with proper
colouring Type S, where S € {{B1, B2}, {B1, C1}, {B2, C2}, {B1, C2}, {B2,
C1}, {C1, D2},{C2, D1}}, then the conditions in Table 1 are satisfied,
where w denotes the number of white vertices in K,. Also, for {Bl, C1} =
{B2, C2}, {B1, C2} = {B2, C1} and {C1, D2} = {C2, D1}, we have found
a suitable decomposition for the smallest admissible value of v.

S Admissible v
{B1, B2} v = 1 (mod 30), v > 39601, \/5v(v + 4) € Z,
w =0,1(mod6)

{B1,C1} ={B2,C2} | v=1,5(mod10), v > 45, \/Sv(v+4) € Z
{B1, C2} = {B2, C1} | v=1,5(mod10), v > 45, \/5o(v + 4) € Z
{C1, D2} = {C2, D1} | v =1,5(mnod 10), v > 15, /25 + 20v(v — 1) € Z

Table 1: Some necessary conditions for existence of a 5-cycle decomposition
of K, with proper colouring type S.
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Theorem 1.4 For each S C {Al, A2, B1, B2, Cl1, C2, D1, D2}, where
|S| € {1,2}, and exzcluding the cases S € {{B1, B2},{B1, C1}, {B2, C2},
{B1, C2}, {B2, C1},{C1, D2},{C2, D1}}, there erists a 5-cycle decompo-
sition of K, with proper colouring Type S if and only if the conditions in
Table 2 are satisfied.

S | Admissible v

{Al} = {A2} v=1,5(mod10),v>5
{B1} = {B2} v=">5

{C1} = {C2} none

{D1} = {D2} none

{Al, A2} none

{A1, B1} = {A2, B2} | v=1,5(mod10), v > 11
{Al, B2} = {A2, B1} | v =5,21 (mod40), » > 21
{A1, C1} = {A2, C2} | none

{A1, C2} = {A2, C1} | none

{Al, D1} = {A2, D2} | nonc

{Al, D2} = {A2, D1} | none

{B1, D1} = {B2, D2} | none

{B1, D2} = {B2, D1} | none

{C1, C2} none
{C1,D1} ={C2,D2} | v=5(mod10),v >5
{D1, D2} none

Table 2: Necessary and sufficient conditions for existence of a 5-cycle de-
composition of K, with proper colouring type S.

For |S| > 3, it remains an open problem to determine the spectrum of
5-cycle decomposition of K, with proper colouring type S.

‘We now introduce some terminology and notation. We say that an edge
is pure-coloured if it connects two vertices of the same colour, and that an
cdge is mized-coloured if it connects two vertices of different colours. We
let the lower case letters b and w denote the number of black and white
vertices in K, respectively. We let G — H denote the graph G with the
edges of the graph H removed.

We define a pairwise balanced design, PBD(v, K, \), to be a pair (V, B)
such that V is a v-set of elements and B is a collection of subsets of V, such
that |B| € K, for each B € B, and every unordered pair of elements in V
occurs together in precisely A subsets in B.

Lemma 1.5 (2], [9] For all odd integers v > 1 there ezists a PBD(v,3,1)
or a PBD(v, {3,5%},1).

We define a group divisible design, GDD[K,\, M;v], to be a triple
(V,T', B) such that V is a v-set of elements, I' = {G),G3,...} is a par-
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tition of V, and B is a collection of subsets of V, such that |G;| € M for
each G; € T, |B| € K for each B € B, and for all z,y € V, z and y occur
together in precisely A subsets of B if they do not appear together in G,
for all 4, and z and y occur together in no subsets of B otherwise.

Corollary 1.6 For all even integers v there exists a GDD[3,1,2;v] or a
GDD{3,1, {2,4*}; v].

Finally, a path of length m, denoted [vg,v1,...,vm], is the graph with
vertex set {vo,v1,...,Vm} and edge set {{vo,v1}, {v1,v2}, ..., {Um=1,vm}}.
We write P, to denote the path on m vertices; that is, P,,, denotes the path
of length m — 1. Furthermore, we say that a P,,-design of K,, denoted
P(v,m, 1), is a decomposition of K, into paths of length m — 1.

Theorem 1.7 [6] A Pp,-design P(v,m,1) ezists if and only if v > m (if
v > 1) and v(v — 1) = 0 (mod 2(m — 1)).

