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Abstract

Let a-resolvable STS(v) denote a Steiner triple system of order
v whose blocks are partitioned into classes such that each point of
the design occurs in precisely a blocks in each class. We show that
for v=u =1 (mod 6) and v > 3u + 4 there exists an a-resolvable
STS(v) containing an a-resolvable sub-STS(u) for all suitable c.

1 Introduction

A Steiner triple system of order v, denoted STS(v), is an ordered pair
(X, A) where X is a v-set and A is a collection of 3-subsets (called blocks
or triples) of X such that each pair of distinct elements of X is contained
in exactly one triple. ‘

An STS(v) is said to be a-resolvable if its blocks can be partitioned
into classes (called a-resolution classes) such that each point of the design
occurs in precisely « blocks in each class. It is easy to show that the
existence of an STS(v) implies that 3|av and o|23L.

For a = 1, a l-resolvable STS(v) is also known as a Kirkman triple
system (or KTS(v)). It is well known ([8]) that a KTS(v) exists if and only
if v =3 (mod 6).

Jungnickel, Mullin and Vanstone (7] have shown that an a-resolvable
STS(v) exists if and only if (v — 1) = 0 (mod 2), v{(v — 1) = 0 (mod 6),
3law and o251, We then have

Theorem 1.1 ([7]) There exists a 3-resolvable STS(v) for v = 1 (mod 6).

We are interested in a-resolvable STS(v)s which contain c-resolvable
STS(u)s as subsystems. Let (X,.4) be an a-resolvable STS(v) and (Y, B)
be an a-resolvable STS(u). If Y C X and B is a subcollection of A, and
each a-resolution class of B is a part of some a-resolution class of A, then
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(Y,B) is called a subsystem of (X,.A), or (Y, B) is said to be embedded in
(X,A). We shall describe the subsystem as an a-resolvable sub-STS(x).

For a = 1, the existence of a KTS(v) containing a KTS(u) has been
solved by Rees and Stinson in [11].

Theorem 1.2 ([11]) There is a KTS(v) containing a sub-KTS(u) if and
onlyif v=u= 3 (mod 6) and v > 3u.

Thus, for v = v = 3 (mod 6), subsystems can be constructed by
collecting o different 1-resolution classes to obtain the desired a-resolution
classes whenever a|*7! and a|%3.

Forv=u= 1(mod 6), it is obvious that if an a-resolvable STS(u) can
be embedded in an a-resolvable STS(v), then v and u satisfy v > 3u + 4.
The necessary conditions 3|av and 3|au yield the condition 3|a. A solution
for the case o = 3 will then provide solutions for all a where 3|a. One
can combine § 3-resolution classes into one a-resolution class. Hence, we
only need to consider the existence of a 3-resolvable STS(v) containing a
3-resolvable sub-STS(u).

The purpose of this paper is to give a complete solution to the problem
of embedding problem a 3-resolvable STS(u) in a 3-resolvable sub-STS(v)
forv=u= 1 (mod 6) and v > 3u + 4.

Theorem 1.3 Let v=u= 1 (mod 6) and v > 3u +4. Then there exists
a 3-resolvable STS(v) containing a 3-resolvable sub-STS(u).

2 Some constructions

We need to define several types of designs. A group divisible design is a
triple (X, g, A) where

1. G is a partition of X into subsets called groups,

2. A is a set of subsets of X (called blocks) such that a group and a
block contain at most one common point, and

3. every pair of points from distinct groups occurs in a unique block.

The group-type (or type) of the GDD (X, G, A) is the multiset {|G| : G € G}
and we usually use the “exponential” notation for its description: group-
type 1¢293% ... denotes i occurrences of groups of size 1, j occurrences of
size 2, and so on. We shall sometimes refer to a GDD (X,G,B) as a K-
GDD if |A| € K for every block 4 € A. A {k}-GDD of type m* is called
a transversal design TD(k,m). It is well known that the existence of a
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TD(k, m) is equivalent to the existence of k — 2 mutually orthogonal Latin
squares of order m.

Now we define the idea of a GDD with a hole. Informally, an incomplete
GDD, or IGDD, is a GDD from which a sub-GDD is missing (This is the
“hole”). We give a formal definition. An IGDD is a quadruple (X,Y, G, A)
which satisfies the following properties:

1. X is a set of points, and Y C X,
2. G is a partition of X into groups,

3. A is a set of blocks, each of which intersect each group in at most
one point,

4. no block contains two members of Y, and

5. every pair of points {z,y} from distinct groups, where at least one of
z, y is in X\Y, occurs in a unique block of A.

