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Abstract

A vertex set S C V(G) of a graph G is a 2-dominating set of G
if IN(v) N S| > 2 for every vertex v € (V(G) — S), where N(v) is
the neighborhood of v. The 2-domination number v2(G) of graph G
is the minimum cardinality among the 2-dominating sets of G. In
this paper we present the following Nordhaus-Gaddum-type result
for the 2-domination number. If G is a graph of order », and G is
the complement of G, then

72(G) + 12(G) < n+2,

and this bound is best possible in some sense.
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1. Terminology and introduction

We consider finite, undirected, and simple graphs G with vertex set
V(G) and edge set E(G). The number of vertices |V (G)| of a graph G is
called the order of G and is denoted by n = n(G). The open neighborhood
Ng(v) of a vertex v consists of the vertices adjacent to v and dg(v) =
|Ng(v)| is the degree of v. The closed neighborhood of a vertex v is defined
by Ng[v] = Ng(v) U {v}. By § = §(G), we denote the minimum degree
of the graph G. A vertex of degree one is called a leaf and its neighbor is
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called a support vertez. For a subset S C V(G), let G[S] be the subgraph
induced by S. We write K, for the complete graph of order n.

Let p be a positive integer. A subset S C V(G) is a p-dominating set of
the graph G, if [Ng(v)NS| > p for every v € (V(G)—S). The p-domination
number v,(G) is the minimum cardinality among the p-dominating sets of
G. Note that the 1-domination number -;(G) is the usual domination
number ¥(G). In (3] and [4], Fink and Jacobson introduced the concept of
p-domination. For a comprehensive treatment of domination in graphs, see
the monographs by Haynes, Hedetniemi, and Slater [5], [6].

In their now classical 1956 paper [9], Nordhaus and Gaddum established
the inequality x(G) + x(G) < n(G) + 1, where ¥ is the chromatic number.
In 1972, Jaeger and Payan [7] published the first Nordhaus-Gaddum-type
result involving domination, namely v(G) +v(G) < n(G) + 1 for any graph
G. Improvements and generalizations of this inequality can be found in
Section 9.1 of the monograph [5] by Haynes, Hedetniemi, and Slater.

In this paper we prove

72(G) + 12(G) < n(G) + 2

for each graph G, and the proof will show that this bound is best possible.

2. Preliminary results

The following known results play an important role in our investigations.

Theorem 2.1 (Ore [8] 1962) If G is a graph with §(G) > 1, then

16 =m(6) < X2

In 1985, Cockayne, Gamble, and Shepherd [2] gave the following exten-
sion of Ore’s bound.

Theorem 2.2 (Cockayne, Gamble, Shepherd [2] 1985) Let p be a
positive integer. If G is a graph of minimum degree §(G) > p, then

p-n(G)

< .

As a generalization of Theorem 2.2, Caro and Roditty [1] presented in
1990 the following result.
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Theorem 2.3 (Caro, Roditty [1] 1990) Let G be a graph and let p
and j be positive integers such that §(G) > (p(5 + 1))/(j) — 1. Then

j-n(G)
j+1 "

'7P(G) <

An explicit proof of Theorem 2.3 can be found in the book of Volkmann
[11], pp. 233-234. If we choose p = 2 and j = 1 in Theorem 2.3, then we

obtain c
7@ <™ it s 23 &)

Also the next result contains (1) as a special case for p = 2.

Theorem 2.4 (Stracke, Volkmann [10] 1993) Let G be a graph and let
p be a positive integer. If there are m vertices z € V(G) with dg(z) > 2p-1,

then 2n(G)
n(G) -m
1w(G) £ ———-
Theorem 2.5 (Stracke, Volkmann [10] 1993) Let G be a graph and let
p be a positive integer. If there are m vertices z € V(G) with de(z) > p,

then
(p+ )n(G) - m

p+1

7p(G) <

3. Main result

Theorem 3.1 If G is a graph of order n, then
72(G) + 12(G) S n +2. (2)

Proof. If 1 < n < 5, then it is straightforward to verify inequality (2). In
particular, we have v2(G) + 7(G) =n+2 for 2 < n < 4. Let now n > 6.

Case 1: Assume that 6(G) = 0 or §(G) = 0, say 6(G) = 0. Because
of §(G) = 0, we observe that §(G) > 1. If there are least two vertices of
degree 0 in G, then 72(G) = 2 and we obtain v5(G) + 72(G) < n+2. Thus
we assume now that there exists exactly one vertex of degree 0 in G, say
dg(u) =0.

