Some multiple chromatic numbers of Kneser graphs

Fred Holroyd

Department of Pure Mathematics, The Open University,
Walton Hall, Milton Keynes
MK7 6AA, United Kingdom
F.C.Holroyd@open.ac.uk

Andonis Yannakopoulos

8 Ardley Close, Dunstable, Bedfordshire

LU6 3TA, United Kingdom

Tony.aymaths@ntlworld.com

Abstract

The Kneser graph K(m, n) (when m > 2n) has the n-subsets of an m-set as its vertices, two vertices being adjacent in K(m, n) whenever they are disjoint sets. The kth chromatic number of any graph G (denoted by $\chi_k(G)$) is the least integer t such that the vertices can be assigned k-subsets of $\{1, 2, ..., t\}$ with adjacent vertices receiving disjoint k-sets. S. Stahl has conjectured that, if k = qn - r where $q \ge 1$ and $0 \le r < n$, then $\chi_k(K(m, n)) = qm - 2r$. This expression is easily verified when r = 0; Stahl has also established its validity for q = 1, for m = 2n + 1 and for n = 2, 3. We show here that the expression is also valid for all $q \ge 2$ in the following further classes of cases:

- (i) $2n+1 < m \le n(2+r^{-1})$ (0 < r < n, all n > 1);
- (ii) $4 \le n \le 6$ and $1 \le r \le 2$ (all m);
- (iii) $7 \le n \le 11$ and r = 1 (all m);
- (iv) (n, r, m) = (7, 2, 18), (12, 1, 37), (12, 1, 38) or (13, 1, 40).

Introduction

Fractional graph theory [7] has been widely studied in recent years. Many graph parameters have fractional analogues that bear the same relation to the original as a linear programming problem bears to its integer relaxation. One of the first parameters to be 'fractionalized' was the chromatic number.

Let [t] denote the set of integers $\{1, 2, ..., t\}$. Given a graph G, its fractional chromatic number $\chi(G)$ is defined as $\inf_{k \in Z^+} (\frac{\chi_k(G)}{k})$

where $\chi_k(G)$, the kth chromatic number of G, is the least integer t for which the vertices of G can be assigned k-subsets of [t] such that adjacent vertices receive disjoint k-sets. It is shown in [3] that

$$\chi_f(G) = \lim_{k \to \infty} (\frac{\chi_k(G)}{k})$$
, for any graph G, and that this limit is

always achieved for some $k \in Z^+$. Such a colouring is said to be a k-fold colouring of G.

Given such a colouring of G, it is useful to consider it from a dual point of view, as a set of t colour sets C_1, \ldots, C_t , each C_t being a set of pairwise non-adjacent vertices of G, such that each vertex belongs to k colour sets. We shall adopt this viewpoint.

For positive integers $m > 2n \ge 4$ the Kneser graph K(m, n) has all the n-subsets of [m] as its vertices, two such vertices being adjacent whenever they are disjoint subsets of [m]. These graphs play an important role in fractional graph theory, since an n-fold colouring of a graph G using at most m colours may be regarded as a homomorphism: $G \to K(m, n)$.

Often the definition of Kneser graph is extended to the case m = 2n; however, the graph is then bipartite and its chromatic properties are rather trivial, so we shall assume $m > 2n \ge 4$ throughout. In particular, this condition is assumed in the statements of both theorems below.

It is easily established (see [7], for example) that

$$\chi_{f}(K(m, n)) = m/n, \tag{1}$$

but difficult to find $\chi_k(K(m, n))$ for general k except when k is a multiple of n. (In this case, an easy counting argument shows that

$$\chi_{un}(K(m, n)) = qm \tag{2}$$

for any positive integer q.)

Even the value k = 1 is interesting; Kneser [4] conjectured

$$\chi_1(K(m, n)) = m - 2n + 2,\tag{3}$$

and this was eventually proved by Lovász [5] using the first of a number of topological arguments. A purely combinatorial proof [6] was not published till 2004.

In [8], Stahl established the inequality

$$\chi_{k+1}(G) \ge \chi_k(G) + 2. \tag{4}$$

Repeated use of this inequality, together with (2), shows that if $q \ge 1$ and 0 < r < n, then

$$\chi_{m-r}(K(m, n)) \le qm - 2r. \tag{5}$$

Stahl [8], [9] conjectured that this is actually an equality:

$$\chi_{un-r}(K(m,n)) = qm - 2r. \tag{6}$$

In [8] he showed that the conjecture holds when m = 2n + 1, and in [9] he extended the result, showing that it holds when n = 2, 3. As he also noted, (3) and (4) show that

the conjecture holds for q = 1 and 0 < r < n. Thus, we now assume $q \ge 2$.