We say that an IGDD (X,Y,G, A) is K-IGDD if |A| € K for every block
A € A. The type of the IGDD is defined to be the multiset of ordered
pairs {(|G|,|GNY]): G € G}. As with GDDs, we shall use an exponential
notation to describe types. Note that if Y = ), then the IGDD is a GDD.
For group divisible designs, we have the following existence results.

Lemma 2.1

(1) ([2)) There exists a T'D(6,m) for all positive integers m > 5 and
m+#6, 10, 14, 18, 22.

(2) ([12]) There exists a 4-GDD of type 1*m! if and only if A > 2m +1
and either m, h+m =1 or 4 (mod 12) or m, h+m = 7 or 10 (mod 12).

(3) ([5]) There exists a 4-GDD of type g*m! if and only if g = m =
0 (mod 3) and 0 < m < 3g/2 except for (g,m) = (6,0).

(4) ([6]) There exists a 4-GDD of type 6*m! for each b > 4 and
m = 0 (mod 3) with 0 < m < 3(h — 1) except for (h,m) = (4,0) and
except possibly for (h,m) € E, where

E = {(7,15), (11,21), (11, 24), (11, 27), (13, 27), (13, 33), (17, 39), (17,42),
(19, 45), (19, 48), (19, 51), (23, 60), (23, 63)}.

We also need an auxiliary design, specifically (K, o)-frames. Let (X, G,
A) be a K-GDD. A subset P of A is called a partial a-resolution class with
hole G if P is a collection of blocks in which each point of X occurs in
precisely a blocks and no block contains any point of G. (X, G, A) is called
a (K, a)-frame if A can be partitioned into partial a-resolution classes. The
type of a (K, a)-frame is the same as that of a GDD.

For (3, 1)-frames, we have the following existence result.
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Lemma 2.2 ([1]) There exists a (3, 1)-frame of type g* if and only if « > 4,
g is even and g(u — 1) = 0 (mod 3).

We have already defined an a-resolvable STS(v) containing an a-resolv-
able sub-STS(u). If we allow the subsystem to be missing, we have an
incomplete a-resolvable design which we will denote by a-resolvable (v, u)-
ISTS. Next, we employ a more general type of incomplete STS. Suppose
we have an o-resolvable STS(v) containing an o-resolvable sub-STS(u;)
and an o-resolvable sub-STS(us) which intersect in an a-resolvable sub-
STS(us). If we remove these subsystems, we obtain an incomplete system
which we will denote by a-resolvable (v;u,, ug; u3)-0-ISTS.

The following “Filling in Holes” construction, which is a variant of Stin-
son’s “Filling in Holes” construction, provides a powerful tool for the em-
beddings of a-resolvable Steiner triple systems.

Construction 2.3 (Filling in Holes) Let a > 0. Suppose that the following
designs exist:

1. a (3, a)-frame of type t1ta-- - ¢y,
2. an a-resolvable (¢; + a,a)-ISTS, for 1 <i<n -1, and
3. an a-resolvable STS(t, + a).

then there exists an a-resolvable (¢ +a,t, +a)-ISTS, where t =3, ;. ti.

We also use incomplete (K, a)-frames, which bear the same relationship
to frames as IGDDs do to GDDs. We also construct STS containing sub-
STS by filling in the holes of incomplete frames with o-ISTS.

Construction 2.4 (Generalized Filling In Holes) Let b > a > 0. Suppose
that the following designs exist:

1. an incomplete (3, o)-frame of type {(t1,u1), (t2,u2), -, (tn,un)},
2. an o-resolvable (¢; + b; u; + a,b;a)-0-ISTS, for 1 <i<n -1, and
3. an a-resolvable (¢, + b, u, + a)-ISTS.

then there exists an a-resolvable (¢ + b,u + a)-ISTS, where t = 3>, ;.. ¢
and v = 3¢, Ui

In applying the “Filling in Holes” construction, we will require more
incomplete group divisible designs and incomplete frames. To get these,
we use the following recursive constructions.

