Attacks on Hard Instances of Graph
Isomorphism

Greg Tener and Narsingh Deo
School of Electrical Engineering and Computer Science
University of Central Florida, 32816-2362
{gtener, deo}@cs.ucf.edu

Abstract

The Graph Isomorphism (GI) problem asks if two graphs are isomor-
phic. Algorithms which solve GI have applications in but not limited to, SAT
solver engines, isomorph-free generation, combinatorial analysis, and ana-
lyzing chemical structures. However, no algorithm has been found which
solves GI in polynomial time, implying that hard instances should exist.
One of the most popular algorithms, implemented in the software package
nauty, canonically labels a graph and outputs generators for its automor-
phism group. In this paper we present some methods that improve its perfor-
mance on graphs that are known to pose difficulty.

1 Introduction

A graph G = (V, E) models a relation E over the vertex set V. Two graphs G
and H are isomorphic if they both represent the same relation, but with possibly
different names attributed to the vertices. Graphs are a powerful model and can be
used to represent any combinatorial object [2], therefore to solve the isomorphism
problem for an arbitrary combinatorial object, it suffices to solve the problem for
graphs.

The graph isomorphism problem is interesting for several reasons. One rea-
son is that despite the significant amount of effort directed towards discovering a
polynomial-time algorithm, none has been found. This effort has however, lead
to polynomial-time algorithms for several classes of graphs including but not lim-
ited to those with bounded degree [11], bounded eigenvalue multiplicity [4], and

JCMCC 64 (2008), pp. 203-225

bounded genus [16]. This implies that some instances should exist which take
an inordinate amount of time for current general case algorithms. On the other
hand, graph isomorphism has not been shown to be NP-Complete. One reason to
suspect that testing isomorphism is not NP-Complete is that its counting problem
(determining the number of isomorphisms between two graphs) is polynomial-
time equivalent to determining if they are isomorphic. No NP-Complete problem
is known to be polynomial-time equivalent to its counting problem [12]. Also,
if graph isomorphism is NP-Complete, then the polynomial hierarchy would col-
lapse, which is unlikely [9].

Aside from counting the number of isomorphisms, the graph isomorphism
problem is polynomial-time equivalent to finding all of the symmetries in a graph
[12]. The set of all permutations of the vertices that fix the edge set is called the au-
tomorphism group and is denoted by Aut(G). The automorphism group has many
practical uses. Chemists use it to determine the symmetry in molecules [20]. In
combinatorics it is a fundamental tool used in the analysis and construction of new
combinatorial objects [22]. It is also used to efficiently and exhaustively generate
isomorph-free objects such as graphs [15] or relational models [8]. In computer
science, state of the art SAT solvers take advantage of symmetry in formula to
achieve exponential speedup on many real-world instances. See [6] and [1] for
examples. This is useful for circuit verification since human design artifacts often
introduce symmetry.

Another similar problem to graph isomorphism is finding a canonical labeling
of a graph [5]. As an example of a canonical labeling consider all possible ad-
jacency matrices of a graph (there are ﬁiﬁ of them). Sorted lexicographically,
row by row, the minimum (or maximum) element is an example of a canonical la-
beling. Two graphs are isomorphic (denoted with =) if and only if their canonical
labellings are identical. If C is a function that returns a canonical labeling of a
graph, then G = H & C(G) = C(H).

Solving the canonical labeling problem implies a solution to graph isomor-
phism. However it is still unknown if knowledge of Aut(G) can be used to find a
canonical labeling of a graph in polynomial time. For a discussion on the relation-
ship between graph isomorphism and canonical labeling, see [S]. Another method
of determining isomorphism uses Aut(G U H), where G U H is the disjoint union
of G and H. The graphs G and H are isomorphic if and only if Aut(G U H) con-
tains an automorphism that swaps the vertices of G with those of H. The fastest
isomorphism algorithms compute a canonical labeling and output generators for
the automorphism group which are also used to prune the search for a canonical
labeling. One of the fastest and most widely used algorithms is implemented in a
software package called nautywritten by Brendan McKay [14].

204

In this paper we describe the inner workings of nautywith particular attention
for the degrees of freedom allowed in implementing the main components. We
show that the target cell choice can drastically affect the algorithm’s runtime on
hard instances.

2 Preliminary Concepts

In order to describe the algorithm some connections need to be drawn between
graphs, partitions, and permutations.

2.1 Definitions and Notation

A graph G = (¥, E) consists of a finite vertex set V and edge set E € V' x V. Under
this definition the edges need not be symmetric and the vertex set is assumed to
be {1,2,...,n} unless otherwise specified. The action of a permutation § € S,, on
a vertex € V is denoted v’ where v/ = §(v). The action a permutation § induces
on a graph is

G® = (V°,E%
=({e' V) v €E)

from which Aut(G) = {y € §, : G? = G}. We typically use § for arbitrary permu-
tations while y is used for automorphisms. With this notation a canonical labeling
C has the property that C(G%) = C(G) forall§ € S,.