2 Preliminary designs

Lemma 2.1 (8] There exist 5-cycle decompositions of: Ky with proper
colouring types {B1} = {B2} and {C1, D1} = {C2, D2}; K5 with proper
colouring type {C1, D2} = {C2, D1}; Ko with proper colouring types
{A1} = {A2} and {Al, B2} = {A2, B1}; K45 — K5 with proper colouring
types {Al, B2} = {A2, Bl}, {B1, C1} = {B2, C2} and {B1, C2} = {B2,
C1}; Kgs — K5 with proper colouring type {A1, B2} = {A2, B1}; Ky with
proper colouring types {Al} = {A2} and {C1, D1} = {C2, D2}; Css) with
proper colouring types {Al} = {A2} and {B1} = {B2}; Ky with proper
colouring type {Al, B2} = {A2, B1}; and Kg5) with proper colouring type
{C1, D1} = {C2, D2}.

Lemma 2.2 [8] There erists a decomposition of K34y into 5-cycles with
colouring type {B2} and one 3-cycle with three black vertices.

Lemma 2.3 There ezists a 5-cycle decomposition of K320y with proper
colouring type {Al, B2} = {A2, B1}.

Proof. Take a copy of Kj3(4) and, within each part, colour one vertex
black and three vertices white. By Lemma 2.2, there exists a decomposition
of this graph into 5-cycles with colouring type {B2} and one 3-cycle with
three black vertices. Replace each vertex by five new vertices, colouring
cach one the same colour as the vertex it replaced. By Lemma 2.1, we can
place a copy of a 5-cycle decomposition of K35y with colouring type {A1}
on the set of vertices arising from the 3-cycle and, by Lemma 2.1, we can
place a copy of a H-cycle decomposition of Cy(sy with colouring type {B2}
on each set of vertices arising from a 5-cycle. 0
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Lemma 2.4 There exists a 5-cycle decomposition of K520y with proper
colouring type {Al, B2} = {A2, B1}.

Proof. Take a copy of Kj4) and, within each part, colour one vertex
black and three vertices white. By Lemma 2.1, there exists a 5-cycle de-
composition of this graph with colouring type {Al, B2}. Replace each ver-
tex by five new vertices, colouring each one the same colour as the vertex it
replaced. By Lemma 2.1, we can place a copy of a 5-cycle decomposition of
Cs(sy with colouring type {Al} or {B2} respectively on each set of vertices
arising from a 5-cycle. O

Lemma 2.5 There ezists a 5-cycle decomposition of K45 with proper colour-
ing type {B1, C1} = {B2, C2}.

Proof. Let the vertex set of K45 be U U V, where |U| = 5 and |V| = 40.
Colour four vertices in U and twenty-nine vertices in V black. Colour the
remaining vertices white. By Lemma 2.1, we can place a copy of a 5-cycle
decomposition of K5 with colouring type {B1} on U. By Lemma 2.1, we
can place a copy of a 5-cycle decomposition of K45 — K5 with colouring
type {B1, C1} on U U V, where the hole is on the vertices in U. 0

Lemima 2.6 There exists a 5-cycle decomposition of K45 with proper colour-
ing type {B1, C2} = {B2, C1}.

Proof. The proof mirrors that given for Lemma 2.5, with the vertices
in U and V coloured in the same way. In this case, we use a 5-cycle
decomposition of K5 with colouring type {B1} and a 5-cycle decomposition
of K45 — K5 with colouring type {B1, C2}. These decompositions exist by
Lemma 2.1. 0

3 The Constructions

Theorem 3.1 There exists a 5-cycle decomposition of K., with proper colour-
ing type {Al} (= {A2}) if and only if v = 1,5 (mod 10), v > 5.

Proof. This follows from Theorem 1.1 (colour every vertex black). 0

Theorem 3.2 There exists a 5-cycle decomposition of K, with proper colour-
ing type {B1} (= {B2}) if and only if v = 5.

Proof. By Lemma 2.1, the decomposition exists when v = 5. Suppose
that the decomposition exists, for some v > 5. Since each 5-cycle in the
decorposition contains one white vertex, no pure-coloured white edges and
two mixcd-coloured edges, then w =1 and bw = v —1 = v(v — 1) /5. Hence
v = 5, a contradiction. a
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Theorem 3.3 There exist no 5-cycle decompositions of K, with proper
colouring type {C1} (= {C2}).