Our first result has a straightforward proof:

Theorem 1 Let
$$q \ge 2$$
 and $0 < r < n$. If $2 < \frac{m}{n} < 2 + \frac{1}{r}$, then (6) holds.

Proof. By (5), we need only show that qm - 2r is a lower bound. Now by (1), together with the definition of fractional chromatic number,

$$\chi_{qn-r}(K(m,n)) \geq \frac{m(qn-r)}{n} = qm - \frac{mr}{n} > qm - 2r - 1,$$

since
$$\frac{m}{n} < 2 + \frac{1}{r}$$
.

In the next section, we extend the argument of [9] to obtain a rather technical proposition, which we then use to prove the main theorem:

Theorem 2 Stahl's conjecture (6) holds for $q \ge 2$ and $m \ge 2n + 1$, for the following values of n, r:

(i)
$$4 \le n \le 6$$
: $1 \le r \le 2$;

(ii)
$$7 \le n \le 11$$
: $r = 1$.

In addition, the conjecture holds for $q \ge 2$ and the following four sets of values for n, r, m:

$$(n, r, m) = (7, 2, 18), (12, 1, 37), (12, 1, 38), (13, 1, 40).$$

2. Generalizing an argument by Stahl

Proposition 3 Let $q \ge 2$, $n \ge 4$, $1 \le r < n$. If, for some integer $M > n(2 + r^{-1})$, we have

$$(m-2r)\left(\binom{m-1}{n-1} - \binom{m-n-1}{n-1} + 1\right) + ((q-1)m-1)\binom{m-1}{n-1} < (qn-r)\binom{m}{n}$$

$$(2n < m \le M),$$
(7)

then
$$\chi_{qn-r}(K(m, n)) = qm - 2r \ (2n < m \le M).$$
 (8)

Proof. Note first that (7) always holds when $2n < m < n(2 + r^{-1})$; indeed, the stronger inequality

$$(m-2r)\binom{m-1}{n-1} + ((q-1)m-1)\binom{m-1}{n-1} < (qn-r)\binom{m}{n} \text{ holds under this}$$
condition since $\binom{m}{n} = \frac{m}{n}\binom{m-1}{n-1}.$

Assume, then, that (7) holds also for $n(2 + r^{-1}) \le m \le M$. Suppose for a contradiction that $\chi_{qn-r}(K(m, n)) < qm - 2r$ for some $m \le M$, and let m be the least such value; thus $m \ge n(2 + r^{-1})$.

We now follow the method of proof of the main result of [9]. By supposition, there exists a (qn-r)-fold colouring of K(m, n) using at most qm-2r-1 colour classes. We may assume that exactly qm-2r-1 classes, $C_1, \ldots, C_{qm-2r-1}$, are used, some of which may be empty.

The vertices of K(m, n) are the *n*-subsets of [m], so that the colour classes are families of such *n*-subsets, and the pairwise non-adjacency requirement implies that any two *n*-subsets belonging to the same colour class must intersect. For $1 \le i \le m$, a colour class all of whose vertices contain i is said to be *centred at i*.

Suppose that at least q of the colour classes are centred at some fixed i; we may assume i = m and that the last q colour classes, $C_{q(m-1)-2r}, \ldots, C_{qm-2r-1}$, are so centred. Let X denote the set of vertices of K(m, n) that contain m, and let

$$D_i = C_i \setminus X \quad (i = 1, ..., q(m-1) - 2r - 1).$$

Then $D_1, ..., D_{q(m-1)-2r-1}$ is a (qn-r)-fold colouring of K(m-1, n) using q(m-1)-2r-1 colour classes, contradicting the minimality assumption.

Thus, for each integer $i \in [m]$, at most q-1 of the colour classes are centred at i. Hence, any vertex of K(m, n) must be contained in at most n(q-1) centred colour classes. But the colour classes constitute a (qn-r)-fold colouring, and thus each vertex is contained in at least n-r non-centred colour classes. That is to say, the non-centred colour classes constitute an (n-r)-fold colouring of K(m, n). But (as noted above) (6) holds for q=1, and so there are at least m-2r non-centred colour classes.

Now by the Erdős-Ko-Rado Theorem [1] and the Hilton-Milner

Theorem [2], each centred colour class has size at most $\binom{m-1}{n-1}$ and

each non-centred colour class has size at most

$$\binom{m-1}{n-1} - \binom{m-n-1}{n-1} + 1$$
. Therefore,

$$(m-2r)\left(\binom{m-1}{n-1} - \binom{m-n-1}{n-1} + 1\right) + ((q-1)m-1)\binom{m-1}{n-1} \ge (qn-r)\binom{m}{n}$$

contrary to assumption.

