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ABSTRACT. Let G be a graph of size n with vertex set V(G) and
edge set E(G). A o-labeling of G is a one-to-one function f : V(G) —
{0,1,...,2n} such that {| f(u)—f(v)| : {u,v} € E(G)} ={1,2,...,n}.
Such a labeling of G yields cyclic G-decompositions of K2,41 and of
Koy 42 — F, where F is a 1-factor of K2n42. It is conjectured that
a 2-regular graph of size n has a o-labeling if and only if n =0 or 3
{mod 4). We show that this conjecture holds when the graph has at
most three components.

1. INTRODUCTION

If a and b are integers we denote {a,a + 1,...,b} by [a,b] (if @ > b,
[a,b] = 9). Let N denote the set of nonnegative integers and Z,, the group
of integers modulo n. For a graph G, let V(G) and E(G) denote the vertex
set of G and the edge set of G, respectively. The order and the size of a
graph G are |V(G)| and |E(G)|, respectively. Let k be a positive integer
and let V(K}) = [0,k — 1]. The length of an edge {i,5} in K}, is defined as
min{|i — j|,k — |i — j|}. It is easy to see that if k is odd, then K} consists
of k edges of length i fori = 1,2,..., k—gl Similarly, if k is even, then K},
consists of &£ edges of length ¢ for i =1,2,..., % —1and % edges of length
-'25; moreover, in this case, the edges of length % constitute a 1-factor in K.

Let V(Ki) = Zy and let G be a subgraph of K. By clicking G, we
mean applying the isomorphism ¢ — i + 1 to V(G). Note that clicking
preserves edge lengths. Let H and G be graphs such that G is a subgraph
of H. A G-decomposition of H is a set I’ = {G1,Ga,...,G;} of pairwise
disjoint subgraphs of H each of which is isomorphic to G and such that
E(H) = U;_, E(G;). If H is K}, a G-decomposition ' of H is cyclic if
clicking is a permutation of I'. If G is a graph and r is a positive integer,
rG denotes the vertex disjoint union of r copies of G.

For any graph G, a one-to-one function f : V(G) — N is called a labeling
(or a valuation) of G. In [19], Rosa introduced a hierarchy of labelings. We
add a few items to this hierarchy. Let G be a graph with n edges and no
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isolated vertices and let f be a labeling of G. Let f(V(G)) = {f(u): u €
V(G)}. Define a function f : E(G) — Z* by f(e) = |f(u) — f(v)|, where
e = {u,v} € E(G). Let E(G) = {f(e) : e € E(G)}. Consider the following
conditions:

(e1) f(V(G)) < [0,2n],

(€2) f(V(G)) € [0,n],

(£3) E(G) = {z1,22,...,%.}, where for each i € [1,n] either z; = i or
z;=2n+1-1,

(¢4) E(G) = [1,n].
If in addition G is bipartite with bipartition {A, B} of V(G) (with every
edge in G having one endvertex in A and the other in B) such that

(£5) for each {a,b} € E(G) with a € A and b € B, we have f(a) < f(b),

(¢6) there exists an integer A (called the boundary value of f) such that
fla) < Aforalla€ Aand f(b) > A for all be B.
Then a labeling satisfying the conditions:

(£1), (£3) is called a p-labeling;

(£1), (¢4) is called a c-labeling;

(£2), (#4) is called a B-labeling.
A j-labeling is necessarily a o-labeling which in turn is a p-labeling. If G is
bipartite and a p, ¢ or $-labeling of G also satisfies (£5), then the labeling
is ordered and is denoted by p*, o* or 7%, respectively. If in addition (£6)
is satisfied, the labeling is uniformly-ordered and is denoted by p*+, o*+
or 8%, respectively.

A f-labeling is better known as a graceful labeling and a uniformly-
ordered [-labeling is an a-labeling as introduced in [19).

Labelings are critical to the study of cyclic graph decompositions as seen
in the following two results from [19] and [11], respectively.

Theorem 1. Let G be a graph with n edges. There exists a cyclic G-
decomposition of K3, if and only if G has a p-labeling.

Theorem 2. Let G be a graph with n edges that has a p*-labeling. Then
there exists a cyclic G-decomposition of K34 for all positive integers z.

Note that a p-labeling f of a graph G with n edges is an embedding of
G in Kay, 41 (with V(Ka,41) = [0,2n]) so that there is exactly one edge in
G of length i for i = 1,2,...,n. It is easy to see that if f is a o-labeling,
then G can be embedded in Ky, so that there is exactly one edge in G
of length 7 for i = 1,2,...,n. Thus the following holds for g-labelings (but
not necessarily for p-labelings, in general).

Theorem 3. If G with n edges has a o-labeling, then there exists a cyclic
G-decomposition of Ka,4+2 — F, where F is a 1-factor of Kz, 42.

A non-bipartite graph G is almost-bipartite if G contains an edge e whose
removal renders the remaining graph bipartite (for example, odd cycles are
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almost-bipartite). In [5], Blinco et al. introduced a variation of a p-labeling
of an almost-bipartite graph G of size n that yields cyclic G-decompositions
of Konxt1. They called this labeling a y-labeling. Rather than restate the
(lengthy) definition of a y-labeling here, we direct the interested reader to
[5]. We do note however that a y-labeling is necessarily a p-labeling.