Construction 2.5 (Fundamental IGDD Construction) ([13]) Suppose
(X,Y,G, A) is an IGDD, and let t, s: X — Z% U {0} be functions such
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that t(z) < s(z) for every 2 € X. For every block A € A, suppose that we
have a K-IGDD of type {(s(z),t(z)) : = € A}. Suppose also that we have
a K-IGDD of type {(3_.cany $(Z) 2zegny t(x)) : G € G}. Then there
exists a K-IGDD of type {(3_,cq 5(2), X zec (%)) : G € G}

Construction 2.6 (Fundamental Frame Construction) ([11]) Suppose
(X,Y,G,A) is an IGDD, and let s : X — Z%* U {0} be a function.
For every block A € A, suppose that we have a (K,a)-frame of type
{s(z) : =z € A}. Then there exists an incomplete (K, a)-frame of type
{(Xzea 5(2), Xaegny $(2)) : G €6}

Suppose that K = {3} and o = 1. For each hole of the (3,1)-frame in
Construction 2.6, combine three partial 1-resolution classes into one partial
3-resolution class. We thus obtain a (3, 3)-frame of type {(3_,.¢ 5(%),
Yorecry 8(®) 1 G € GYif Y 58(%) = X cony s(z) = 0 (mod 6) for
every G € G.

3 The cases u > 121

In this section, we will prove the existence of 3-resolvable STS(v)s contain-
ing 3-resolvable sub-STS(u)s when u > 121. First we give several designs
with small holes.

Lemma 3.1 There exists a 3-resolvable (3u + 4,)-ISTS for © = 1 (mod
6).

Proof Write v =6t+ 1 and ¢t > 1. Start with a KTS(6t+3) and adjoin
infinite points to 3¢ 1-resolution classes of the KTS. We get a 4-GDD of
type 3%+1(3t)!. Give every point of the resulting GDD weight 2 and apply
Construction 2.6, using a (3, 1)-frame of type 2% in Lemma 2.2, to form a
(3,3)-frame of type 62:+1(6t)!. We then apply Construction 2.3 with such
a frame to obtain the desired design.

Lemma 3.2 There exists a 3-resolvable (3u+ 10, u)-ISTS for u = 1 (mod
6).

Proof Write u = 6h—5 and h > 1. Start with a 4-GDD of type 6*(3u—3)!
in Lemma 2.1. Give every point of the GDD weight 2 and apply Con-
struction 2.6. We get a (3, 3)-frame of type 12"(6h — 6)'. We then apply
Construction 2.3 with such a frame to obtain the desired design.

Lemma 3.3 There exists a 3-resolvable (v, 7)-ISTS for v = 1 (mod 6)
and v > 25.
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Proof Write u = 6h 4 1 and h > 4. We apply Construction 2.3 with a
(3,3)-frame of type 6" in Lemma 2.2 to obtain the desired design.

Lemma 3.4 There exists a 3-resolvable (v,13)-ISTS for v = 1 (mod 6)
and v > 43.

Proof For v = 43, the required design is in Lemma 3.1. For v = 12h + 7
and h > 4, start with a 4-GDD of type 6"3! in Lemma 2.1. Give every
point of the GDD weight 2 and apply Construction 2.6. We get a (3, 3)-
frame of type 12"6!. We then apply Construction 2.3 with such a frame
to obtain the desired design. For v = 12h + 1 and h > 4, we can apply
Construction 2.3 with a (3,3)-frame of type 12" in Lemma 2.2 to obtain
the desired design.

Now we present some particular classes of 3-resolvable o-ISTSs which
play an important role in our constructions.

Lemma 3.5 There exists a 3-resolvable (18m + 7;6m + 1,7;1)-0-ISTS.

Proof Removing two holes of size 7 and 6¢ + 1 from the proof of Lemma
3.1 actually gives a 3-resolvable (18m + 7;6m + 1, 7;1)-o-ISTS.

Lemma 3.6 There exists a 3-resolvable (18m 4+ 25; 6m + 7, 25; 7)-0-ISTS
for m > 3.