Thus there is no $m \in [2n+1, M]$ such that $\chi_{qn-r}(K(m, n)) < qm-2r$, and the proposition is established.

3. The proof of the main theorem

In this proof, we assume $n \ge 4$ and make a careful study of the inequality (7).

Again using the identity $\binom{m}{n} = \frac{m}{n} \binom{m-1}{n-1}$, (7) may be recast as

follows:

$$f(m, n, r) < g(m, n, r),$$
 (9)

where

$$f(m,n,r) = \left(\frac{rm}{n} - 2r - 1\right) \binom{m-1}{n-1}; \ g(m,n,r) = (m-2r) \left(\binom{m-n-1}{n-1} - 1\right).$$

We have g(m, n, r) > 0 for all m, n, r under consideration, and so (7) holds whenever $f(m, n, r) \le 0$ (that is, whenever $m \le n(2 + r^{-1})$).

Let $\mu(n, r) = \min\{m: m > n(2 + r^{-1})\} = 1 + \lfloor n(2 + r^{-1}) \rfloor$. It is arithmetically straightforward to verify that (9) holds when $m = \mu(n, r)$, for all values of n, r considered in parts (i) and (ii) of the theorem, and also when (n, r) = (7, 2), (12, 1) and (13, 1). These last three pairs of values give $\mu(n, r) = 18$, 37 and 40 respectively, and it is also easy to verify that f(12, 1, 38) < g(12, 1, 38). Thus the four particular cases in the final assertion of the theorem are verified; but in order to establish the more important parts (i) and (ii), we must consider $m > \mu(n, r)$.

For the remainder of the argument, then, we are concerned with parts (i) and (ii) of the theorem, and we assume f(m, n, r) > 0.

Let
$$h(m, n, r) = (m - 2r) \binom{m - n - 1}{n - 1}$$
, and consider the functions

$$G(m,n,r) = \frac{f(m+1,n,r)g(m,n,r)}{g(m+1,n,r)f(m,n,r)},$$

$$H(m,n,r) = \frac{f(m+1,n,r)h(m,n,r)}{h(m+1,n,r)f(m,n,r)}.$$

Since
$$\frac{\binom{m-n-1}{n-1}-1}{\binom{m-n}{n-1}-1} < \frac{\binom{m-n-1}{n-1}}{\binom{m-n}{n-1}}$$
, it follows that

G(m, n, r) < H(m, n, r). In particular, G(m, n, r) < 1 whenever H(m, n, r) < 1; that is, whenever

$$f(m+1, n, r)h(m, n, r) < h(m+1, n, r)f(m, n, r)$$

This inequality reduces to

$$(r(m+1)-(2r+1)n)m(m-2r)(m-2n+1) < (rm-(2r+1)n)(m-n+1)(m-2r+1)(m-n).$$
(10)

The terms of order 3 and 4 in m cancel, yielding the following quadratic inequality in m:

$$m^{2}(-rn^{2} - 2r^{2} + 3rn + n) +$$

$$m(2r^{2}n^{2} + 2r^{2}n - 7rn^{2} + 3rn - 2r^{2} - 3n^{2} + n^{3} + 2rn^{3} + n) +$$

$$(n^{3} - n^{2} + 4r^{2}n^{2} - 4r^{2}n^{3}) < 0.$$
(11)

Consider the m^2 coefficient of (11). For $r \ge 1$, $n \ge 4$ we have

$$-rn^2 - 2r^2 + 3rn + n \le -r(n^2 + 2r - 4n) < 0,$$

and so inequality (11) holds whenever m exceeds the larger root, $\rho(n, r)$, of the corresponding quadratic equation,

$$m^{2}(-rn^{2} - 2r^{2} + 3rn + n) +$$

$$m(2r^{2}n^{2} + 2r^{2}n - 7rn^{2} + 3rn - 2r^{2} - 3n^{2} + n^{3} + 2rn^{3} + n) +$$

$$(n^{3} - n^{2} + 4r^{2}n^{2} - 4r^{2}n^{3}) = 0.$$
(12)

Let
$$m_0 = \lceil \rho(n,r) \rceil$$
. Then $\frac{f(m+1,n,r)g(m,n,r)}{g(m+1,n,r)f(m,n,r)} < 1$ whenever

 $m \ge m_0$, and thus f(m, n, r) < g(m, n, r) $(m > m_0)$ provided that $f(m_0, n, r) < g(m_0, n, r)$. It is straightforward to check that the latter condition holds for the values of n, r given in the statement of the theorem. More explicit information is given in Table 1 of the Appendix.

