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Abstract

The Kneser graph K(m, n) (when m > 2n) has the n-subsets of an m-set
as its vertices, two vertices being adjacent in K(m, n) whenever they
are disjoint sets. The kth chromatic number of any graph G (denoted
by x(G) ) is the least integer ¢ such that the vertices can be assigned
k-subsets of {1, 2, ..., t} with adjacent vertices receiving disjoint
k-sets. S. Stahl has conjectured that, if Xk = gn - r where g > 1 and

0 < r < n, then y(K(m, n)) = gm — 2r. This expression is easily
verified when r = 0; Stahl has also established its validity for g = 1, for
m=2n+1and for n=2,3. We show here that the expression is also
valid for all g > 2 in the following further classes of cases:

() 2n+1<m<n+r" (0O<r<n,aln>1)
(i) 4<n<6 and 17 <2 (all m);
(iii) 7<n<11 andr=1 (all m);

(iv) (n, r, m)=(7,2, 18), (12, 1,37), (12, 1, 38) or (13, 1, 40).
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Introduction

Fractional graph theory [7] has been widely studied in recent years.
Many graph parameters have fractional analogues that bear the same
relation to the original as a linear programming problem bears to its
integer relaxation. One of the first parameters to be ‘fractionalized’
was the chromatic number.

Let [t] denote the set of integers {1, 2, ..., f}. Givena graph G, its

fractional chromatic number (G) is defined as inf, . & "IfG))

where y(G), the kth chromatic number of G, is the least integer ¢ for
which the vertices of G can be assigned k-subsets of [f] such that
adjacent vertices receive disjoint k-sets. It is shown in [3] that

G
Xr(G)=lim;_,, (l%l) , for any graph G, and that this limit is

always achieved for some k € Z*. Such a colouring is said to be a
k-fold colouring of G.

Given such a colouring of G, it is useful to consider it from a dual point
of view, as a set of ¢ colour sets C), ..., C,, each C; being a set of
pairwise non-adjacent vertices of G, such that each vertex belongs to &
colour sets. We shall adopt this viewpoint.

For positive integers m > 2n > 4 the Kneser graph K(m, n) has all the
n-subsets of [m] as its vertices, two such vertices being adjacent
whenever they are disjoint subsets of [m]. These graphs play an
important role in fractional graph theory, since an n-fold colouring of a
graph G using at most m colours may be regarded as a homomorphism:
G — K(m, n).

Often the definition of Kneser graph is extended to the case m = 2n;
however, the graph is then bipartite and its chromatic properties are
rather trivial, so we shall assume m > 2n > 4 throughout. In particular,
this condition is assumed in the statements of both theorems below.

It is easily established (see [7], for example) that
X(K(m, n)) = m/n, 1

but difficult to find y(K(m, n)) for general k except when &k is a
multiple of n. (In this case, an easy counting argument shows that

Xy K(m, n)) = qm (2)
for any positive integer g.)

Even the value & =1 is interesting; Kneser [4] conjectured
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X(K(m, n)) =m-2n+2, 3)

and this was eventually proved by Lovasz [S] using the first of a
number of topological arguments. A purely combinatorial proof [6]
was not published till 2004.

In [8], Stahl established the inequality

Zis(G) 2 (G) + 2. )

Repeated use of this inequality, together with (2), shows that if g > 1
and 0 <r <p, then

Xyn- r(K(m, n)) < gm—2r. (5)
Stahl [8], [9] conjectured that this is actually an equality:
Yyn. +(K(m, n)) = qm =2r. (6)

In [8] he showed that the conjecture holds when m =2n + 1, and in [9]
he extended the result, showing that it holds when » =2, 3. As he also
noted, (3) and (4) show that

the conjecture holds for g = 1 and 0 <r <n. Thus, we now assume
qg=2.

Our first result has a straightforward proof:
Theorem 1 Letg>2and0<r<n. If 2 <2 2+l, then (6) holds.
n r

Proof. By (5), we need only show that gm — 2r is a lower bound. Now
by (1), together with the definition of fractional chromatic number,

m4n=r _ om

Kyn - AK(m, n)) 2 “ﬂ >gm-2r-1,
n

. m 1
since —<2+—. |
n r

In the next section, we extend the argument of [9] to obtain a rather
technical proposition, which we then use to prove the main theorem:

Theorem 2 Stahl’s conjecture (6) holds for g>2 and m >2n + 1, for
the following values of n, r:

(i) 4<n<6: 1sr<2;

Gi) T<n<lil:ir=1.
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In addition, the conjecture holds for q > 2 and the following four sets
of values for n, r, m:

(n,r,m)=(7,2,18), (12, 1,37), (12, 1,38), (13, 1, 40).