2.1.1 Partitions and Permutations

The automorphism group naturally partitions the vertices into equivalence classes
called orbits. Two vertices u and v are in the same orbit if an automorphism
v € Aut(G) exist such that 7 = v. This is denoted by # ~ v if the automorphism
group is clear. For example, using the disjoint cycle notation for permutations,
if H = {(1 2), (3 4)} then the orbits of (), the group generated by H, are {1, 2}
and {3, 4}. Viewed as an ordered partition (called just partition from now on) and
sorted by the minimum element in each orbit, the orbits are [1 2|3 4]. This
partition is composed of two cells of size two each of which is a set of integers. If
instead H = {(1 2), (3 4), (2 3)} then {H) has only one orbit, namely {1,2,3,4} or
asapartition[123 4]. The partitionp =[12|34]isfinerthang=[1234]
denoted p < g because p can be created by splitting the cells of g. Under this
definition a partition is finer than itself. Extending this terminology to groups, a
group H is finer than a partition r if each orbit of /H is a subset of some cell of x.
This applies to permutations 6 € S, as well by considering the group (8).

205

For any set of permutations H the orbits of (H — {6}) where § € H are finer
than the orbits of (H). For instance, given a set of generators H for a group, a
series of successively finer partitions can be created. Using the previous example

{(12),34),23)H-[1234]
{12,GHH—-[12134]
A1 2H—-[12]3]4]
n=-r11121314]

A sequence of successively finer partitions is called a partition nest. The in-
dexing of the levels in a nest begins at 0, so here the partition on the 0" level has
only one cell. Any partition consisting of a single cell is called the unit partition.
At the final (3) level is a discrete partition [1|2 |3 | 4). A trivial cell has size
one. A discrete partition consists only of trivial cells. Each element in a discrete
partition is said to be fixed.

Going the other way, every partition has a set of associated permutations. A
permutation § € S, acts on a partition & by acting on the individual cells as in

P=[CIC...I1C}).

Then {6 €S,: o= n} is the set of all permutations finer than x. Therefore, the
unit partition represents S , and any of the ! discrete partitions represent the trivial
group. This provides a mechanism to specify automorphisms with restrictions on
the orbits given by an initial partition x of V. The automorphism group of a graph
G with respect to a partition x is

Aut(G,n)={yeS,: G"=G and n¥ =n}

and a canonical labeling is similarly defined so that for any é € S, we have that
C(G4, %) = C(G, n).

Most of this paper assumes the context of a graph G = (¥, E) with possibly a
partition s associated with it. If two partitions are needed the variables p and g
will be used. Much of the notation is adopted from McKay’s paper on nauty[14].
The proofs for most of the statements can be found in [14] as well.

2.2 Partition Trees

To determine Aut(G, n) it suffices to generate each § € S, and then test if G° = G
and 77 = m. To generate each § € S, start with the unit partition, then fix each
element in a non-trivial cell, and repeat until a discrete partition is reached. Figure
1 illustrates this concept for S';.

206

[o12)

SN

[01t2) [1102) [2101)
{oj12) [01211] [11012) [t12]0] [210]01) [21110)

Figure I: Partition tree for §;. The labels on the edges indicate which element is
fixed.

In this case the unit partition is the root node and the discrete partitions are all-
terminal nodes. The sequence of fixed elements uniquely identifies any node in
the tree. This is called a node’s fixed path. The greatest common ancestor of two
nodes is the node identified by the greatest common prefix of the fixed paths for
each node. Formally a node is a partition nest along with a fixed path. Informally
and in the context of a known tree we can speak of a node as just the partition at
the lowest level in the nest. As an example consider the nodes [1] 0|2] and
[1]2]0] with fixed paths of (1, 0) and (1, 2). Their greatest common ancestor is
[102] with fixed path of just (1).

Each terminal node defines an ordering of the elements. Pick one of them to
be an identity node which is considered to represent the identity element of the
group. If p is the discrete partition of the identity node and g the discrete partition
of any other terminal node then g represents the permutation & € §,, where ¢° = p.
Usually the leftmost terminal node is used as an identity node which for this tree
is{0|1]2].

To generate all partitions which fix 1 start with the root partition[02 | 1] as
seen in Figure 2 Using [0] 2| 1] as the identity node, [2[0|1]°2 =[0]2]1]
so0 (0 2) is the only permutation in §3 which fixes 1. This illustrates several ideas.
First, the root node’s partition restricts the possible permutations. Second, the or-
der of the cells in the root partition does not affect the output, all permutations
finer than the root are generated. Finally, any terminal node can serve as an iden-
tity node.

As a preview of the final algorithm, nauty enumerates the terminal nodes of a
partition tree from left to right in a depth first manner. Any terminal nodes which
induce an automorphism are stored as generators of the automorphism group.
These generators are then used to prune part of the tree. Computing a canoni-

207

(0241]

/N

101291} [21011]

Figure 2: Partition tree for S fixing 1

cal labeling then depends upon choosing an identity node that is invariant to the
initial labeling of the vertices.