Proof. Suppose that the decomposition exists. Then, by Theorem 1.1,
v = 1,5 (mod 10), v > 5. Note that a 5-cycle of Type C1 contains two pure-
coloured black edges, one pure-coloured white edge and two mixed-coloured
edges. Therefore bw = w(w —1) = b(b—1)/2. Solving this system for b and
w, we find that b = —3 and w = —2. Hence v = -5, a contradiction. 8]

Theorem 3.4 There exist no 5-cycle decompositions of K, with proper
colouring type {D1} (= {D2}).

Proof. Suppose that the decomposition exists. A 5-cycle of Type D1
contains no pure-coloured white edges. Therefore w < 1. However, there
are two white vertices in such a 5-cycle and so w > 2, a contradiction. 0O

Theorem 3.5 There exist no 5-cycle decompositions of K, with proper
colouring type {Al, A2}.

Proof. Suppose that the decomposition cxists. Then b > 5 and w > 5,
and so there are at least twenty-five mixed-coloured edges in K,. However,
neither a 5-cycle of Type Al nor A2 contains mixed-coloured edges. o

Theorem 3.6 There exists a 5-cycle decomposition of K, with proper colour-
ing type {Al, B1} (= {A2, B2}) if and only if v =1,5(mod 10), v > 11.

Proof. The necessary conditions follow from Theorem 1.1 and the fact
that such a decomposition of K is clearly impossible.

To prove sufficiency, let v > 11 and take an uncoloured 5-cycle decom-
position of K. Choose an arbitrary vertex z. Then z does not appear in
(v—1)(v—>5)/10 of the 5-cycles; a quantity which is greater than zero. Now
colour = white and colour all other vertices black to obtain the necessary
decomposition. 1]

Theorem 3.7 There exists a 5-cycle decomposition of K, with proper colour-
ing type {Al, B2} (= {A2, B1}) if and only if v = 5,21 (mod 40), v > 21.

Proof. First note that the decomposition is impossible if v = 5. Now
suppose that the decomposition exists for some v > 5, and that it contains
n 5-cycles of Type B2. Then v = 1,5 (mod 10) and n = w(w—1)/6 = bw/2.
Solving this system for b and w we find that b = (v-1)/4 and w = (3v+1)/4.

Since each black vertex in the decomposition is adjacent to either two
black or two white vertices in each cycle, then b is odd. Thusb = (v—-1)/4 =
1(mod2) and so v = 5(mod 8). Hence the decomposition is possible only
if v = 5,21 (mod 40), v > 21. We consider these two cases separately.
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Case 1: v = 5(mod 40).

Let v = 40z + 5 = 20(2z) + 5, for £ > 1. By Corollary 1.6, we can
take either a GDD[3,1,2;2z] or a GDD|3,1,{2,4"}; 2z] and replace each
element of the design by twenty new vertices, colouring five new vertices
black and fifteen new vertices white. Now adjoin five additional vertices
001, 002,...,005, colouring co; black and ocoq, 003, 004 and ocos white. By
Lemma 2.1, we can place a copy of a 5-cycle decomposition of K5 with
colouring type {B2} on {001, 002,...,005}. By Lemma 2.3, we can place a
copy of a 5-cycle decomposition of Kj3(29) With colouring type {Al, B2} on
each set of vertices arising from a block of the design. Finally, by Lemma
2.1, we can place a copy of a 5-cycle decomposition of K45 — K5 or Kgs — K,
both with colouring type {Al, B2}, on g U {001, 002,...,005} for each set
of g vertices arising from a group of the design of sizc 2 or 4 respectively.
Case 2: v = 21 (mod 40).

Let v = 40z + 21 = 20(2z + 1) + 1, for 2 > 0. By Theorem 1.5, we can
take either a PBD(2z +1,3,1) or a PBD(2z +1, {3,5*}, 1), and replace the
it" element of the design with twenty new vertices, five of which are coloured
black and fifteen of which are coloured white, and which are contained in
the set V;, for 1 <1i < 2z + 1. Adjoin one new vertex oo, which is coloured
white. By Lemma 2.1, we can place a copy of a 5-cycle decomposition of
K with colowring type {Al, B2} onoco U V,, for 1 < i < 2z +1. By
Lemmas 2.3 and 2.4, we can place a copy of a 5-cycle decomposition of
K320y or K;5(20), both with colouring type {Al, B2}, on cach set of vertices
arising from a block of the design of size 3 or 5 respectively. 0

Theorem 3.8 There exist no 5-cycle decompositions of K, with proper
colouring type {Al, C1} (= {A2, C2}).

