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Abstract

The Fibonacci graph Gy, is the graph whose vertex set is the collection of n-bit binary
strings having no contiguous ones, and two vertices are adjacent if and only if their
Hamming distance is one. Values of several graphical invariants are determined for these
graphs, and bounds are found for other invariants.
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1 Introduction

The Fibonacci graph Gy, as defined by Munarini [4], is the graph whose
vertex set is the collection of n-bit binary strings having no contiguous
ones, and two vertices are adjacent if and only if their Hamming distance
is one. Munarini studied the relations among Fibonacci graphs, Fibonacci
semilattices, and Fibonacci lattices. In this paper we determine the values
of scveral invariants for Fibonacci graphs and provide bounds for others.
This kind of information for specific families of graphs can prove useful when
developing and testing algorithms for general graphs. Graph theoretical
coneepts and results can be explored in Chartrand and Zhang [2], Gross
and Yellen [3], and West [6].

The structure of G,, can be expressed in terms of the graphs G,,_» and
Grn-1. To see this for n > 3, notice the vertex set of G,, can be partitioned
into those vertices that end in 0 and those that end in 01. Moreover, the
first n— 1 bits that precede the 0 and the first n — 2 bits that precede the 01
are labels of vertices in G, and G,,_2, respectively. Thus G,,_1 and G, _»
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appear as disjoint induced subgraphs of G,,. Vertices z1z3...2,—10 and
Z1Z2...2p-201 in G, are said to be lifts of vertex z1z3...Zn—;1 in Gp_1
and vertex ,Z;...Zn—2 in G,_2, respectively. The vertices of the form
Z1Z2 ... Tn-200 in the G,_; subgraph of G, induce a second copy of G,,_».
Since the vertex x1x3 ... 2,200 is adjacent to the vertex x5z ... 2n_201,
there is a matching M between the two copies. The structure of G, is
summarized as follows.

Remark 1 The Fibonacci graph G, contains G-y and G,_o as disjoint
induced subgraphs, and there is a matching M between the G,_, and a
second copy of Gn_2 appearing as an induced subgraph of the G,_;.

The above inductive construction is the basis for several of the results
in this paper and is depicted in Figure 1.
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Figure 1: Structure of Fibonacci graph G,

The following observation is apparent from the structure of Fibonacci
graphs.

Observation 2 Letn > 3. Then
a. [V(Gn)l = [V(Gr-1)| + [V(Gn-2)|, and
b. |[E(Gn)| = |[E(Gn-1)l + |E(Gr=2)| + [V(Gn-2)|-

The next observation follows immediately from the fact that any edge
of G, joins a vertex having an even number of 1’s with a vertex having an
odd number of 1’s.

Observation 3 The Fibonacci graph G, is bipartite.
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Section 2 provides expressions for the order and size of Fibonacci graphs,
Section 3 gives values for several graphical invariants, and Section 4 presents
some open questions.

2 Order and Size

Observation 2a states that |V(G,,)| satisfies the Fibonacci recursion. For
the initial conditions, note that V(G;) = {0,1} and V(G2) = {00,01,10}.
Thus, if F, is the nt* Fibonacci number, starting with F; = Fp = 1,
then |V(G,)| = F3 and |V(G2)| = Fs. The following observation is now
immediate.

Observation 4 For the Fibonacci graph Gy, |V(Gp)| = Fu+2-

The situation is not quitc as straightforward for the number of edges
of G,. Three expressions are derived, one combinatorial in nature, one
in terms of Fibonacci numbers, and a closed form. The combinatorial
cxpression is a consequence of the following result.

Proposition 5 The number of vertices of the Fibonacci graph Gy, that have
ezactly k 1’s is (""F*Y) for k < [n/2].

Proof: Every n-bit binary string with k& 1’s, no two adjacent, can be
constructed by (1) starting with a string of length 2k — 1 of the form
10101...101, and (2) distributing the remaining n — 2k + 1 0’s into the
k + 1 zones delineated by the k£ 1’s. This is a standard combinatorial

problem (see Roberts [5], page 42), and the number of ways to do this is
(k+l+(n—-2k+l)—1 - n—k+1) . (n-—k+1) m]
n-2k+1 T \n-2k+1/ T k '

Using Proposition 5 it is possible to obtain an expression for the number
of edges in G,,. It is based on the observation that a vertex with k 1’s, k > 1,
has exactly k neighbors with £ -1 1’s.