Subcase 1.1: There exists a vertex v € V(G) with dg(v) = 1. This
implies that Ng([v]U {u} is a 2-dominating set of G and thus v2(G) < 3. If
there exists a vertex w with dg(w) > 2, then V(G) — {w} is a 2-dominating
set of G, and it follows that y2(G) +72(G) < n—1+3 =n+2. In the
remaining case that G —u is 1-regular, we deduce that y2(G) = 2, and this
immediately leads to (2).
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Subcase 1.2: Assume that 6(G —u) = 2. If v is a vertex with dg(v) = 2,
then Ng[v] U {u} is a 2-dominating set of G and thus v5(G) < 4. Further-
more, Theorem 2.2 shows with p = 2 that v2(G — ») < 2(n — 1)/3 and so
we arrive at

An—1)
3

72(G) +12(G) < 1+
Since n > 6, this easily leads to (2).

Subcase 1.3: Assume that §(G—u) > 3. According to Theorem 2.4 with
p = 2, we obtain

+4.

72(G)S1+2(n—1)2—(n—1)=n;—1' 3)

Subcase 1.3.1: Assume that §(G) > 2. Let D be a minimum dominating
set of G —u. Since §(G —u) > 1, Theorem 2.1 yields |D| < (n—1)/2. Now
we observe that DU {u} is a 2-dominating set of G, and in view of (3), we
obtain

n+1
2 2

Subcase 1.3.2: Assume that there exists exactly one vertex in G, say z,
such that dg(z) = 1. Let D be a minimum dominating set of G — {u, z}.
Since by the assumption 6(G — {u,z}) > 1, Theorem 2.1 yields |D| <
(n—2)/2. Now DU {u,z} is a 2-dominating set of G and hence (3) yields

Y2(G)

1 2
72(G) +72(G) < —n; + ——n2 +2<n+2.
Subcase 1.3.3: Assume that there exist two vertices in G, say ,y,
such that dz(z) = dz(y) = 1. In this case, we see that {u,z, 1y} is a 2-
dominating set of G, and V(G) — {u} is a 2-dominating set of G and thus

12(C) +72(G) <3+n—-1=n+2.

Case 2: Assume that §(G) = 1 or §(G) = 1, say 6(G) = 1. Because of
Case 1, we only have to discuss the case that §(G) > 1. Let « € V(G) with
de(u) = 1, and let v its unique neighbor in G.

Subcase 2.1: Assume that dg(z) > 2 for z € (V(G) — {u}). In view of
Theorem 2.5 with p = 2, we obtain

VQ(G)S3n—§3n—1)=2n;—l. (a)

Subcase 2.1.1: Assume that dg(z) > 3 for z € (V(G) — {u}). According
to Theorem 2.4, we conclude that

2n—(n-1) n+1l
2 o2

72(G) £

()
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Subcase 2.1.1.1: Assume that 8(G —u) > 1. Let D be a minimum
dominating set of G — u. Then Theorem 2.1 yields |D| < (n —1)/2. Since
D U {u,v} is a 2-dominating set of G, it follows from (5) that
n+l n-1

2 +—?—+2=n+2

72(G) +72(G) <

Subcase 2.1.1.2: Assume that there exists exactly one vertex y in G
such that ds(y) = 1. If y = v, then §(G — ) > 1 and we are done by
Subcase 2.1.1.1. Let now y # v. We observe that (G — {u,y}) > 1. Let
D be a minimum dominating set of G — {u,y}. Then Theorem 2.1 yields
|D| < (n — 2)/2. Now DU {u,v,y} is a 2-dominating set of G and thus

n—2_n+4

5 5 (6)

72(G) <3+
If we distinguish the two cases n even and n odd, then (5) and (6) easily
lead to (2).

Subcase 2.1.1.3: Assume that there exist exactly two vertices z,y in G
such that dg(z) = da(y) = 1 and = = v. This implies 6(G - {u,y}) > 1,
and we obtain the desired result analogously to Subcase 2.1.1.2.

Subcase 2.1.1.4: Assume that there exist at least two vertices z,y # v in
G such that dg(z) = dg(y) = 1. This condition yields Ng(z)NNg(y) = {u}
and hence {u,z,y} is a 2-dominating set of G. In addition, V(G) — {u} is
a 2-dominating set of G and thus 72(G) +%(G) <34+n—-1=n+2.

Subcase 2.1.2: Assume that there exists a vertex y with dg(y) = 2. We
observe that Ng[u]U Ng[y] is a 2-dominating set of G and thus 72(G) < 5.
It follows from (4) that

= 2n+1
1(C) +m(C) < =

+5,

and this yields (2) when n > 8.