2.3 Refinement

Given an initial partition of the vertices , the orbits of the group Aut(G, z) nat-
urally partition the cells of z. In order to approximate the finer partition induced
by the automorphism group, a refinement operation is applied to 7 which uses in-
formation about the graph to split the cells of = whenever possible. A refinement
operation takes as input a graph G = (¥, E) and a partition n of the vertices V.
Then, in a permutation independent way, outputs another partition which is finer
than 7 but not finer than the orbits of Aut(G,). The simplest example of a re-
finement operation does nothing at all. The ideal refinement operation refines 7
so that each cell is an orbit of Aut(G,n). This is somewhat unreasonable since
determining the orbits of the vertices is polynomial-time equivalent to graph iso-
morphism [12]. In general a refinement operation is a function R with the property
that for any graph G, partitionrand € S,

R(G°,7°) = R(G, x)’ and
R(G,7) = Aut(G, n).
The refinement operation used by nautyand many other isomorphism pro-

grams approximates the optimal. For a graph G = (V, E), let the open neighbor-
hood of a vertex u € V be

N@)={v: (u,v) € E)}, and for S C V define
deg(u,S) = IN@)Nn S|

to be the relative degree of v in S. Then, given a partition , if two vertices » and
v are in the same orbit of Aut(G, r), then their relative degree in any cell C of &

208

must be the same. This means that

u ~ v = deg(u, C) = deg(v, C), which implies that
deg(u, C) # deg(v,C) = u + v.

This provides a method of separating vertices for which deg(u, C) # deg(v, C), as
they must be in different orbits.

Because the refinement operation is crucial to the performance of the algo-
rithm and for the understanding of our modifications we give a small example
showing that the graph in Figure 3 has only one automorphism, the trivial one. A
graph with a trivial automorphism group is called asymmetric.

0 (1) 2

I—0—0

Figure 3: A graph with the trivial automorphism group

Begin with the initial partition 7z = [0 1 2 3 4 5], which allows any vertex
to be in any other vertex’s orbit. Then choose a cell C (start from the left and go
to the right) called the active cell and sort each vertex by its relative degree in the
active cell. There is only one cell in 7 so it is the active cell initially. The cell is
split on the boundary of different degrees as shown below.

12345])—[5]102]
232331

On the left is the partition that will be split and the active cell is in bold. On

the right is the finer partition. The relative degree of each vertex with respect to

the active cell is below the vertex. After the first round the vertices separate into
different cells based upon their degree in the whole graph. Now choose another

209

active cell, and repeat the process. The final three rounds follow.

[5102]134]~ [5102]13]4]
00 001 00 I
[5102113(4]—[5]2]0]13]4]

21 11 1 2
[5121011314]~ [512]0]131114]
10 0 1

Since the refinement operation fixed each vertex, each vertex can only move
to itself, meaning the only automorphism for this graph is (0)(1)(2)(3)(4)(5). Be-
cause there is only one identity node, this also provides a canonical labeling de-
fined by the order of the vertices in the partition. Viewed as a permutation this
relabeling is (5 0 2 1 4)(3). Any reference to refinement refers to the above oper-
ation unless otherwise specified.

After refinement, if two vertices « and v are in the same cell of the partition
R(G, m), then deg(u, C) = deg(v, C) for all cells C of R(G, x). Such a partition is
called equitable. The refinement operation is critical to the performance and prac-
ticality of the algorithm. For almost all random graphs it refines the unit partition
into a discrete partition in three rounds [3]. Even though it uses local information,
it can affect the entire partition. In order to achieve efficient refinement of directed
graphs, both the in and out relative degrees must be used to split cells.

2.4 Target Cell Choosing and Branching

If the refinement operation returns a discrete partition, then the automorphism
group is trivial. If it does not then let & be the partition after refinement. Then
m has a non-trivial cell with two vertices u, v that could be in the same orbit. Let
a=[...|T]...], then define

rou=[...[{u} | T—{u}]...].

Before fixing vertices and branching on them, a non-trivial cell of 7 must be
chosen. This cell is called the farger cell and its choice vastly affects the runtime of
the algorithm for difficult instances. For now a simple target cell heuristic known
as first smallest which chooses the first smallest non-trivial cell suffices. A target
cell chooser takes as input a partition 7 and returns a cell tc(p) = T of & with
|IT| 2 2. If n is discrete then tc(n) = @. Let r L u = R(G, 7 o u) where u € tc(m).

210

Then the children of a partition x are then
children(n) = {n L u : u € tc(n)}.

In practice the new trivial cell {} is the first active cell in refinement. Branching
on a vertex ¥ means generating the child which fixes «. The terminology and con-
cepts introduced with Figure 1 apply here. The sequence of vertices branched on
is unique for each node and is called the node’s fixed path.

Some freedom exists when choosing the target cell. If two partitions p and ¢
are related by p” = g where v € Aut(G, p) then p and q are said to be equivalent
(p ~ g). If no canonical labeling is needed then the only requirement on tc is that
for y € Aut(G, x),

p~q= 1) = tc(g).
If however a canonical labeling is needed then for any partitionrandé € S,

te(n)? = te(n®).

Heuristics such as first smallest, first largest, and first non-trivial are examples of
target cell choosers which preserve the canonical labeling.

2.5 Automorphisms and Pruning

Here we explain how automorphisms are discovered and how they are used to
prune the search.

2.5.1 Automorphisms

Now that equivalence of partitions is defined, equivalence of partition nests can
be similarly defined, which leads to the method of discovering automorphisms.
Define a sequence of partitions 7o, 71, . . ., T by

ny = R(G,)

ri=mi_ Lv, forl <i<m
where v; € tc(m;—). This is a partition nest with the property that 7; < m_1. A
node is called terminal if its last partition is discrete. The partition at level i for
0 <i < m-1ism. The height of a partition nest is the level of the last partition.