Corollary 6 For the Fibonacci graph Gp, |E(Gy)| = ,[Z;' k("R

An alternative expression for |E(G,)| is based on the recurrence of Ob-
servation 2b. For convenience, lot E, denote |E(G,)|. With this notation,
El =F2=1andE2=F3=2.

Proposition 7 For the Fibonacci graph Gy, |[E(G,)| = Y iy FiFoti-i.

Proof: We use induction on n. The facts that £; = 1, Z:=1 FiFo-i=
FiFy =1, By = 2, and 32| FiFn41-i = FiF2 + F2Fy = 2 cstablishes
the base case. Now assume that the result holds for all values of the index

275



up to some n > 1. By Observaation 2b and Observation 4, E, ;) = E, +
E,_1 + Fy41. Hence, the inductive hypothesis yields

n-1

n
Enyi = ) FFap_i+ Y FiFai+Fan

i=1 i=1
n-1
= > (FiFpy1-i + FiFa_i) + FyFy + Foypy.

i=1

Since F} = F; =1,

n-1

Boyi = Y Fi(Fngroi+ Fasi) + FaFa + Foi Ry

i=1
n-1

= z FiFpio i+ (FaFo + Fap Fy)

i=1
n+1

= Z FFyyo,
i=1

as desired. O

Solving the recurrence given in Observation 2b, the following closed
form for E,, can be obtained.

Theorem 8 For the Fibonacci graph G,

() (5]

n 1+\/5n+1 1—\/5n+1
88 (=59

3 Invariant Properties

Various properties and values of invariants of Fibonacci graphs are devel-
oped in this section. The first indicates, unsurprisingly, that most Fibonacci
graphs are nonplanar.

Proposition 9 The Fibonacci graph G,, is planar if and only if n < 5.
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Figure 2: Planar representation of Gs

Proof: Figure 2 gives a planar representation of Gs. Since G, is con-
tained in G4, it follows that G; is planar for 1 < i < 5. The same in-
clusion will show the nonplanarity of the remaining Fibonacci graphs once
it is shown that Gg is nonplanar. For that we show that a homeomorphic
copy of K33 exists in Gg. The partite sets are {100000, 010000, 000001}
and {000000, 101010, 010101}. Vertex 000000 is adjacent to all the vertices
in the first set. Vertex 101010 is adjacent to them, in order, by paths
having the following internal vertices: (101000), (100010,000010, 010010},
and (001010, 001000, 001001). Vertex 010101 is adjacent to them, in order,
by paths having the following internal vertices: (010100, 000100, 100100},
(010001), and (000101). O

Let 7(G) and d(G) be the radius and diameter, respectively, of graph
G.

Proposition 10 For the Fibonacci graph G, d(Gn) = n and r(Gy) =
n
[31-

Proof: Clearly d(G,,) < n. Vertices 1010... and 0101... exist in G,, and
have distance n. Since d(G) < 2r(G) for any graph, »(G,) > [g] Equality
follows from the fact that the vertex of all 0’s is within distance [%'I of every
other vertex. O

We next determine minimum degree, denoted §(G) for graph G, which
will then lead to results about connectivity. The following lemma provides
a starting point.
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Lemma 11 Let x be a vertex with k 1’s. Then

k ifn <3k
de-"(x)z{ n-2% ifn>3k

and the bound is achieved for some such vertez.