Let now 6 < n < 7. If Ng(u)NNg(y) # 0, then v2(G) < 4, and we arrive
at (2) as above. In the case that Ng(u) N Ng(y) = 0, let No(y) = {y1,%2}-
If vy; or vyz or Y1y is an edge of G, then again v5(G) < 4 and we are
done. Thus assume in the following that vy, vy, and y,y, are edges of G.

Subcase 2.1.2.1: Assume that n = 6 and V(GQ) = {u,v,z,y,v1,¥2}-
If {y1,92} C Ng(z), then {u,y1,y2} is a 2-dominating set of G, and we
obtain 42(G) + 72(G) < 3+ 5 = n + 2. In the remaining case we assume,
without loss of generality, that the edge zy» belongs to G. This implies
that {u,v, 7,y } is a 2-dominating set of G and hence (4) yields the desired
result.

Subcase 2.1.2.2: Assume that n =7 and V(G) = {u,v,z1,Z2,¥, %1, ¥2}.
If {y1,y2} C Ne(z;) for any ¢ = 1, 2, then {u, y1,¥2,23-:} is a 2-dominating
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set of G, and we obtain ¥2(G) + 72(G) <4+5=n+2. If dg(z;) > 3 for
t =1 and i = 2, then Theorem 2.4 with p = 2 leads to ¥3(G) < 4 and we
are done.

Therefore assume, without loss of generality, that dg(z;) = 2. If
Ng(z1) = {v,y:} for any ¢ = 1,2, say ¢ = 1, then {u,v,z1,11} is a 2-
dominating set of G and so (4) yields the desired result. It remains the case
that zo € Ng(z1). If No(z1) = {v, 22}, then {u,v,z1,y} is a 2-dominating
set of G and (4) yields the desired result. Finally, let Ng(z1) = {z2,y:} for
any ¢ = 1,2, then {u,z1,y,¥:} is a 2-dominating set of G and we are done.

Subcase 2.2: There is a second vertex w # v in G such that dg(w) = 1.
In this case Ng[u] U Ng[w] is a 2-dominating set of G and thus 7,(G) < 4.

Subcase 2.2.1: There are at least 4 vertices of degree at least two in G.
In view of Theorem 2.5 with p = 2, we deduce that 72(G) < (3n—4)/3 and
hence 12(G) + 12(G) <n—2+4=n+2.

Subcase 2.2.2: Assume that G has two non-adjacent vertices, say = and
y, of degree at least two. Then V(G) — {z,y} is a 2-dominating set of G,
and we obtain 12(G) +72(G) <n—-2+4+4=n+2.

Subcase 2.2.3: Assume that G has exactly three pairwise adjacent ver-
tices, say z,y, z, of degree at least two. If a complete graph K> is a compo-
nent of G, then v3(G) < 2 and we are done. Otherwise, G is connected. If
n > 7, then some vertex of {z,y, z} has degree at least four, say dg(z) > 4.
If 21,2 are two leaves attached at z, then {z,z;,2,} and V(G) — {z} is a
2-dominating set of G and G, respectlvely This implies immediately (2).
In the remaining case that n = 6, it is a simple matter to obtain the desired
result.

Subcase 2.2.4: Assume that G has exactly two adjacent vertices, say z, v,
of degree at least two. If K3 is a component of G, then 72(G) < 2 and we
are done. Otherwise, G is connected such that, without loss of generality,
dg(z) > 3. If 2,25 are two leaves attached at z, then {z,z;,z2} and
V(G) — {z} is a 2-dominating set of G and G, respectively, and this implies
(2).

Subcase 2.2.5: Assume that G has exactly one vertex z of degree at
least two. If K, is a component of G, then 7,(G) < 2 and we are done. If
not, then G is a star K; ,—1, a contradiction to §(G) > 1.

Subcase 2.2.6: Assume that G is l-regular. It follows that y(G) = 2
and v(G) = n and we are done.

Case 3: Assume that §(G) = 2 or §(G) = 2, say 6(G) = 2. Because of
the Cases 1 and 2, it remains to discuss the case that §(G) > 2. According
to Theorem 2.2, we have

2n
2(6) < 3 )

as well as 72(G) < 2n/3. If there is at most one vertex in G and at most
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one vertex in G of degree two, then Theorem 2.4 leads to

n—2|-1+nT+1=n+1$n+2.