For each value of n, r in the statement of the theorem, we must now consider $\frac{f(m,n,r)}{g(m,n,r)}$ ($2n < m < m_0$). Let $\lambda(n,r)$ be the lesser root of (10). We note that $\lambda(n,r) < 2$ when r = 1 and $4 \le n \le 11$, while

 $\lambda(n, r) \le 4$ when r = 2 and $4 \le n \le 6$. Thus, H(m, n, r) is positive for $2n + 1 \le m \le m_0$, so that $\frac{f(m, n, r)}{h(m, n, r)}$ is increasing in this range.

Clearly, $\frac{g(m, n, r)}{h(m, n, r)}$ is an increasing function of m, and so to check that

$$\frac{f(m,n,r)}{g(m,n,r)} < 1 \quad (2n < m < m_0(n,r)), \text{ it is sufficient to let } \mu = \mu(n,r),$$

 $m_0 = m_0(n, r)$ and verify that

$$\frac{g(\mu, n, r)}{h(\mu, n, r)} = \frac{\binom{\mu - n - 1}{n - 1} - 1}{\binom{\mu - n - 1}{n - 1}} > \frac{f(m_0, n, r)}{h(m_0, n, r)}.$$

Table 1 of the Appendix shows the quadratic equation (12), and the values of $\mu(n, r)$ and $m_0(n, r)$, for all relevant n, r. It is straightforward to check that the inequality holds comfortably in all these cases.

Thus (7), and therefore (8), holds for all m > 2n (for the given values of n, r); and this proves parts (i) and (ii).

4. Appendix

In Table 1, we give explicitly, for the values of n, r required by the statement of Theorem 2: the quadratic equation (12) (multiplied by -1); $\mu(n, r)$; and $m_0(n, r) = \lceil \rho(n, r) \rceil$.

n and r	equation	$\mu(n, r)$	$m_0(n,r)$
n = 4, r = 1	$2m^2 - 86m + 144 = 0$	13	42
n = 4, r = 2	$12m^2 - 228m + 720 = 0$	11	15
n = 5, r = 1	$7m^2 - 203m + 300 = 0$	16	28
n = 5, r = 2	$23m^2 - 467m + 1500 = 0$	13	17
n = 6, r = 1	$14m^2 - 394m + 540 = 0$	19	27
n = 6, r = 2	$38m^2 - 838m + 2700 = 0$	16	19
n = 7, r = 1	$23m^2 - 677m + 882 = 0$	22	29
n = 8, r = 1	$34m^2 - 1070m + 1344 = 0$	25	31
n = 9, r = 1	$47m^2 - 1591m + 1944 = 0$	28	33
n = 10, r = 1	$62m^2 - 2258m + 2700 = 0$	31	36
n = 11, r = 1	$79m^2 - 3089m + 3630 = 0$	34	38
	T. 11. 1		

Table 1

Acknowledgement

The first-named author is indebted to East Kentucky University (EKU), Richmond, Kentucky, USA, for financing a visit for a week in February 2005, and to the Mathematics Department of EKU for their hospitality and conviviality during the week. In particular, the first-named author had very useful discussions with Anthony Hilton and Mathew Cropper, and later by email with John Goldwasser.

References

- [1] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, *Quart. J. Math. Oxford* (2) 12 (1961), 313 320.
- [2] A.J.W. Hilton and E.C. Milner, Some intersection theorems for systems of finite sets, *Quart. J. Math. Oxford* (2) 18 (1967) 369 384.
- [3] A.J.W. Hilton, R. Rado and S.H. Scott, Multicolouring graphs and hypergraphs, *Nanta Mathematica* IX (1976), 152 155.
- [4] M. Kneser, Aufgabe 300, Jahresber. Deutsch. Math-Verein. 2, 58 (1955), 27.

- [5] L. Lovász, Kneser's conjecture, chromatic number and homotopy, J. Combin. Theory Ser. A 25 (1978), 319 324.
- [6] J. Matoušek, A combinatorial proof of Kneser's conjecture, Combinatorica 24 (1) (2004), 163 170.
- [7] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory: A Rational Approach to the Theory of Graphs, Wiley Interscience, New York (1997).
- [8] S. Stahl, *n*-tuple colourings and associated graphs, *J. Combin. Theory Ser. B* **20** (1976), 185 203.
- [9] S. Stahl, The multichromatic numbers of some Kneser graphs, *Discrete Math.* 185 (1998), 287 291.