Proof: Vertex z has k neighbors with £k —1 1’s and a number of neighbors
with k£ + 1 1’s equal to the number of 0’s in z that can be changed to 1.
This value is minimized when xx = 016010010...010000. ..000 in which the
pattern “010” is repeated k times followed by n — 3k 0’s. In this case the
number of neighbors with k +1 1’s is n — 3k if n > 3k. If n < 3k, there are
no neighbors with k + 1 1’s. The result follows. O

Corollary 12 For the Fibonacci graph G, §(G,) = [%]

Proof: From Lemma 11, there is a vertex of degree k if n < 3k, that is, if
k> [g] Thus, the minimum degree for all vertices having at least [g] 1’s
equals [g] Suppose there is a k < [%] such that n — 2k < [g], that is,
k>n—[3] =|F|s02% > |P|+1ork> | B|+]=3[2F2]+32
2n-243 — 2ubl This implies k > %, and hence, k > [%]. In other words,

there is no value of k < [2] that gives a smaller number. O

Let £,(G) be the vertex connectivity of graph G and x.(G) be its edge
connectivity. It is well-known that ,(G) < ke(G) < §(G) for any graph
G. The next theorem shows these three invariants have the same value for
Fibonacci graphs.

Theorem 13 For the Fibonacci graph Gp, £,(Gpn) = ke(Gr) = 6(Gy) =
[31-

Proof: We proceed by induction on n, the result easily checked for 1 < n <
6. Corollary 12 shows that §(G,) = [2]. The remainder of the proof relies

on the structure described in Remark 1. Let n > 7 and S be a minimum
disconnecting set of vertices of G,,. We consider three cases.

1. SNV(Gy-1) does not disconnect the G,,—; and SNV (G,—2) does not
disconnect the G,,_3. It follows that all edges of M must be removed
so that G, is disconnected by S, that is, S must include at least one
vertex incident with each edge of M. Thus |S| > M| = |V(Gr-2)| =
F, > [3].

2. SNV(Gp-2) disconnects G,_z. It follows, by the inductive hypoth-
esis, that |SNV(G,-2)| = [%1 Now the two or more components
of Gp,—2 must not be joined using edges of M and paths in the G, _;
subgraph. Thus S must contain at least one vertex other than those

separating the G,_», so |S| > [252] +1 = [2H] > [3].
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3. SNV (Gy-1) disconnects G,.—1. There are two subcases to consider.

(a) Every component remaining in G,,_; contains a vertex incident
to an edge of M. Then an argument similar to that of Case 2
can be used to show |S| > [242] > [%]

(b) A component remaining in the G, _; lies entirely within the
Gp—-3 embedded in the G,—;. Note that this G,,_3 is joined to
another copy of G, —3 in the G,_; by a matching M’. If S docs
not separate the first mentioned G, _3, this component must be
separated from the rest of Gp—1 by removing a vertex incident
with each edge of M’. Thus |S| > |V(Gn_3)| = Faz1 > [2].
Otherwise S separates the G,—3. An argument similar to that
of Case 2 shows that at least one vertex must be in § to prevent
the component in the G,,—3 from being joined via the edges of
M’ to vertices outside the G, _3. Thus at least ["T's] vertices

are required to separate the G,_3 and |S| > [253] +1 = [%}].

In all cases, |S| > [2]. Since £.(Gn) < 6(G,) = [2], the result follows.
0

Because G,, is bipartite, the vertex chromatic number x,(G,) = 2. The
next result shows that the edge chromatic number x.(G,) = A(G,), where
A(Gy) is the maximum degree of G,,.

Proposition 14 For the Fibonacci graph G,,, x.(Gr) = A(G,) =n.

Proof: The result is true for n = 1 and n = 2. Proceeding by induction,
edge color G,,_; and G,,_; with n — 2 and n — 1 colors, respectively, where
the colors for G2 are a subset of those for G,,_;. Employ a new nth color
for all edges of the matching M. This gives a proper edge coloring of G,
with n colors. Since maximum degree is n, the result follows. 0O

The next theorem, on hamiltonian paths and cycles of Fibonacci graphs,
is used to find values for several invariants. Its proof uses the following
notation. Let P be a path in G,—1. Then appending a 0 to the label
of each vertex of P produces vertices that form a corresponding path in
G,. We say this path is the lift of P and denote it by P0. Other lifts (for
example, lifting P to Gp,+1) use corresponding notation (for example, P01).
Similarly, the lift of an edge e is denoted €0, €01, etc. Diagrams will be
presented to illustrate the proof. Unlabeled line segments on the diagrams
denote paths. Labcled line segments denote single edges, and a label M
indicates an edge in the matching. These matching edges are referred to as
M -edges.