Proof There exists a KTS(6m + 9) containing a sub-KTS(9). Adjoin
infinite points to 3m+3 1-resolution classes ensuring that all of the blocks of
the sub-KTS(9) are included. This produces a 4-GDD of type 32™+3(3m +
3)! containing a subsystem of type 3* in which the last group is contained
in the group of size 3m + 3 in the master GDD. Now give every point
of this GDD weight 2. By applying Construction 2.6, we get a (3,3)-
frame of type 62"+3(6m + 6)! containing a (3,3)-frame of type 6 as a
subsystem in which the last group is contained in the group of size 6m + 6
in the master incomplete frame. Then add an infinite point, and fill in
3-resolvable STS(7)s and a 3-resolvable (6m + 7, 7)-ISTS in which the hole
of size 7 is exactly the last group in the sub-frame aligning with the infinite
point. This gives a 3-resolvable (18m+25, 7)-ISTS containing a 3-resolvable
(25,7)-ISTS and a 3-resolvable (6m + 7, 7)-ISTS, and these ISTSs have a
common hole of size 7. Finally we remove the two sub-ISTSs and obtain
the required design.
Similarly, we have the following design.

Lemma 3.7 There exists a 3-resolvable (18m +-43; 6m + 13, 43;13)-0-ISTS
for m > 5.
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Lemma 3.8 Suppose there exists a TD(6,m), a 3-resolvable (18t + 3a +
4;6t + a,3a + 4;a)-o-ISTS and a 3-resolvable (125 + a,a)-ISTS where 0 <
t<m,0<s<manda=1,7or 13. Then there exists a 3-resolvable
(v,u)-ISTS where v = 72m + 18t + 125 + 3a + 4, u = 24m + 6t + a.

Proof Start with a TD(6,m), delete m — ¢t points from the fifth group and
m — s points from the last group. We get a {4,5,6}-GDD of type m*t!s.
Give the points in the first five groups weight (9, 3) and the points in the last
group weight (6,0), and apply the Fundamental IGDD Construction, using
4-IGDDs of type (9,3)4, (9,3)%, (9,3)*6! and (9, 3)%6! (whose existence is
shown in [11]). We obtain a 4-IGDD of type (9m, 3m)*(9¢, 3t)'(65)!. Next,
assign every point of the resulting IGDD weight 2 and apply Construction
2.6. We thus form an incomplete (3, 3)-frame of type (18m, 6m)*(18t,6t)!
(125)!. We will fill 3-resolvable o-ISTS into the holes of the frame, using
Construction 2.4. We adjoin a total of 3a+4 points, a of which are incorpo-
rated into the sub-ISTS. Then we will fill in 3-resolvable (18m+3a+4; 6m+
a,3a + 4;a)-0-ISTSs, a 3-resolvable (18t + 3a + 4; 6t + a, 3a + 4; a)-0-ISTS
and a 3-resolvable (125 + a, a)-ISTS, which come from Lemma 3.3-Lemma
3.7. Hence we obtain the required design.

Lemma 3.9 There exists a 3-resolvable (v,u)-ISTS for v = v = 1 (mod
6), 3u+4 <v<3u+64and v>121.

Proof Write v = 72m +18t+ 125+ 7 and u = 24m + 6t +a. For v > 121,
there exists a T"D(6,m) for m > 5 and m # 6,10, 14, 18,22. Apply Lemma
3.8 with all £ and s such that 0 < ¢ < m and 0 < s < m. This gives a
3-resolvable (v, u)-ISTS for 3u+4 < v < 3u+ 64 and v > 121, except that
4 = 157 and 163. For u = 157 and 163, take m = ¢ = 5, a = 7 and 13
respectively in Lemma 3.8. We then obtain the required designs.

Lemma 3.10 Suppose there exists a TD(6,m), a 3-resolvable (6m+a,a)-
ISTS and a 3-resolvable (6(m + n;) + a,a)-ISTS where i = 1,2 and 0 <
n; < m. Then there exists a 3-resolvable (v,u)-ISTS where v = 36m +
6(ny +n2) +a, u=6(m+n;) +a.

Proof Start with a TD(6,m). Give each of n; points of the fifth group
and each of ns points of the last group weight 12, give each of the remain-
ing 6m — ny — ns points weight 6. In order to apply Fundamental frame
Construction, we need (3,3)-frames of type 6%, 6°12' and 62122, which
arc obtained as follow. The first is from Lemma 2.2, We can obtain the
second by applying the Fundamental frame Construction to a 4-GDD of
type 6135, giving every point weight 2 (this GDD is obtained by adjoining
infinite points to G 1-resolution classes of a KTS(15)). Similarly, we can
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obtain the last one by applying the Fundamental frame Construction to a 4-
GDD of type 623* (whose existence is shown in [13]) and giving every point
weight 2. We then apply Construction 2.3 to the resulting (3, 3)-frame of
type (6m)*(6m + 6n1)'(6m + 6n2)! to obtain the required design.