Proof. Suppose that the decomposition exists. Then v = 1,5 (mod 10),
v 2 5. Since a S5-cycle of Type C1 contains one pure-coloured white edge
and two mixed-coloured edges, while a 5-cycle of Type Al contains neither
of these types of edges, then w(w — 1) = bw. Solving for b and w we find
that b = (v — 1)/2 and w = (v + 1)/2. Also, since the number of mixed-
coloured edges in K, must be less than twice the number of 5-cycles in
the decomposition, then (v + 1)(v — 1)/4 < v(v —1)/5. Hence v < -5, a
contradiction. 0

Theorem 3.9 There exist no 5H-cycle decompositions of K, with proper
colouring type {Al, C2} (= {A2, C1}).

Proof. The proof mirrors that given for Theorem 3.8. 0

Theorem 3.10 There exist no 5-cycle decompositions of K, with proper
colouring type {Al, D1} (= {A2, D2}).

193



Proof. The proof mirrors that given for Theorem 3.4. ]

Theorem 3.11 There ezist no 5-cycle decompositions of K, with proper
colouring type {Al, D2} (= {A2, D1}).

Proof. Suppose that the decomposition exists. Then v = 1,5 (mod 10),
v 2 5, and bw = 2w(w — 1). Solving for w we find that w = (v + 2)/3.
Also, since every black vertex in the decomposition occurs between either
two black or two white vertices, then w is even. Hence v is also even, a
contradiction. ]

We now present some general observations relating to decompositions
in which every 5-cycle contains two mixed-coloured edges.

Theorem 3.12 Suppose that a 5-cycle decomposition of K, exists such
that each 5-cycle in the decomposition has two mized-coloured edges. Then

v =1,5(mod 10), v > 5 and \/5v(v +4) € Z.

Proof. No such decompositions of K is possible. Now suppose that the
required decomposition exists. Then v = 1,5(mod10), v > 5. Further-
more, since each 5-cycle contributes two mixed-coloured edges, bw = v(v —
1)/5, from which we obtain a quadratic given by 5w? — 5vw +v(v —1) = 0,
the solution to which is w = (5v & /5v(v + 4))/10. Without loss of gener-

ality let w = (5v 4+ y/5v(v + 4))/10. Since w € Z, then \/5v(v+4) € Z. O

Theorem 3.13 If there exists a 5-cycle decomposition of K, with proper
colouring type {B1, B2}, then v = 1,25 (mod30), v > 25, \/5v(v+4) € Z
and w = 0,1 (mod 6).

Proof. Suppose that the decomposition exists. Then v = 1,5 (mod 10),
» > 5, and there is a P(,4,1) and a P(w,4,1) embedded in the decompo-
sition. That is, we have a Ps-design of order b (on the set of black vertices)
and another of order w (on the set of white vertices), and each of these is
embedded in the 5-cycle system of order b + w.

By Theorem 1.7, a P4-design of order b (w) exists if and only if b =
0,1 (mod6) (w = 0,1(mod6)). Since v = b+ w must be odd, if b =
0(mod 6), then w = 1 (mod 6), and vice versa. Hence v = 1 (mod 6). Com-
bining this with Theorem 3.12, we find that v = 1,25 (mod 30), v > 25,

vou(v+4) € Z and w = 0,1 (mod 6). 0

In the next lemma we formulate an iterative set of equations which
calculates fawmilies of values of » for which /5v(v + 4) € Z.

Lemma 3.14 Given an initial solution (x1,y1) to the equation 22 = 5y? +
4, let 41 = 92, + 20y, and yp41 = 4z, + yn. Thenv, =z, -2, n > 1,
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is a solution to 5v, (v, +4) = s2, where s,, = 5y,,, and all positive solutions
are generated using three initial solutions, namely (z1,v1) = (3,1), (7,3)
or (18,8).

Proof. We want to determine integer values of v for which 5v(v+4) = s?,
s € Z. This is equivalent to finding all integer solutions of x? = 5y + 4,
where v = z — 2 and s = 5y.

Let (zn,yn) be an integer solution, and define

Zner = 9zn + 20y,, 1)
Yne1 = 4Tn + y,. 2)

Then note that (2,41, Yn+1) is also an integer solution. Thus any solu-
tion inductively generates an infinite family of solutions.

Making z, and y, the subject of Equations 1 and 2, we see that if
(Zn+1,Yn+1) is an integer solution, then (z,,y,) is also an integer solution.