Not all terminal nodes always have the same height but we will assume they do
for now. The action of a permutation § € S, on anode v = [, 7y, ..., My] is

V=[x, 18]

211

Given a terminal node v = [ng, 7y, ..., 7], the final discrete partition 7, =
[vilva] ... |v,] defines a permutation 8, € S, where vf’ = i. For any ter-
minal node v let G(v) = G%.

Two terminal nodes v and 7 are said to be equivalent, or in the same class if
G(v) = G(n). In this case an automorphism y € Aut(G, rr) exists such that v = ¥
and G = G? because

G(v) = G(n)
G =Gh
G=G¥'%

and therefore y = 6;'4,. For any two terminal nodes v and 5 the permutation
y = &', is said to be induced by v and 1. The property that v = 77 and
¥ € Aut(G,) is an equivalence relation on the terminal nodes and partitions them
into equivalence classes.

The lexicographic ordering of a node’s fixed path naturally orders the nodes.
A node 1 with fixed path (u), ua, . . ., uy,) is less than (is generated before) node v
with fixed path (v, v2, ..., v,,) if and only if v is an ancestor of n or there exists a
ksuch that u; = v; for 1 < i < k-1 and u; < v;. Therefore the node £ with fixed
path (by, b, ..., b,,) where b; = min(T;) where T; is the target cell at level i is the
first terminal node. This corresponds to the path downto [0 1|2] in Figure 1.
An identity node is the first terminal node generated in each equivalence class on
the partition nests. As nodes are generated, the permutation y € S, they define
relative to an identity node is checked and if y € Aut(G,) then v is stored as a
generator of Aut(G, m).

2.5.2 Bases

The sequence of vertices in the fixed path (b, b2,. .., b,) of an identity node ¢
defines what is called a base for Aut(G,n). A base of a permutation group H
is a sequence of elements (in this case (1, bs,...,by)) that when fixed yields
the trivial group. Define a sequence of subgroups H® of H given a sequence
(b|,b2,...,bm) as

HO =H
HO ={ye HO : b} = b))

H™ = [‘y € H"D . bl = b,,,}

212

where H® fixes the first i points. If (by, by, . . ., by,) is a base, then H™ = {()}, the
trivial group. Here H™ is called the point-wise stabilizer of (b, b, . . ., by).

The fixed path for any terminal node defines a base for Aut(G, r), although not
necessairly a minimal base. Let v be a terminal node with fixed path (i}, 3, . . ., t1;)
and Aut(G, 7)) be the corresponding sequence of groups. Then, a terminal node
n with fixed path (v|, v,,..., v,) is equivalent to v if and only if #; and v; are in the
same orbit of Aut(G, 7)%V for1 <i < m.

2.5.3 Pruning

When generating the children of a non-terminal node v of height i with target
cell T;, it could be possible to avoid branching on some vertices in T;. Let H®
be the point-wise stabilizer of v's fixed path in Aut(G,). Then if it can be de-
termined using previously discovered automorphisms that two vertices u,v € T;
where u < v (u is branched on before v) are in the same orbit of), then v can
be removed from T; because any automorphisms induced by the descendants of
m L v are already generated.

To prune the target cell of a node in this manner, nauty determines which
automorphisms fix the node’s fixed path and computes the orbits of the group
generated by these automorphisms. Any vertex that is not the minimum ele-
ment of its orbit is removed from the target cell. To be precise define fix(y) =
{ve V: v¥ =y} fory e §,. Then fora nodev with fixed path (u), ua,...,un), ¥
fixes v if {uy,ua, ..., up} C fix(y).

When two nodes v and 5, are found to be equivalent and a new automorphism
discovered, the search can return to the greatest common ancestor of v and 7.
Suppose an automorphism y € Aut(G, x) is found taking terminal nodes v to n
with fixed paths (v, 1, ..., u,) and (v, va, ..., vy,). Let the first k elements of the
base be fixed by . Then

v =n" and
sty oty ttm) = (V] VD, VLV V)
= (UL U2 e U Vi e Vi)
and the new knowledge is gained that u; ~ v; in Aut(G,m¢) fork+ 1 <i < m.

Therefore the search can be resumed at level £, the level of the greatest common
ancestor of v and .

213

2.6 Canonical Labellings and Indicator Functions

Using automorphisms to prune the tree reduces the number of nodes that must
be generated in the same equivalence class of terminal nodes. However, using
full automorphism pruning but with no refinement at least IAT'(L!G.T)I identity nodes
will be generated, one from each equivalence class. With refinement, the number
of classes is reduced but can still be quite large. Each identity node corresponds
to a possible labeling of the graph, so one must be selected as a canonical labeling.

Define an ordering of the n vertex graphs G by associating with G the n2-bit
binary number created by appending the rows of the adjacency matrix of G to-
gether. Each identity node corresponds to a labeling G° of G where § € S,. A
possible canonical labeling of G is the minimum such G*.