2. Generalizing an argument by Stahl

Proposition3 Letg>2,n>4,1<r<n. If for some integer
M>n(2 + r ", we have

(m-—2r)((m_])-(m—n_l)-i-l)-i-((q—])m— 1)('"_]J < (qn—r)(m)

n-1 n-1 n—1 n
@n<m< M), %)

then Yy - AK(m, n)) =qm -2r 2n<m<M). (8)

Proof. Note first that (7) always holds when 2n <m < n(2 + r’'");
indeed, the stronger inequality

(m—2r)(m—lJ+((q— 1)m-1)('"' 1) <(gn- r)('") holds under this
n-1 n-1 n

.. . (m] m (m-— ]}
condition since =
n nin-1

Assume, then, that (7) holds also for n(2 + ") <m < M. Suppose for
a contradiction that y,,, _(K(m, n)) < gm — 2r for some m < M, and let
m be the least such value; thus m > n(2 + r').

We now follow the method of proof of the main result of [9]. By
supposition, there exists a (gn — r)-fold colouring of K(m, n) using at
most gm —2r — 1 colour classes. We may assume that exactly

gm —2r -1 classes, C\, ..., Cgy - 2, ), are used, some of which may be
empty.

The vertices of K(m, n) are the n-subsets of {m], so that the colour
classes are families of such n-subsets, and the pairwise non-adjacency
requirement implies that any two n-subsets belonging to the same
colour class must intersect. For 1 <i<m, a colour class all of whose
vertices contain i is said to be centred at i.
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Suppose that at least g of the colour classes are centred at some fixed
i; we may assume i = m and that the last g colour classes,
Cym-1y-2rs +--» Cym -2, 1, are so centred. Let X denote the set of
vertices of K(m, n) that contain m, and let

Di=C\X (i=1,...,g(m-1)=-2r-1).

Then Dy, ..., Dy 1y-2--1 is a (gn — r)-fold colouring of K(m - 1, n)
using g(m — 1) — 2r — 1 colour classes, contradicting the minimality
assumption.

Thus, for each integer ie [m], at most g — 1 of the colour classes are
centred at /. Hence, any vertex of K(m, n) must be contained in at most
n(g — 1) centred colour classes. But the colour classes constitute a

(gn — r)-fold colouring, and thus each vertex is contained in at least

n —r non-centred colour classes. That is to say, the non-centred colour
classes constitute an (n — r)-fold colouring of K(m, n). But (as noted
above) (6) holds for g = 1, and so there are at least m — 2r non-centred
colour classes.

Now by the Erd6s-Ko-Rado Theorem [1] and the Hilton-Milner

m —
Theorem [2], each centred colour class has size at most ( | ) and
n —

each non-centred colour class has size at most

-1 —n—
(m ] - (m " ]J+ 1. Therefore,
n—1 n-1

(m—2r)((m_])—(m-n-])+]J+((q—l)m—l)(m_]]z(qn—r)(m]
n-1 n-1 n-1 n

contrary to assumption.

Thus there is no m € [2n+ 1, M] such that y,,_ (K(m, n)) <qm -2r,
and the proposition is established. u
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3. The proof of the main theorem

In this proof, we assume n > 4 and make a careful study of the
inequality (7).

L . . (m) m{m-=1
Again using the identity ( J=—( ], (7) may be recast as
n) nin-1
follows:
Sim, n, r)<g(m, n, r), )
where

f(m,n,r):(ﬂ—Zr—l)(m"l) . g(m, n,r)=(m—2r)((m—n_]]_]]'
n n—1 n-1

We have g(m, n, r) > 0 for all m, n, r under consideration, and so (7)
holds whenever fim, n, r) <0 (that is, whenever m < n(2 + r™")).

Let i(n, ) =min{m: m>n@2+r")} =1 +|_n(2 +r")J. Itis

arithmetically straightforward to verify that (9) holds when m = 1(n, r),
for all values of n, r considered in parts (i) and (ii) of the theorem, and
also when (n, r) = (7, 2), (12, 1) and (13, 1). These last three pairs of
values give t(n, r) = 18, 37 and 40 respectively, and it is also easy to
verify that {12, 1,38) < g(12, 1, 38). Thus the four particular cases in
the final assertion of the theorem are verified; but in order to establish

the more important parts (i) and (ii), we must consider m > t(n, r).