Lemma 3.11 There exists a 3-resolvable (v, u)-ISTS for v = u = 1 (mod
6),3u+58<v<6u-+1andu>T9.

Proof Let T = {m > 1 : there exists a TD(6,m)}. It follows that
for each v = u = 1 (mod 6), u > 79, there exists a mg € Tg such that
4 < 30mp—2u < 52. Writeu = 6mop+6n;+a,0 < n; < mp,a = 1(mod 6)
and a < 3mg — 2. Then by Lemma 3.10, there exists a 3-resolvable (v, u)-
ISTS for all u = 1 (mod 6), 30mg +u < v < 36mg + u. Further, it is
easy to see that there exist positive integers s and m; € T, 0 < i < s,
myg < m; < --- < mg, such that 36m;_; +6 > 30m;, 0 < i < s and
6ms +1 < u < 6m, +13. Let vg = 30mp + u and vy, = 36m, + u. Then
Ju+4 < vy € 3u+52and v; > 6u-+1 and there exists a 3-resolvable
(v, u)-ISTS for each v = 1 (mod 6), v9p < v < v;. This completes the
proof.

Lemma 3.12 Suppose there exists a TD(6,m), a 3-resolvable (6m +a, a)-
ISTS and a 3-resolvable (6n; + a,a)-ISTS wherei = 1,2 and 0 < n; < m.
Then there exists a 3-resolvable (v, u)-ISTS where v = 24m+6(n; +n3)+a,
u =6m+ a or u = 6n; + a.

Proof Start with a TD(6,m) and delete m — n; points from the fifth
group and m — ny points from the last group, we get a {4,5,6}-GDD of
type m®ni'ns!. Give every point of the resulting GDD weight 6 and apply
Construction 2.6, using (3, 3)-frames of type 64, 6° and 6° in Lemma 2.2, to
form a (3, 3)-frame of type (6m)*(6n;)!(6n2)*. We then apply Construction
2.3 with such a frame to obtain the desired design.

Lemma 3.13 There exists a 3-resolvable (v,u)-ISTS for v =4 = 1 (mod
6), v > 5u —4 and u > 31.

Proof Write m = n; + s and v = 6n; + 1 in Lemma 3.12. Then v =
5u —4 4245+ 6n,y, where 0 < ny < m, s > 0. By Lemma 3.12, there exists
a 3-resolvable (v, u)-ISTS for all v such that v = 1 (mod 6) and v > 5u—4,
except that u = 37,61, 85,109 or 133 and v = 5u—4, 5u+2, 5u+8 or S5u+14.

For u = 37, we can first remove v = 5u — 4 by applying Construction
2.3 with a = 1 to a (3, 3)-frame of type 36° in Lemma 2.2. Next we employ
Lemma 3.10 with a = 7 to handle each cases corresponding to u. When
u = 37, take m = 5, n; = 0 and np = 0, 1, 2 respectively; when u = 61, take
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m =8, ny; =2 and ny = 0,1, 2,3 respectively; when u = 85, take m = 11,
n; = 3 and ns = 1,2, 3,4 respectively; when u = 109, take m =13, ny; =5
and ne = 7,8,9, 10 respectively; when u = 133, take m = 17, n; = 5 and
na = 3,4, 5, 6 respectively.

This completes the proof.

Combine Lemma 3.9, Lemma 3.11 and Lemma 3.13, we have established
the following result.

Theorem 3.14 Let v=u = 1 (mod 6) and v > 3u+ 4, then there exists
a 3-resolvable STS(v) containing a 3-resolvable sub-STS(u) for u > 121.

4 The cases u < 121

In this section, we will prove the existence of 3-resolvable STS(v)s contain-
ing 3-resolvable sub-STS(u)s when u < 121. First we give several infinite
classes.

Lemma 4.1 There exists a 3-resolvable (v, u)-ISTS for v > 3u + 4 and
either v, v =1 or 7 (mod 24) or v, u = 13 or 19 (mod 24).