Theorem 15 For k > 1, the Fibonacci graphs Gsp—y and Gs have hamil-
tonian paths, and G3r41 has a hamiltonian circuit.
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Proof: The proof is by induction on k. We actually prove somewhat more
than what is stated in the theorem: There is a hamiltonian path P of Gg;
whose lift P0 is a portion of a hamiltonian circuit C of Gary;.

The Fibonacci graphs G, and G3 have hamiltonian paths (10,00,01)
and (010,000, 001,101,100), respectively. Furthermore, G4 has hamil-
tonian circuit (0100,0000,0010, 1010, 1000,1001,0001, 0101,0100), which
contains the lift of a hamiltonian path in G3, (0100, 6000, 0010, 1010, 1000).
This establishes the result for £k = 1. Now assume for some k > 1 that
G3k-1 has a hamiltonian path and G3; has a hamiltonian path P whose
lift, PO, is contained in hamiltonian circuit C of Gax41. Our construction
for Gak42, G3k+3, and Gsx.pq4 uses Observation 2a.

1. A hamiltonian path in Gsp42 (refer to Figure 3).

t t0 z0 t01 =00
T 9
p PO |Q=C-e0|P01 Qo0
T z0 z01
¢ R
s s0 s0 s01 s00
Gk Gak+1 Gak+2
hamiltonian hamiltonian circuit C hamiltonian path R
path P hamiltonian path Q

Figure 3: Constructing a hamiltonian path in G342

Let the end vertices of P be s and ¢, and e = {s,z} be the edge of P
incident to 5. The lift e0 = {s0,z0} of e lies in C. Let @ = C — €0,
so @ is a hamiltonian path in G341 with end vertices sO and z0.
Consider the lifts P01 and QO in G3r4+2. The following trace yields a
hamiltonian path R in Gago:

501 to s00 using an M-edge

500 to 00 along Q0

z00 to z01 using an M-edge

z01 to t01 along P01

2. A hamiltonian path in Gji3 (refer to Figure 4).

Let f = {u,v} be an edge of Q and S be the hamiltonian path
C — f in G3pq1 with end vertices u and v. By construction, the
hamiltonian path R in G3i42 contains Q0 and hence the lifted edge
f0 = {u0,v0}. Consider the lifts RO and S01. The following trace
yields a hamiltonian path T of Gag43:

5010 to u00 along RO

200 to u01 using an M-edge
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x0 T v 101 v01
0 Y0 s=Cc-f| fo W R 501
u u0
s0 -l- U 501 101 T
Gakt1 G3k+2 G3k+3
hamiltonian circuit C hamiltonian hamiltonian path T
hamiltonian path S path R

Figure 4: Constructing a hamiltonian path in G343

101 to v01 along S01
v01 to v00 using an M-edge
v00 to t010 along RO

3. A hamiltonian circuit in G3gy4 that contains T0, the lift of T
(refer to Figure 5).

t0101 o t0160

RO1 T0

s01016—=2-d 50100
G3k+4

hamiltonian circuit

Figure 5: Constructing a hamiltonian circuit in Gar44

Consider the lifts R01 and T0 in G3;.+4. The following trace yields a
hamiltonian circuit in G344 that contains T°0:

50101 to s0100 using an M-edge

50100 to t0100 along T0

$0100 to t0101 using an M-edge

$0101 to s0101 along RO1

(]
The edge independence number, e(G), of graph G is the cardinality of a
maximum matching. If 3.(G) = [L‘_’_gﬂlj , the matching is said to be perfect
if [V(G)] is cven and near perfect if |V(G)| is odd. The vertex independence

number, B, (G), of graph G is the cardinality of a largest set of independent
vertices.
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Corollary 16 For the Fibonacci graph G, B.(Gn) = I_WJ
Corollary 17 For the Fibonacci graph G, (,(Gn) = [Mg—"n]

Proof: Since G, has a hamiltonian path, 8,(G,) < [ v g; . Since G,

is bipartite, 8,(Gr) > l- v g“)']. (m]

—

The vertez cover number, a,(G), of graph G is the minimum number
of vertices such that every edge is incident to at least one of them. Using
Gallai’s theorem (see Chartrand and Zhang [2], page 191) 8,(G) +a,(G) =
|V(G)] for any graph G yields the following.