For the remainder of the argument, then, we are concerned with parts
(i) and (ii) of the theorem, and we assume f{m, n, r) > 0.

-n-1
Let h(m,n,r)=(m— 2r)(m nl ], and consider the functions
n —

_J(m+L,n,r)g(mn,r)
Glm,n,r)= g(m+1L,nr)f(mn,r) ’
_f(m+\,n,r)h(m,n,r)
- hW(m+,n,r)f(m,nr) '

H(m,n,r)
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, it follows that

G(m, n, r) < H(m, n, r). In particular, G(im, n, r) <1 whenever
H(m, n, r) < 1, that is, whenever

Sim+ 1, n,r)h(m, n, ry<h(m + 1, n, r)f(im, n, r).
This inequality reduces to
(rm+ D)=Qr+ Dnym(m=2r)(m-2n+1) <
(rm—Qr+ Dn)(m—n+ 1)m=2r+ 1)(m - n). (10)

The terms of order 3 and 4 in m cancel, yielding the following
quadratic inequality in m:

m*(=rn* =27 + 3rn+n) +
mQrn® + 2P~ Tr* + 3rn =27 =3 + 0’ + 2rn’ +n) +
(7’ = n* + 4P - 4r’n’) < 0. (1)
Consider the m” coefficient of (11). For r> 1, n> 4 we have
- =2 +3rn + n<—r(n’ + 2r - 4n) <0,

and so inequality (1 1) holds whenever m exceeds the larger root,
An, r), of the corresponding quadratic equation,

m(—=n® =27 + 3rn + n) +
mQrin + 20 = Trn* + 3rm -2 = 3n° + 1 + 21’ +n) +
(7 =’ +4r’n’ - 4n’) = 0. (12)

f(m+1,n,r)g(m,n,r)
g(m+1,n,r)f(m,n,r)
m > myg, and thus f{im, n, r) < g(m, n, r) (m > mp) provided that
Smg, n, r) < g(mq, n, r). 1t is straightforward to check that the latter
condition holds for the values of #, r given in the statement of the
theorem. More explicit information is given in Table 1 of the
Appendix.

Let my = [p(n, r)]. Then < | whenever

For each value of n, r in the statement of the theorem, we must now
S (m,n,r)
— (
g(m,n,r)
(10). We note that A(n, ¥) <2 whenr=1and4 <n<11, while

consider 2n <m <my). Let A(n, r) be the lesser root of
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Aln, r)<4 whenr=2and 4 <n<6. Thus, H(m, n, r) is positive
S(m,n,r)

for 2n + 1 < m < my, so that
h(m,n,r)

is increasing in this range.

Clearly, glmnr) is an increasing function of m, and so to check that
h(m,n,r)
S(m,n,r)
g(m,n,r)
ng = mo(n, r) and verify that
)
g(,u,",")= n-1 >f(m0,n,r)
h(u,n,r) (,u—n-]) h(mg,n,r)

n—1

<1 (2n<m <myn, r)), it is sufficient to let u= 1fn, r),

Table 1 of the Appendix shows the quadratic equation (12), and the

values of u(n, r) and my(n, r), for all relevant n, r. 1t is straightforward
to check that the inequality holds comfortably in all these cases.

Thus (7), and therefore (8), holds for all m > 2n (for the given values of
n, r); and this proves parts (i) and (ii). |

4. Appendix

In Table 1, we give explicitly, for the values of n, r required by the
statement of Theorem 2: the quadratic equation (12) (multiplied by

=1); iAn, r); and my(n,r) = [p(n,r)].
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nandr equation Mn, r) mo(n, r)

n=4,r=1 2m’ — 86m+ 144=0 13 42
n=4,r=2 12m* = 228m +720=0 1 15
n=5r=1 7m® —203m +300=0 16 28
n=5r=2 23m* — 467m + 1500 = 0 13 17
n=6,r=1 14m* — 394m + 540 =0 19 27
n=6,r=2 38m’ - 838m+2700=0 16 19
n=17r= 23m*— 67Tm+ 882=0 22 29
n=8,r=1 34m* - 1070m +1344=0 25 31
n=9,r=1 47m* = 1591m +1944=0 28 33
n=10,r=1  62m"-2258m+2700=0 31 36
n=1lL,r=1  79m" -3089m+3630=0 34 38
Table 1
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