The number of identity nodes can be reduced so that fewer possible canonical
labellings need to be compared. If it can be determined at level i that the current
node v is in a different class than the current identity node then either no children
of v need to be generated, or v could become the new current identity node. A
function A that takes as input the graph G, initial partition x, node v, and returns
an element of an ordered set is called an indicator function. This function must be
independent of the initial labeling of the graph to recover a canonical labeling.

For example, nauty uses the shape of the partitions in a node’s nest to help
distinguish nodes that are in different classes. Let shape(r) be the sequence of cell
sizes of &r. For the partition [0 | 1 2|3 4 5] this is (1,2, 3). If two nodes have a
partition in their nest at the same level with different shapes, then the nodes are in
different classes. Specifically,

A(G, m, v) = (shape(m), shape(r;), . . ., shape(n,,))

with the modification that the shapes are all hashed into one value for efficiency’s
sake. The output inherits the lexicographic ordering of the integers, with smaller
values corresponding to better nodes. Let ¢ be the current identity node and £ be
the ancestor of £ at level i. Then after generating a node v at level i take the fol-
lowing actions depending on the comparison between A(G, w, v) and A(G, 7, {?)

1. AG,m,v)> NG, 7, D)
¢ is better, continue search at parent of v

2. A(G,m,v) = A(G,n,{D)
indicator values are equal, continue with search from v

3. AG,7,v) < AG, 7, (™)
update { to be v’s first terminal descendant as the new current best identity
node

214

This ensures that at the end of the search, the identity node { is minimum.

At this point we can define the canonical labeling returned by nauty. Let A*
be the minimum indicator value over all terminal nodes v. Then among all the
nodes v with indicator value A*, the canonical labeling is the minimum of G(v).
We can group these concepts by defining an indicator function A’ given another
indicator function A to be

vis non-terminal A(G, r,v)

N(@G,mv)=1 . . |
v is terminal (A(G, 1, V" D), G(v))

so that the last element of the minimum identity node’s indicator value is the

canonical labeling.

2.7 An Example

We give a small example to illuminate many aspects of the algorithm and intro-
duce visualizations for partition nests. Consider the disjoint union of Cy and Cj,
a 2-regular graph displayed in Figure 4. This is the smallest graph which makes

OB OO

Figure 4: The disjoint union C3 U C4. The orbits of the vertices are {0, 1,2} and
{3,4,5,6}.

use of the indicator function. Figure 5 shows the tree generated by running the
algorithm on C3 U Cy.

The nodes are generated from left to right, with the leftmost terminal node
being the first identity node. The labels of the edges signify which vertex is fixed
and branched on. The fixed vertices all come from the parent’s target cell. All
terminal nodes except the rightmost induce a non-trivial automorphism with the
leftmost identity node which allows for a jump back to the greatest common an-
cestor.

For an example of target cell pruning, the node [3]5|0 1 2|4 6] on the
rightmost path to the second identity node initially has target cell {0, 1, 2} but the
orbits of the generators found so far which fix 3 are {0, 1, 2}, {3}, {4, 6}, and {5}.
Because | and 2 are not the minimum elements of their orbits, they are removed

215

(0123456}

AN

134882 (113456102 (1181012140)

~ Py

[0 3;85:4n112] (P14;6135(112]) M3si4s)02) Brisioj12546]

7 } oo

(038418112 (ysaa 04631812 fi3181416102] [3j8:01112448}
/ }‘ 1‘ 1‘
iz s8] 131814169211 [O[3:5i6149042) ©ia813)81112) [l 31%14161012) [3i%10:112:4(8)
0 an e anea on 0

Figure 5: The full tree for C3 U C,.

from the target cell and only 0 is branched on.

For an example using indicator functions, the node [3[5]|012}4 6] has
a different shape than its siblings. Since the minimum indicator value is favored,
and (1, 1,3,2) < (1,4, 2) in the lexicographic ordering of the integers, the first ter-
minal descendant of this node will be the new current identity node. At the end of
the search this descendant is minimal and therefore defines the canonical labeling
for C3 U Cy.

For this example the new identity node is detected by the indicator function
at the earliest possible level. This does not always happen. In other cases, the
shape of each path to a terminal node could look the same for all classes, the only
distinguishing factor being the final labeling of the graph. We can visualize the
path to an identity node as in Figure 6. Each cell represents the possible orbits.

Figure 6: The partition nest for the first identity node of C3 U Cy4. The gray cells
are the target cells. The final discrete partition is omitted.

The actual orbits can be visualized by splitting the cells given full knowledge of
the automorphism group. If there are few splits, then the refinement procedure

216

did a good job of separating vertices which are not in the same orbit. With the
full knowledge of the automorphism group, the only split in the target cells occurs
at the first level, where the refinement procedure was unable to determine that
{0,1,2} and {3,4, 5, 6} were in different orbits. We call this the identity node’s
finest nest. Figure 7 illustrates the finest nest for the first identity node, with a line
splitting the first level’s target cell.

Figure 7: The finest nest for the first identity node.