We now find the set of smallest, positive initial solutions which generate
all solutions. This is done by finding a lower bound on z; aud by finding a
positive upper bound on y,, given that y,_; is negative.

We begin by using 22, = 5y2, | +4, together with Equations 1 and 2 to
generate expressions for x, and y, in terms of =, and y,4; respectively.
These are given by

Iy = 9.’1’,‘,—,4.1 —4\/_( n+1 —4)1/2 nd (3)

1 2
Yn = Wny1 —4 (5yn+1 + 4) / (4)

Temporarily regarding Equation 3 as a real-valued function and differ-
entiating with respect to z, .1, we get ﬁ"— = 9-4v5zn 41 (22, — 4)_1/2,
which equals zero when z,, = 18. Consequently, T, > 2, and so z; > 2.

We now show that y,, decrcases as n gets smaller, provided that y,41 >

0. Using Equation 4, we find that yn, — Yn+1 = 8yn+1 — (5yn+1 + 4) 1/2

8Ynt1 — 4\/gyn+l <0.
We now wish to find the maximum value of y,,.y, given y,, < 0. Substi-

tuting for z, into Equation 2, we obtain y,,; = 4 (5yn + 4) 4+ 9y, the

derivative of which (with respect to yn), d:ﬁ—;’f—', is strictly positive. Thus,
to find the maximum value of y,4; under the condition Yn < 0, we simply
substitute the boundary value y, = 0 into the equation for y,4;. This
leads us to conclude that if y,, < 0, then y,4; € [1,8]. Consequently, we
have established that the set of initial solutions which generate all possible
answers to our system must satisfy £; > 2 and 1 < y; < 8.

The only values of y; in this range for which z, is an integer are y; = 1,
3 and 8. Consequently, the only initial solutions we require to generate all
solutions to our system are (z,y1) = (3,1), (7,3) or (18,8). O
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We will call the system of equations given in Lemma 3.14 “System 1”.
Given Theorem 3.12, without loss of generality, we may express the number
of white vertices in I, as w, = (5v, + s,)/10.

In Table 3, we give modified equations for z,+; and y,4) which can be
used to return every second or every fourth solution returned by System 1.
We call the system that returns every second solution “System 2”, and we
call the system that returns every fourth solution “System 4”. Henceforth,
we differentiate between the systems through the use of the superscripts (1),
(2) and (4), which are associated with the variables of each system. For
convenience, we also include the equations of System 1 in Table 3. Note also
that for each system v$”) = 250 -2, 5§ = 558 and w$? = (50{7 +587)/10,
where (*) = (1),(2) or (4).

System |23 e
1 (‘)1 =9z + 203}5,” 1/,(:)1 =4z + 9yV
2 | 22, =161z + 360y L =122 + 16158
4 “‘)1 = 51841z + 1159204" yni = 23184z + 51841y%"

Table 3: Equations for :z:n +1 and yn +1 for Systems 1, 2 and 4.

Lemma 3.15 xf:‘_,)_, =z (mod 30).

Proof. =¥, =¥ +30(1728z( + 3864y ) = z¥ (mod 30). 0
Lemma 3.16 vf:lll = (mod 30).
Proof. Since v( ) = :x:ff) 2, this follows from Lemma 3.15. 0

Lemma 3.17 w(?l = w® (mod#6).

4 4 4
Proof. wff_,)_l =(z Ei’_'_l)+y8)_’_l) 2)/2 = (5 +y$" —2) /2 +6(6262z8) +
1398055Y) = w (mod 6). 0

For each of the starting solutions to System 4 (based on the initial
solutions to System 1, as given by Lemma 3.14), we give the congruence
class for u( ) and w,(f) in Table 4.

Lemma 3.18 Let (z{!,y{") = (39603,17711) or (271443,121393). Then
every fourth valie of uﬁ, ) generated by System 1, beginning either with 'u(l) =
39601 or 271441, will satisfy the following conditions: u =1 (mod 30),

ol > 39601, \/ 5v m(v(l) +4) = (_(l))2’ where s& = 5y, and wid) =

0.1 (mod 6). Furthermore, these are the only values of vn) for which all
these conditions hold.
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| ,9™) oD (mod 30) | w® (mod6)
(3,1) 1 1
(47,21) 15 3
(843 377) 1 3
(15127, 6765) 5 1
(7,3) : 1
(123, 55) 1 4
(2207, 987) 15 0
(39603, 17711) 1 0
(18,8) 16 0
(322,144) 20 4
(5778, 2584) 16 4
(103682, 46368) 0 0

Table 4: Congruence of % and w8 for all initial solutions to System 4.