By reason of symmetry it remains the case that there are at least two
vertices in G, say u and v, with dg(u) = dg(v) = 2. This implies that
Ne¢(u] U Ng[v] is a 2-dominating set of G and thus v2(G) < 6. Hence it
follows from (7) that

2(G) + 12(G) <

- 2n
72(G) +7(G) £ 5+ 6,

and this yields (2) when n > 10. In the following let Ng(u) = {u1,u2} and
Ng(v) = {v1,v2}. 3

Subcase 3.1: Assume that n = 6. If Ng(u) = Ng(v), then %(G) < 4
and (7) leads to (2). If Ng(u) N Ng(v) = 0, then {uj,uz,v1,v2} is a 2-
dominating set of G as well as of G and so 12(G) +712(G) < 4+4=n+2.
It remains the case that Ng(u) and Ng(v) have one vertex in common, say
up = vy. It follows that vo(G) < 5. Let V(G) = {u,uy,uz,v,v1,z}. If
{u1,v1} € Ng(z), then {u,v,z} is a 2-dominating set of G, and we obtain
12(G) + 12(G) £ 345 =n+2. If {u1,us} C Ng(z) or {v1,u2} C Ng(z),
say {u1,u2} C Ng(z), then {u1,ug,v1} is a 2-dominating set of G and we
are done.

Subcase 3.2: Assume that 7 < n < 9. If Ng(u) N Ng(v) # 0, then
v2(G) < 5, and we arrive at (2) as above. Let now Ng(u) N Ng(v) = 9. If
u1ug, V1V, UIV1, ULVs, UsV1, OF UpUs is an edge of G, then again 12(G) < 5
and we are done. Thus assume in the following that G[{u,,u2,v1,v2}] is a
complete subgraph of G.

Subcase 3.2.1: Assume that n = 7 and V(G) = {u,u;,u2,v,%,v2,z}.
If dg(z) < 3, then assume, without loss of generality, that zu; € E(G).
We deduce that {u,us,v,v;,v2} is a 2-dominating set of G and we are
done. In the remaining case that dg(z) = 4, we observe that {u,v,z} is a
2-dominating set of G and hence 72(G) + 12(G) < 3+ 6 =n + 2.

Subcase 3.2.2: Let n = 8 and V(G) = {u,u1,us,v,v1,v2,21,22}. If
{u1,uz,v1,v2} C Ng{z;) for any ¢ = 1,2, then {u,v,z;,z2} is a 2-domina-
ting set of G, and we obtain 72(G) + 72(G) < 4 + 6 = n + 2. Otherwise,
assume, without loss of generality, that z,u; € E(G). If zou; € E(G),
then {uy,v1,v9,21,Z2} is a 2-dominating set of G and (7) yiclds the desired
result. If zoup € E(G), then {v,v),v2,%1,72} is a 2-dominating set of G
and (7) yiclds the desired result. If zovy € E(G) or zov € E(G), say
zov; € E(G), then {u,uz,v1,vs,71} is & 2-dominating set of G and we are
done.

Subcase 3.2.3: Let n =9 and V(G) = {u,u;,us,v,vy,v2,21, 22,23} If
de(z;) = 3 for each ¢ € {1,2,3}, then it follows from Theorem 2.4 that
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72(G) < 5 and thus 72(G) + 72(G) < 5+ 6 = n + 2. Hence assume in the
following that, without loss of generality, dg(z1) = 2. If Ng(u)NNg(z1) #
0 or Ng(v)NNg(z1) # 0, then 72(G) < 5 and (7) leads to the desired result.
It remains the case that Ng(z1) = {z2,z3}. However, now {u,v,z;, 2o, 23}
is a 2-dominating set of G and we are done.

Case 4: Assume that §(G) > 3 and 6(G) > 3. Applying (1), we arrive
at 72(G) + 72(G) £ n/2+n/2 =n < n+2, and the proof of Theorem 3.1
is complete. O

Remark 3.2 Jaeger and Payan [7] have proved that 7, (G) + m1(G) <
n(G) + 1, and Theorem 3.1 says that 72(G) + 12(G) < n(G) + 2 for any
graph G. So one could mean that 7,(G) + 7,(G) < n(G) + p for p > 3.

However, the following examples will show that this is not valid in gen-
eral.

Let Cs be a cycle of length 5. Then Cs is also a cycle of length 5, but
we obtain v3(Cs) +73(Cs) =10 >5+3 =8 =n+p.

More general, let ¢ be a positive integer, and let G be a 2t-regular graph
of order n = 4t + 1. Then G is also a 2t-regular graph, and we see that

~Yor+1(G) +’72t+1(G_') =2n=n+44+1>n+2t+ 1
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