Any splitting that occurs in the target cells increases the number of identity
nodes. In this instance it guarantees that the tree will contain at least two identity
nodes, one for each minimum element. In the general case however, let x; be the
partition at level i of the first identity node for 0 < i < m — 1 where m is the height
of the nest. Then let s; be the number of orbits of the group Aut(G, nr;) in the target
cell at level i. Then the target cell product, [7' si, provides a good estimate for a
lower bound on the number of identity nodes that are generated. For the example
of C3 U C, this productis 2- 1 - | - 1. Ideally this product is 1 in which case there
is only one identity node and each terminal node induces an automorphism,

2.8 Hard Instances

There are two types of hard instances for nauty. The input to the algorithm could
be extremely large, say a graph with several million vertices. Instances such as
this arise often in the circuit verification area, and a software package using the
ideas of nauty called saucy was written using sparse data structures to speed up
discovering symmetries in large graphs [6]. The other type, which we focus on,
involves relatively small instances which produce an inordinately large number of
identity nodes. Here we describe some of these hard instances.

217

2.8.1 Theoretical Lower Bound

The current exponential lower bound for nauty was established by Miyazaki [17].
An infinite sequence of graphs and their corresponding partitions was created
which drove the algorithm to generate an exponential number of identity nodes.
A key component of the proof involved the choice of target cell chooser as first
smallest. The order of the cells of the initial partition are chosen so that the first
k target cells (all of which have size 2) get split by the full automorphism group.
Then, as k& increases by 1, the number of identity nodes doubles. Using the no-
tation from [17], x(¥}) is a 3-regular graph with 20(k — 1) vertices and 30(k — 1)
edges. ¥ is a partition of the vertices with 2k cells of size 2 and 2k — 2 blocks of
cells of size 2, 2, and 4. The order of Aut(y(Yx), 93) is 2*. Figure 8 shows the nest
for the first identity node when & = 4.

EERRRNRERRARNN

Figure 8: The partition nest for (y(¥3), #5).

We can do the same analysis as for C3 U C, and create a finest nest given the
full automorphism group, see Figure 9. The target cell product hereis2-2-2-1-
1-1-1. Miyazaki’s instances are constructed so that the target cell product and the
number of identity nodes are equivalent. This ensures that (y(Y;), #5) will force
the algorithm to generate 2-! identity nodes.

T

Figure 9: The finest partition nest for (G, ng)s.

Another set of instances with a different ordering to the cells of the initial parti-
tion, (x(¥%), #4) have target cell product equal to 1 so they run in polynomial-time.
The two types of graphs (x(¥x), #5) and (x(Yx), #4) effectively demonstrate that
the target cell choice can be the difference between exponential and polynomial
runtime.

218

2.9 Projective Planes

Aside from theoretically hard instances, some graphs derived from projective
planes pose difficulty for nauty. For background material on projective panes
see [7]. A finite projective plane of order » consists of a set of n*> + n + 1 points
and lines, P and L, along with a set / C Px L of incidences (p, /) describing which
points lie on which lines. The set of relationships describing a projective plane
can be modeled with a graph by using the set of points and lines as the vertices
(P U L) and the incidence tuples as directed edges. Undirected edges can be used
as long as the points and lines lie in different cells of the initial vertex partition.

We will focus on the projective plane of order 27 with 1514 vertices and 21196
edges called flag4 found on Moorhouse’s website [18]. This plane has an auto-
morphism group of order 122472 = 23 -37 -7 with 4 orbits which for the particular
ordering of the vertices at [18] are {0 — 27}, {28 — 756} (the points), {757}, and
{758 — 1513} (the lines). This graph is regular, so refinement does not help the
initial partition.

This graph is regular, but has a relatively small automorphism group. This
implies that the number of identity nodes should be large because the number of
possible adjacency matrices is large. Indeed, for many hard instances, the graph
is highly regular (with repsect to the usual refinement operation), but has a small
automorphism group.

2.10 Hadamard Matrices

Another class of hard instances is found in graphs derived from Hadamard matri-
ces [13]. A Hadamard matrix of order » is an n x n matrix with entries in {1, -1}.
Two hadamard matrices are considered isomorphic if through some combination
of column and row negations and exchanges, one matrix can be transformed into
the other. A graph G(H) = (V(H), E(H)) is constructed so that if H, and H, are
Hadamard matrices, then they are isomorphic if and only if G(H,) and G(H,) are
isomorphic. To do this let

V(H) = {(rin 1), (i =1}, (s 1)1 (cjo=1) ¢ i, j€{1,...,n}} and
E(H) = {(r,-. s:),(cjr8c) 0 spysc€{1,=1} and Hjj = s, - S‘]'

The undirected version of these graphs are regular with 4» vertices and 4n* edges.
Some Hadamard matrices of order 28 have very small automorphism groups (of
size 2 for instance) with only 112 nodes and 3136 edges. While these graphs do
not take hours to process, they generate large numbers of identity nodes for their
small size. Because the automorphism group of size 2 and moves each vertex,
after the first level, the finest partition is discrete.

219

3 Modifications

To experiment with different combinations of refinement operations, indicator
functions, target cell choosers, and visualizations, we re-implemented the algo-
rithm used in nauty with a focus on modularity (not on speed). With the standard
refinement operation and indicator function, the choice of target cell affected the
runtime the most.

For an extreme example, using a target cell chooser of first smallest, the height
of the tree for the projective plane flagd is 55 with target cell product represented
as 55 digits in decimal, while using a target cell chooser of first yields a tree with
height 5 and target cell product 21888 =2-12-1-114-8.