Corollary 18 For the Fibonacci graph Gp, a,(Gy) = ll"(#lj

The vertex clique cover number, 8,(G), of graph G is the minimum
number of complete subgraphs required to include all the vertices of G.

Proposition 19 For the Fibonacci graph G, 0,(Gr) = I-J_‘L(g_ﬂ]

Proof: Since G, is bipartite, 6,(G,) > [M%n-l The reverse inequality
follows from the fact that G, has a hamiltonian path. O

4 Open Problems

The following problems seem to be difficult. We present them with some
partial results.

Problem 1

Determine the domination number, ¥(G,,), that is, the cardinality of a
smallest set S C V(G,,) such that every vertex not in S is adjacent to
at least one vertex of S. Results so far give only fragmentary informa-
tion. The following exact values and bounds have been established!
(here and in other tables below the values were obtained from a com-
bination of direct computations and computer determinations):

1Some of these bounds were obtained by a genetic algorithm developed by Rollins Col-
lege undergraduates Sarah Connelly, Sécrates Pérez, and Dana Singer during a summer
research project.
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n_ (Gn)
1 1
2 1
3 2
4 3
5 4
6 ]
7 8
8 <12
9 <18
10 <29
11 <46
12 <75

We have only crude general bounds, given in the next two observa-
tions.

Observation 20 For the Fibonacci graph G, [F ’5"’] > v(Gn) 2

Fui2
n+l°

Proof: The maximum degree of Gy, is n, so one vertex can dominate
at most n 4+ 1 vertices. The lower bound follows since F, 42 is the
number of vertices of G,,. The upper bound is a direct consequence
of Theorem 15. O

The bounds of Observation 20 seem weak. The lower bound is based
on a maximum degree of n. But only one vertex, 00...0, has this
degree and most other vertices have much smaller degree.

Observation 21 For the Fibonacci graph G, n > 8, v(Gp) < F_1—
F‘n—7-

Proof: From the above table, 7y(G7) = 8 = Fs and v(Gg) < 12 =
F7 — 1. The result follows inductively by recognizing, for n > 9, that
7(Gn) < 'Y(Gn—l) + '7(Gn—2)- |

Problem 2

Determine the packing number, P(G,), that is, the cardinality of a
largest set S C V(G,) such that the closed ncighborhoods of the
vertices of S are pairwise disjoint. The following values have been
determined:
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n  P(G,)
1 1

2 1

3 2

4 2

5 3

6 5

7 6

8 9

9 14

A bound similar to the lower bound in Observation 20 is given in the
following.

Observation 22 For the Fibonacci graph Gn, P(Gn) > Sz

Proof: Let N;[z] be the distance 2 closed neighborhood of vertex z,
that is, the set of vertices distance at most 2 from z. Using the fact
that the maximum degree of G, is n, we have for any vertex z that
|N2[z]] 14+ n+n(n—-1) =n%+1. Let X be a maximum packing
set. Then the number of vertices of distance at most two from at least
one of the vertices of X is at most | Uzex Na[z]| < (n? + 1)|X|. Any
vertices not in this union are distance at least three from every vertex
of X. But any such vertex then could be added to X, a contradiction.

Thus, (n?+1)|X| 2 [Usex Nalz]| = [V(G)| s0 | X| > iSall = Faa,
O

This bound probably can be improved significantly.

Problem 3

Determine the bandwidth, B(G,), that is, miny maxe=,., | f(w) — f(v)|
where f ranges over all bijections f : V(G,) — {1,2,...,|V(Gpn)|}
and e ranges over all edges of G,,. Some values and bounds are known.
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n  B(G,)

1 1

2 1

3 2

4 3

5 4

6 6

7 <9

8 <15

9 <21

10 <33

11 <48

12 <76

13 <112

14 <179
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