Proof Start with a 4-GDD of type 1*m! in Lemma 2.1, where h > 2m +1
and either m, h+ m =1 or 4 (mod 12) or m, h+m =7 or 10 (mod 12).
Delete one point from the group of size m. We get a 4-GDD of type
3M3(m - 1)!. Give every point of the resulting GDD weight 2 and apply
Construction 2.6. We form a (3,3)-frame of type 6"/3(2m — 2)!. We then
apply Construction 2.3 with such a frame to obtain the desired 3-resolvable
(2h +2m - 1,2m - 1)-ISTS.

Lemma 4.2 There exists a 3-resolvable (v,u)-ISTS for v > 3u + 10
and either v, v = 1 (mod 12) or v, u = 7 (mod 12), except possibly
for (v,u) € Fy, where

Fi={(12h+2m+1,2m+1): (h,m) € E}.

Proof Start with a 4-GDD of type 6"m! in Lemma 2.1, where h > 4 and
m = 0 (mod 3) with 0 < m < 3(h — 1) except for (h,m) € EU {(4,0)}.
Give every point of the GDD weight 2 and apply Construction 2.6. We
form a (3,3)-frame of type 12"(2m)’. We then apply Construction 2.3 with
such a frame to obtain the desired 3-resolvable (12h+2m+1, 2m+1)-ISTS.

Combine Lemma 4.1 with Lemma 4.2, we have established the following
result.

Lemma 4.3 There exists a 3-resolvable (v, u)-ISTS for v = u = 1 ( mod 6)
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and v =3u+k, k=4, 10, 22 (mod 24) except possibly for (v,u) € F}.
For our purpose, we only need to consider the values in F; and the cases
v=3u+k, k=16 (mod 24).

Lemma 4.4 There exists a 3-resolvable (v, u)-ISTS for v = u = 1 (mod 6)
and 4u - 3 < v < (11u - 9)/2.

Proof Start with a 4-GDD of type g*m! in Lemma 2.1, where g = m =
0 (mod 3) and 0 < m < 3g/2 except for (g,m) = (6,0). Give every point
of the GDD weight 2 and apply Construction 2.6. We form a (3,3)-frame
of type (2g)%4(2m)!. We then apply Construction 2.3 with such a frame to
obtain the desired 3-resolvable (8¢ + 2m + 1,29 + 1)-ISTS.

Combine Lemma 4.4, Lemma 3.9, Lemma 3.11 and Lemma 3.13. For
the cases v = 3u+k, k = 16 (mod 24), we only need to consider the values
in F5, where

Fy = {(3u+k,u) : k=16,40, v =1 (mod 6) and 49 < u < 115}
U{(3u + 16,u) : u = 31,37,43} U {(283,73)}

Lemma 4.5 There exists a 3-resolvable (18h + 6s + 1,6k + 1)-ISTS for
h=0(mod 4),h>8and0<s<h-1.

Proof Start with a 4-RGDD of type 3" (whose existence is shown in [3]),
where h = 0 (mod 4) and h > 8. Adjoin infinite points to s of the 1-
resolution classes of the GDD. We get a {4,5}-GDD of type 3"s! in which
every block of size 5 hits the group of size s, where 0 < s < h — 1. Assign
weight (3,1) to every point of the original GDD, and assign weight (3,0)
to the s infinite points. Apply Construction 2.5, using 4-IGDD of types
(3,1)4(3,0)! and (3,1)* (these arise from delete a block from 4-GDDs of
type 3* and 3%, respectively), to get a 4-IGDD of type (9, 3)"(3s)! and then
a {4,3s + 1}-GDD of type 32h+5(3h)'. Give every point of the resulting
GDD weight 2 and apply Construction 2.6. We form a (3,3)-frame of type
62"+s(6h)'. We then apply Construction 2.3 with such a frame to obtain
the desired 3-resolvable (18h + 6s + 1, 6h + 1)-ISTS.

Lemma 4.6 There exists a 3-resolvable (24h + 6s + 1,8h — 1)-ISTS for
h=1(mod 3),h>4and 0 < s <4(h-1)/3.