Proof. This follows from Lemmas 3.16 and 3.17, and Table 4. a

Theorem 3.19 If there exists a 5-cycle decomposition of K, with proper
colouring type {B1, B2}, then v = 1(mod 30), v > 39601, \/5v(v+4) € Z
and w = 0,1 (1wod 6).

Proof. From Theorem 3.13, v = 1,25 (mod 30), v > 25, 1/5v(v+4) € Z
and w = 0,1 (110d 6). By Lemima 3.14, cvery v satisfying /5v(v+4) € Z is
generated using the initial solutions (3,1), (7, 3) and (18, 8) in System 1. By
Lemma 3.18, the only values of v which also satisfy the additional conditions
of Theorem 3.13 are obtained by taking every fourth value generated by Sys-
tem 1 starting from either the solution (39603,17711) or (271443,121393).
In either case, v = 1 (1nod 30) and v > 39601. 8]

Open Problem Let (z;,y;) = (39603,17711) or (271443,121393). Let
Tns1 = 51841z, + 115920yn, Yni1 = 23184z, + 51841y,, vn = Tn — 2,
$p = Hyp and w, = (Su, +8,)/10. Does there exist a 5-cycle decomposition
of K,,, with proper colouring type {B1, B2}, for all n > 17

Lemma 3.20 Let (’8(11),./11)) (47,21) or (123,55). Then System 1 pro-
duces values of v such that v = 1,5 (mod 10), 4/5v (1)(,0(1) +4) =
(s,(,l))2 where s(l) = 5y(1) and 'u,(zl) > 45.

Proof. This follows from Theorem 3.12, Lemmas 3.14 and Table 4. 0O
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Theorem 3.21 If there exists a 5-cycle decomposition of K, with proper
colouring type {B1, C1} (= {B2, C2}) or {B1, C2} (= {B2, C1}), then
v =1,5(mod 10), v > 45 and \/5v(v + 4) € Z.

Proof. This follows from Theorem 3.12 and Lemma 3.20. ]

Open Problem Let (z1,y1) = (47,21) or (123, 55). Let x,,41 = 9z, +20y,,
Ynt1 = 4n + Yn, ¥n = 25 — 2, $p = Sy and wy, = (Su, + s,) /10. Does
there exist a 5-cycle decomposition of K, with colouring type {B1, C1}
(= {B2, C2}) or {B1, C2} (= {B2, C1}), for all n > 17

Note that by Lemmas 2.5 and 2.6, there exist 5-cycle decompositions of
K5 with proper colourings types {Bl, C1} and {B1, C2} respectively.

Theorem 3.22 There exist no 5-cycle decompositions of K, with proper
colouring type {B1, D1} (= {B2, D2}).

Proof. The proof mirrors that given for Theorem 3.4. 0

Theorem 3.23 There ezist no 5-cycle decomposilions of K, with proper
colouring type {B1, D2} (= {B2, D1}).

Proof. Trivially, the decomposition cannot exist for v = 5. Suppose that
the decomposition exists and that it contains n; 5-cycles of Type Bl and
ng 5-cycles of Type D2. Then v = 1,5(mod10), v > 11. Note that a
5-cycle of Type Bl contains three pure-coloured black cdges and no pure-
coloured white edges, while a 5-cycle of Type D2 contains no pure-coloured
black edges and one pure-coloured white edge. Hence, n; = b(b — 1)/6,
ny = w(w — 1)/2, and 2n, + 4n, = bw. Substituting for n; and n», and
performing some simple manipulations, we obtain a quadratic in b given by
10b% + 5(1 — 3v)b + 6v(v — 1) = 0, the solution to which is b = (5(3v —1) +
v —15v2 + 90v + 25)/20.

In order for b to exist, we require —15v% 4+ 90v + 25 > 0. It is not
difficult to check that the only integer valucs of v for which this holds are
v € {0,1,2,3,4,5,6}. Thus we have a contradiction. a

Theorem 3.24 There exist no 5-cycle decompositions of K, with proper
colouring type {C1, C2}.