3.0.1 Greedy Target Cell Choosing

Since many difficult instances involve graphs with sparse automorphism groups
and a highly regular structure, we devised a target cell chooser in an attempt to
deal with these types of graphs. In the extreme case of a regular graph with only
the trivial automorphism, no generators are discovered. Therefore it is intuitively
desireable to reach a discrete partition as soon as possible. To do this we choose
a target cell when branched upon and further refined splits the partition into the
most cells. Let T be a non-trivial cell of the partition & (denoted T € x) and |n] be
the number of cells in 7. Then this target cell chooser is defined as

t‘;:grcecly(ﬂ') = n;!gx (Ishape(r L min(T))])

This requires at least one refinement operation per non-trivial cell, which can be
very expensive. To deal with this, we cache the target cell’s index in the partition
on the path down to the first identity node. Then when choosing the target cell
for level i we use the cached index, and use that cell in the current partition. If
a better indicator value is discovered (a different shape), the best target cells are
re-computed starting at the level where a better indicator was found.

This approach of caching the target cell’s index invalidates the canonical la-
beling because the cached value is only appropriate for terminal nodes in the same
class as the first identity (or any better identity node). It is possible that for a node
in a different class, the target cell choice could be different. Therefore, this ap-
proach can be used to find Aut(G,), which is a common application.

220

3.0.2 Empirical Results

The greedy target cell chooser works well for flagd and other difficult projective
planes. From our observations it usually implies a smaller search tree. However, it
is a greedy approach and sometimes other heuristics perform better. The target cell
chooser nauty currently (at version 2.2) uses picks the cell which has connections
with the largest number of non-trivial cells. Let C be a cell of the partition .
Define

I
joins(G, 71,C)=) N(C)NT >0

Ten

where N(C) = {N(u) : u € C}and the value of (N(C)N T > 0) is | if this expres-
sion is true, 0 otherwise. Then the target cell chooser used by nauty is

tcmmly(Gv n) = HT}SX (joins(G, n, T)) .

This target cell chooser works very well on the graphs used by Miyazaki to
demonstrate the exponential lower bound, much better than the greedy chooser
and first smallest. However for the projective plane flagd it creates a larger target
cell product than the greedy chooser so the resultant runtime is longer.

In Table 1 we display some properties of the hard graphs for which we provide
runtime statistics. The graph had.28.9 is derived from a hadamard matrix of order
28 with an automorphism group of order 2. The naming convention comes from
N. J. A. Sloane’s online library of hadamard matrices [19].

(x(Y16), 9p) | flagd had.28.9
Vertices | 300 1514 112
Edges 450 21196 | 1514
|Aut(G)| | 65536 122472 | 2

Table 1: Properties of some hard graphs.

Our implementation, called nishe differs from nauty’s in several ways. For
example, our indicator function does not hash the cell sizes, but rather performs
run-length encoding. However, as Table 2 shows, our implementation processes
these nodes much slower. Profiling indicates that our refinement operation is sig-
nificantly slower than nauty’s. Both nauty (version 2.4) and nishe use sparse
graph representations. In the following tables, nauty_greedy is nauty but with its
target cell procedure modified to implement cached greedy choosing, and nauty

221

uses tCamyy. All timings take place on an 2.2GHz Athalon X2 processor.

nauty_greedy | nishe_greedy | nauty
Nodes 9393864 2581918 | > 1255425648
Non-Generating Terminal 9264330 2408011 | > 1252422563
Height) 5 5and 4 5
Target Cell Product 21888 21888 393984
Generators 10 10 >6
Time 0.82 hrs 6.82 hrs > 99 hrs

Table 2: Runtime statistics for flagd.

The instance for nauty was not run to completion. The last target cell of nauty
had 144 splits in contrast to nauty_greedy which had only 8 splits, which con-
tributes to the large runtime. The tree for nishe_greedy found a smaller base dur-
ing the search, which became the new current identity node.

In Tables 3 and 4 the same statistics are displayed for (y(Y)6), #5) and had.28.9.

nauty_greedy | nishe_greedy | nauty
Nodes 4016503 1543 169
Non-Generating Terminal 502528 128 2
Height 31 16 16
Target Cell Product 32768 128 2
Generators 16 16 16
Time 23.42 sec 0.31 sec | 0.001 sec

Table 3: Runtime statistics for (y(Y}¢), 93).

This data indicates that the target cell choice vastly affects the runtimes. The
target cells are dependent upon the refinement operation, which is why many spe-
cialized invariants are implemented in nauty. This indirectly implies that the
target cells will contain less splits if an invariant splits a cell not already split by
the standard refinement operation.

222

nauty_greedy | nishe_greedy | nauty
Nodes 130989 80222 | 130989
Non-Generating Terminal 120982 68609 | 120982
Height 4 3 4
Target Cell Product 471744 78624 | 471744
Generators 1 1 1
Time 2.89 sec 22.0sec | 2.87 sec

Table 4: Runtime statistics for had.28.9.

4 Future Work

One method of improving performance is to somehow find a better general re-
finement operation that can split the initial partition in regular graphs. We have
experimented with a distance based refinement operation that examines neigh-
borhoods as far away as the eccentricity of a vertex. However, this provided no
benefits for any of the above three graphs.