Proof Start with a 4-RGDD of type 4" (whose existence is shown in [3]),
where b = 1 (mod 3) and h > 4. Adjoin infinite points to s of the 1-
resolution classes of the GDD. We get a {4,5}-GDD of type 4"s! in which
every block of size 5 hits the group of size s, where 0 < s < h — 1. Assign
weight (3,1) to every point of the original GDD, and assign weight (3,0)
to the s infinite points. Apply Construction 2.5, using 4-IGDD of types
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(3,1)%(3,0)! and (3,1)4, to get a 4-IGDD of type (12,4)"(3s)! and then

a {4,3s + 1}-GDD of type 3(»+3s+1)/3(4h — 1)1, Give every point of the

resulting GDD weight 2 and apply Construction 2.6. We form a (3,3)-frame

of type 6B"+3s+1)/3(8h _ 2)1. We then apply Construction 2.3 with such a

frame to obtain the desired 3-resolvable (24h + 6s + 1,8h — 1)-ISTS.
From Lemma 4.5 and Lemma 4.6, we have the following result.

Lemma 4.7 There exists a 3-resolvable (v,u)-ISTS for (v,u) € {(3u +
k,u) : k= 16,40, u = 49,55, 73,79, 97, 103} U{(3u+22, u) : u = 31,55, 103}
U{(3u+34, u) : u = 49, 97}U{3u+46,u) : u = 55, 79}U{(109, 31), (283, 73)}.

Proof Apply Lemma 4.5 with h = 8,12,16 and s = 3,6, 7 or 11, we know
that the result is true for v = 49,73 and 97. For the other values of u, we
apply Lemma 4.6 with h =4,7,10,13 and s = 2,3,6 or 7.

Lemma 4.8 Suppose there exists a TD(6,m), a 3-resolvable (6m + a,a)-
ISTS and a 3-resolvable (6s + a, a)-ISTS, where m < s < 2m. Then there
exists a 3-resolvable (36m + 6s + a,12m + a)-ISTS.

Proof Start with the TD(6,m) and give every point of the last group
weight 6, every point of the second last group weight 3 or 6, and every
point of the remaining groups weight 3, using 4- GDDs of type 362 and 3°6!
(whose existence, see [2]), we get a 4-GDD of type (3m)*(6m)'(3s). Give
every point of the resulting GDD weight 2 and apply Construction 2.6. We
form a (3,3)-frame of type (6m)*(12m)!(6s)}. We then apply Construction
2.3 with such a frame to obtain the desired 3-resolvable (36m+6s+a, 12m—+
a)-ISTS.

Lemma 4.9 There exists a 3-resolvable (v, u)-ISTS for (v,u) € Fy U F.

Proof For the case (v,u) = (175,43), see Lemma 4.4. For the cases (v,u) =
(397,121), (403, 127), see Theorem 3.14. For the case (v, u) = (127,37), we
apply Construction 2.3 with a (3,3)-frame of type 30 in Lemma 2.2 to
obtain the desired design.

For the case (v,u) = (142,43), start with a {4, 7}-GDD of type 314921}
(whose existence is shown in [11]). Give every point of the GDD weight
2 and apply Construction 2.6. We form a (3,3)-frame of type 61418142!.
We then apply Construction 2.3 with such a frame to obtain the desired
design.

For the case (v,u) = (199, 61), start with a 4-frame of type 6° (whose
existence is shown in [11]) and adjoin two infinite points to a hole of the
frame, we get a {4,5}-IGDD of type 6%(8,2)!. Assign weight (3,1) to
every point of the original GDD and assign weight (3,0) to the two infinite
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points, we obtain a 4-IGDD of type (18, 6)*(24, 6)*, using 4-IGDD of types
(3,1)*(3,0)! and (3,1)*. Give every point of the resulting IGDD weight
2 and apply Construction 2.6. We form an infinite (3,3)-frame of type
(36,12)%(48,12)!. We then apply Construction 2.4 with such a frame, using
3-resolvable (43; 13, 7; 1)-0-ISTS in Lemma 3.5, to obtain the desired design.

For the case (v,u) = (271,85), start with a {4,5}-IGDD of type (9, 3)*
(8,2)! (whose existence is shown in [11]), give every point of the IGDD
weight 6 and apply Construction 2.6, we form an incomplete (3,3)-frame of
type (54, 18)%(48,12)!. We then apply Construction 2.4 with such a frame,
using 3-resolvable (61;19, 7;1)-0-ISTS in Lemma 3.5, to obtain the desired
design.

For the case (v, u) = (289, 85), start with a {4, 7}-GDDs of type 3!49121!
(whose existence is shown in [11]). Give every point of the GDD weight
4 and apply Construction 2.6. We form a (3,3)-frame of type 1214361841,
We then apply Construction 2.3 with such a frame to obtain the desired
design.