Proof. Suppose that the decomposition exists and that it contains n;
5-cycles of Type Cl and np 5-cycles of Type C2. Then v = 1,5 (mod 10),
v 2 5, ng +ng = v(v—1)/10 and n; + 2n, = w(w — 1)/2. Solving for
ng, we find that n, = (Sw(w — 1) — v(v — 1))/10, which must be strictly
greater than zero. That is, bw(w — 1) — v(v —.1) > 0. By Theorem 3.12,
w = (5v £+ 1/5v(v + 4))/10. Without loss of generality let w = (5v — 5)/10,
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where s = y/5v(v + 4). Substituting for w, and performing some simple
manipulations, we find that v2 — (1 + s)v + s > 0, an inequality which
is satisfied only for v < 1 or v > s. Since v > 5, we ignore the former
inequality. Therefore v > s and we deduce that v2 > 5v(v + 4), since v is
positive. Thus v? < —5v, a contradiction. o

Theorem 3.25 There erists a 5-cycle decomposition of K, with proper
colouring type {C1, D1} (= {C2, D2}) if and only if v = 5 (mod 10), v > 5.

Proof. Suppose that the decomposition exists and that it contains n; 5-
cycles of Type C1 and nj 5-cycles of Type D1. Then n; +n, = v(v—1)/10,
2n; +n2 = b(b - 1)/2, n; = w(w — 1)/2 and 2n; + 4n, = bw, where
v = 1,5 (mod 10), v > 5. Solving this system of equations for b and w we
find that b = 3v/5 and w = 2v/5. Since b,w € Z, v = 5(mod 10), v > 5.

We now prove sufficiency. Let v = 10z + 5, for z > 0. By Theorem
1.5, we can take either a PBD(2z + 1,3,1) or a PBD(2z + 1,{3,5%},1)
and replace each element of the design with five vertices, colouring three
vertices black and two vertices white. Let the five vertices replacing the i¢*
element be in the set V;, for 1 <i < 2z + 1.

By Lemma 2.1, we can place a copy of a 5-cycle decomposition of K5
with colouring type {C1, D1} on V;, for 1 < i < 2z + 1. Furthermore, by
Lemma 2.1, we can place a copy of a 5-cycle decomposition of either K. 3(5)
or Ks(s), both with colouring type {C1, D1}, on each set of vertices arising
from a block of the design of size 3 or 5 respectively. D

Theorem 3.26 If there exists a 5-cycle decomposition of K, with proper
colouring type {C1, D2} (= {C2, D1}), then v = 1,5(mod 10), v > 5 and

V20v2 — 20v + 25 € Z.

Proof. The first condition follows from Theorem 1.1, while the second
arises because it is clearly impossible to find such a decomposition of K.
Furthermore, if the decomposition exists, then the number of pure-colonred
white edges must equal the number of 5-cycles in the decomposition. That
is, v(v — 1)/10 = w(w — 1)/2. From this, we construct a quadratic in w,
5w? — 5w — v(v — 1) = 0, the solution to which is given by w = (5 +

V20v2 — 20v + 25)/10. Since w € Z, then V2002 — 20v + 25 € Z. 0

In the next lemma, we formulate an iterative set of equations which
calculates families of values of v for which v/20v2 — 20v + 25 € Z.

Lemma 3.27 Given an initial solution (1,11) to the equation =} = 5y? —
4, let z,41 = 9z, + 20y, and yn41 = 4z, + y,. Then v, = (z, +1)/2,
n > 1, is a solution to 2002 — 20v, + 25 = s2, where s, = 5y,, and all
posilive, integer solutions are generated using two initial solutions, namely
(:z:l,yl) = (1,1) and (11,5)
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Proof. We want to determine integer values of v for which 2002 — 20v +
25 = 52, s € Z. This is equivalent to finding all integer solutions of z2 =
5y? — 4, where v = (z + 1)/2 and s = 5y.

Let (5, yn) be an integer solution. Then (2,41, Yn+1), Where z,4; and
Yn+1 are defined in Equations 1 and 2, is also an integer solution.

We now find the set of smallest, positive initial solutions which generate
all solutions to our system. Again, we proceed in much the same way as
we did in the proof of Lemma 3.14, and some simple manipulation gives us
the following expressions:

Tn = 9Tppy — 45 (xf,H + 4)1/2 , and (5)
1/2
Yn = Yny1—4 (5y72;+1 - 4) / . (6)

We now show that z, decreases as n gets smaller, provided that z,4+; > 0.
Using Equation 6, we find that 2, — Tn41 = 8Ty — 4V5 (22, +4) /2
< 8Tp41 — 4\/51:,,.,. 1 < 0. We now wish to find the maximum value of z,, 41,
given £, < 0 and z,41 = 9z, + 4/5 (a:?1 +4) 1/2. Differentiating with
respect to z,, we find that ﬁL——f—‘- is strictly positive. Thus, to find the
maximum value of z,4; under the condition z,, < 0, we substitute the
boundary value z, = 0 into the equation for z,4;. Thus, we conclude
that, if z, < 0, then z,4, € [1,17], and so z; € [1,17].