Another method of improving performance involves dynamically choosing the
best target cell based on previously discovered automorphisms. At any point in
the search the number of splits in a cell can be computed. Using an idea from
[10] we can choose the cell which has the fewest splits at each level. If the target
cells are updated after each new automorphism is discovered, then after the full
group is found the target cells will be invariant to the initial labeling and therefore
the current best identity node can be used as a canonical labeling. This is also a
greedy approach, but will have the advantage that it can be used for isomorphism
testing efficiently.

Graphs with the trivial automorphism group would not receive any help from
automorphism pruning or dynamic target cell choosing. A problem widely be-
lieved to be easier than graph isomorphism is that of determining if a graph has
a non-trivial automorphism [21]. Only the refinement and indicator functions are
used to process asymmetric graphs. We intend to investigate the relationship be-
tween the target cell choice and the number of nodes generated for regular asym-
metric graphs and establish some lower bounds.

Finally, there might exist an infinite set of difficult instances which exhibit
exponential runtime regardless of the target cell chooser. We will search for such

223

instances.

References

[1] Fadi A. Aloul, Arathi Ramani, Igor Markov, and Karem Sakallah. Solving
difficult instances of boolean satisfiability in the presence of symmetry. IEEE
Transactions on CAD, 22(9):1117-1137, September 2003.

[2] L. Babai. Handbook of combinatorics, volume 2, chapter Automorphism
groups, isomorphism, reconstruction, pages 1447-1540. MIT Press, Cam-
bridge, MA, USA, 1995.

[3] L. Babai and L. Kugera. Canonical labeling of graphs in linear average time.
Proc. 20th IEEE Symp. on Foundations of Computer Science, pages 39-46,
1979.

[4] L. Babai, D. Yu. Grigoryev, and David M. Mount. Isomorphism of graphs
with bounded eigenvalue multiplicity. In STOC '82: Proceedings of the
Jourteenth annual ACM symposium on Theory of computing, pages 310-324,
New York, NY, USA, 1982.

[5] L. Babai and E. Luks. Canonical labeling of graphs. In STOC ‘83: Proceed-
ings of the fifteenth annual ACM symposium on Theory of computing, pages
171-183, New York, NY, USA, 1983.

[6] P. T. Darga, M. H. Liffiton, K. A. Sakallah, and 1. L. Markov. Exploiting
structure in symmetry detection for cnf. In Proc. Design Automation Con-
Serence (DAC), pages 530-534. IEEE/ACM, June 2004.

[7] Daniel R. Hughes and Fred C. Piper. Projective planes. Springer-Verlag,
New York, 1973. Graduate Texts in Mathematics, Vol. 6.

[8] Daniel Jackson, Somesh Jha, and Craig A. Damon. Isomorph-free model
enumeration: a new method for checking relational specifications. ACM
Trans. Program. Lang. Syst., 20(2):302-343, 1998.

[9] Johannes Kobler, Uwe Schoning, and Jacobo Toréan. The graph isomorphism
problem: its structural complexity. Progress in Theoretical Computer Sci-
ence. Birkhduser Boston Inc., Boston, MA, 1993.

[10] José Luis Lopez-Presa and Antonio Fernandez. Graph isomorphism test-
ing without full automorphism group computation. Informes Técnicos de
miembros del GSyC, 1V(3), May 2004.

[11] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested
in polynomial time. J. Comput. Syst. Sci., 25(1):42-65, 1982.

224

[12] Rudolf Mathon. A note on the graph isomorphism counting problem. Infor-
mation Processing Letters, 8(3):131-132, 1979.

[13] Brendan D. McKay. Hadamard equivalence via graph isomorphism. Dis-
crete Mathematics, 27(2):213-216, 1979.

[14] Brendan D. McKay. Practical graph isomorphism. Congr. Numer., 30:45-87,
1981.

[15] Brendan D. McKay. Isomorph-free exhaustive generation. J. Algorithms,
26(2):306-324, 1998.

[16] Gary Miller. Isomorphism testing for graphs of bounded genus. In STOC
'80: Proceedings of the twelfth annual ACM symposium on Theory of com-
puting, pages 225-235, New York, NY, USA, 1980.

[17] Takunari Miyazaki. The complexity of McKay’s canonical labeling algo-
rithm. In Groups and computation, II (New Brunswick, NJ, 1995), vol-
ume 28 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 239-
256. Amer. Math. Soc., Providence, R1, 1997.

[18] G. E. Moorhouse. Projective planes of small order. http://math.uwyo.edu/
moorhous/pub/planes.

[19] N.J. A. Sloane. A library of hadamard matrices. http://www.research.att.
com/~njas/hadamard/.

[20] G. Tinhofer and M. Klin. Algebraic combinatorics in mathematical chem-
istry. Methods and algorithms. III. Graph invariants and stabilization meth-
ods, 1999,

[21] Jacobo Toran. On the hardness of graph isomorphism. SIAM J. Comput.,
33(5):1093-1108, 2004.

[22] W. D. Wallis, editor. Computational and constructive design theory, vol-
ume 368 of Mathematics and its Applications. Kluwer Academic Publishers
Group, Dordrecht, 1996.

225