For the cases (v,u) = (289,91), (343,109), start with 4-GDDs of type
911451, 394 (whose existence, the first comes from a 3-RGDD of type 91!
and adjoin infinite points to 45 1-resolution classes of the GDD, the second
see Lemma 2.1). Give every point of these GDDs weight 2 and apply
Construction 2.6. We form (3,3)-frames of type 18190, 784, respectively.
We then apply Construction 2.3 with such frames to obtain the desired
designs.

For the cases (v,u) = (223, 61), (217,67), (223,67), 241, 67), we can ap-
ply Lemma 3.10 with m = n; = 5 and (n2,a) = (2,1),(0,7),(1,7),(4,7) to
obtain the desired designs.

From Lemma 4.7, we only need to consider the cases (v, u) = (313,91),
(319,91), (367,109), (361, 115), (385, 115), which can be obtained by apply-
ing Lemma 4.8 with (m, s,a) = (7,9, 7), (7,10, 7), (8,11,13), (8,9, 19), (8, 13,
19), respectively. The required 3-resolvable (67,19)-ISTS and 3-resolvable
(6s + 19,19)-ISTSs for s = 9 and 13 are provided in Lemma 4.11 below.

This completes the proof.

Up to now, we have established the following result.

Theorem 4.10 Let v =u =1 (mod 6) and v > 3u+4, then there exists a
3-resolvable STS(v) containing a 3-resolvable sub-STS(u) for 31 < uw < 121.

Lemma 4.11 There exists a 3-resolvable (v, 19)-ISTS for v = 1 (mod 6)
and v > 61.

Proof From Lemma 4.3, we only need to consider the cases v = 57 +
k, & = 16 (mod 24). Note that there exists a 3-resolvable (v,61)-ISTS
for v = 1 (mod 6) and v > 187, we only need to consider the cases
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v ="73,97,121, 145, 169.

For the cases v = 73, 145, we apply Construction 2.3 with (3,3)-frames
of type 184, 182 in Lemma. 2.2 to obtain the desired designs. For the case
v = 97, start with a 4-GDD of type 912! in Lemma 2.1. Give every point
of the GDD weight 2 and apply Construction 2.6. We form a (3,3)-frame
of type 18%24!. We then apply Construction 2.3 with such a frame to
obtain the desired design. For the case v = 121, start with a TD(5,5) and
truncate two groups to sizes 4 and 1, we get a {4,5}-GDD of type 3442
Give every point of the resulting GDD weight 6 and apply Construction
2.6. We form a (3,3)-frame of type 18424%. We then apply Construction 2.3
with such a frame to obtain the desired design. For the case v = 169, start
with a T'D(6,5) and truncate one group to size 3, we get a {5,6}-GDD
of type 5531, Give every point of the resulting GDD weight 6 and apply
Construction 2.6. We form a (3,3)-frame of type 30°18'. We then apply
Construction 2.3 with such a frame to obtain the desired design.

Lemma 4.12 There exists a 3-resolvable (v, 25)-ISTS for v = 1 (mod 6)
and v > 79.

Proof From Lemma 4.3, we only need to consider the cases v = 75 +
k, k = 16 (mod 24). Note that there exists a 3-resolvable (v,79)-ISTS
for v = 1 (mod 6) and v > 247, we only need to consider the cases
v = 91,115,139, 163, 187,211, 235.

For the case v = 91, start with a 4-GDD of type 3°6'12! (whose exis-
tence is shown in [10]). Give every point of the GDD weight 2 and apply
Construction 2.6. We form a (3,3)-frame of type 6°12'24!. We then ap-
ply Construction 2.3 with such a frame to obtain the desired design. For
the other values of v, start with 4-GDDs of type 12"m! (whose existence
is shown in [4]), where m = 9 and 4 < h < 9. Give every point of the
GDDs weight 2 and apply Construction 2.6. We form (3,3)-frames of type
24"(2m)*. We then apply Construction 2.3 with such frames to obtain the
desired designs.

We are now in a position to prove Theorem 1.3.

The proof of Theorem 1.3 From Theorem 3.14 and Theorem 4.10, we
know that the result is true for © > 31. For the cases 7 < u < 31, we
know that the result is true from Lemma 3.3, Lemma 3.4, Lemma 4.11 and
Lemma 4.12.
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