We now consider the smallest, positive value that y; can take. Tem-
porarily regarding Equation 6 as a real-valued function and differentiating
with respect to y,4+1, we find that %ﬁ =9 - 20yn+1 (51;,2l - 4)_1/ 2
which equals zero when y,+1 = Vv64.8. Since we are interested only in
integer solutions, we find that y; > 1.

Consequently, we have established that the set of initial solutions which
generate all possible answers to our system must satisfy 1 < 2 < 17 and
y1 > 1. The only values of z; in this range for which y, is also an integer are
zy =1, 4 and 11. However, we discard z; = 4, because z,4+1 = 9z, + 20y,
will always be even if 21 = 4 and, therefore, v, € Z. Hence, the only initial
solutions we require are (z;,¥) = (1,1), and (11, 5). 0

3

We will call the system of equations given in Lemma 3.27 “System A”.
Given Theorem 3.26, we may express the number of white vertices in K,
as wy, = (5 + s,)/10.

In Table 5, we give modified equations for z,4+; and yn4+1 which can
be used to return every second solution returned by System A. We call
the system that returns every second solution “System B”. Henceforth, we
differentiate between the systems through the use of the superscripts (A)
and (B). For convenience, we also include the equations of System A in
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Table 5 Note also that for each system vy’ = (z o+ 1)/2, s$) = 5y,({’)
and wi” =(5+ s(*))/l(] where (x) = (A) or (B).

| System I :cn 11 | J-;(vz:)-l
A 1(11)1 =025 + 209" Ygr = dan )+ O
B | zapy = 16121” + 360y | 4 = 72007 + 161417

Table 5: Equations for zn_H and y,.,‘+1 for Systems A and B.
Lemma 3.28 x(B)l = (%) (mod 20).
Proof. :1:53_)1 = z(® +20(8z® + 18y = 2P (mod 20). o

Lemma 3.29 v,(li)l = v{® (mod 10).

(B) _

Proof. Since z, (x(B) + 1)/2, this follows from Lemma 3.28. 1]

For each of the starting solutions to System B (based on the initial
solutions to System A, as given by Lemma 3.27), we give the congruence

class for v ) in Table 6.

l (LiB),y{B)) v,(lB) (mod 10) " (:z:gB),ygs)) 'u,(lB) (mod 10) |
1) 1 (11,5) 6
(29,13) 5 (199, 89) 0

Table 6: Congruence of 'un glven all initial solutions to System B.

Lemma 3.30 Let (r(A),ylA)) = (29,13). Then System A produces values

of &Y such that o8 =1 ,5 (inod 10}, \/ 20(1)(A) —200" +25 € Z, and
o > 15
n =2 19.

Proof. This follows from Lemma 3.27 and Table 6. ]

Theorem 3.31 If there exists a 5-cycle decomposition of K, with proper
colouring type {C1, D2} (= {C2, D1}), then v = 1,5 (mod 10), v > 15 and
V2002 - 200 + 25 € Z.

Proof. This follows from Theorem 3.26 and Lemma 3.30. 0
Open Problem Let (z;,11) = (29,13). Let z,41 = 9z,, + 20y, Yn+1 =
4z, + Yn, vn = (2o +1) /2 and s, = 5y,. Let wp, = (5 + s,)/10 be the

number of white vertices in K,,,. Does there exist a 5-cycle decomposition
of K, with proper colouring type {C1, D2} (= {C2, D1}), for all n > 1?
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Note that in Lemma 2.1, we give a 5-cycle decomposition of K5 with
proper colouring type {C1, D2}.

Theorem 3.32 There exist no 5-cycle decompositions of K,, with colouring
type {D1, D2}.

Proof. Suppose that the decomposition exists and that it contains n;
5-cycles of Type D1 and ng 5-cycles of Type D2. Then v = 1,5 (mod 10),
v > 5, and ny + ng = v(v —1)/10 = bw/4. Hence 5b% — 5bv + 2v(v —1) = 0
and so b = 5v+ /5v(8 — 3v))/10. For b to be a positive integer, we require
5v(8 — 3v) > 0 which implies that v < 8/3, a contradiction. O
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