Let G be a graph with n edges and Eulerian components and let f be
a (-labeling of G. It is well-known (see [19]) that we must have n = 0 or
3 (mod 4). Moreover, if such a G is bipartite, then n = 0 (mod 4). These
conditions hold since for such a G, 3¢ g(q) f(€) = n(n + 1)/2. This sum
must in turn be even, since each vertex is incident with an even number of
edges and f(e) = |f(u)— f(v)|, where u and v are the end vertices of e. Thus
we must have 4|n{n + 1). Clearly, the same will hold if such a G admits a
o-labeling. We shall refer to this restriction as the parity condition. There
are no such restrictions on |E(G)]| if f is a p-labeling.

Theorem 4. (Parity Condition) If a graph G with Eulerian components
and n edges has a o-labeling, then n = 0 or 3 (mod 4). If such a G is
bipartite, then n = 0 (mod 4).

In [19], Rosa presented o- and S-labelings of Cy,, and of Cay,+3, respec-
tively. It is also known that both Cym+1 and Cypnqe admit p-labelings.
It was also shown in [11] that there exists a p*-labeling of Cym42, for all
positive integers m. It can be easily checked that this labeling is actually
a p**-labeling.

In this manuscript, we will focus on labelings of 2-regular graphs (i.e.,
the vertex-disjoint union of cycles). If a 2-regular graph G is bipartite,
then it is known that G admits a o*-labeling if the parity condition is
satisfied (see [11]) and a p**-labeling otherwise (see [4]). Such a G need
not admit an a-labeling, even if the parity condition is satisfied. It is
well-known for example that 3C; does not have an a-labeling (see [15]).
Similarly, if G is not bipartite, then G need not admit a [-labeling even
if the parity condition is satisfied. For example, it is shown in [16] that
rC3 does not admit a S-labeling for all 7 > 1 and rCj5 never admits a (-
labeling. Moreover, it is known that C3 | JC5 |J C5 is the smallest 2-regular
graph that satisfies the parity condition, yet fails to have a 3-labeling (see
[2]). It is thus reasonable to focus on labelings that are less restrictive than
B-labelings when studying 2-regular graphs.

Here, we shall show that every 2-regular graph G consisting of three
components has a o-labeling (or a more restricted labeling) if and only if
the parity condition is satisfied. In a companion article [3], it is shown that
if the parity condition is not satisfied, then such a G necessarily admits a p-
labeling. These results provide further evidence in support of a conjecture
of El-Zanati and Vanden Eynden that every 2-regular graph admits a o-
labeling if the parity condition is satisfied and a p-labeling otherwise.
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Let 7, s and ¢ be positive integers > 3 and let G = C,JCs|JC:. If
we consider the congruences of r, s and ¢ modulo 4, then G then belongs
to one of 20 types of graphs (see Table 1). In each of the ten cases where
the parity condition is satisfied, we will show that G has a o-labeling (or a
more restricted labeling). If G does not satisfy the parity condition, then
G necessarily admits a p-labeling (see [3]).
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Table 1. Labelings of C, UCsUCy, 1,s5,t > 3

2. SUMMARY OF SOME OF THE KNOWN RESULTS

As stated in the previous section, the following is known for cycles (see
(18], [19] and [11]).

Theorem 5. Let m > 3 be an integer. Then, C,, admits an a-labeling if
m = 0 (mod 4), a p-labeling if m = 1 (mod 4), a p**-labeling if m = 2
(mod 4), and a B-labeling if m = 3 (mod 4).
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For 2-regular graphs with two components, we have the following impor-
tant result from Abrham and Kotzig [2].

Theorem 6. Let m > 3 and n > 3 be integers. Then the graph C,, |JC»
has a §-labeling if and only if m+n =0 or 3 (mod 4). Moreover, C,, | JChr
has an a-labeling if and only if both m and n are even and m +n = 0
(mod 4).

If the parity condition is not satisfied, then C,, |JC), has a p**-labeling
if both m and n are even [4] and a p-labeling otherwise [10].

For 2-regular graphs with more than two components, the following is
known. In [15], Kotzig shows that if » > 1, then rC; does not admit a 8-
labeling. Similarly, he shows that rCs does not admit a B-labeling for any
r. In [16], Kotzig shows that 3Cy;.+ admits a $-labeling for all k£ > 2. From
results in [8], it can be shown that rC3 admits a p-labeling for all 7 > 1. The
p-labeling in [8] can be modified to produce a o-labeling of rC3 when the
parity condition is satisfied. In [12], Eshghi shows that Cap, |J Can |J Cax
has an a-labeling for all m,n, and k > 2 with m+n+k =0 (mod 2) except
when m = n = k = 2. In [1}, Abrham and Kotzig show that rC, has an
a-labeling for all positive integers r # 3. In [9], it is shown that 3C,, and
4C,, admit o-labelings if the parity condition is satisfied and p-labelings
otherwise. An additional result follows by combining results from [11] and
from [4].

Theorem 7. Let G be a 2-regular bipartite graph of order n. Then G has
a o*-labeling if n = 0 (mod 4) and a p**-labeling if n = 2 (mod 4).
A result by Hevia and Ruiz [14] proves very useful.

Theorem 8. The disjoint union of a graph with a S-labeling, together with
a collection of graphs with a-labelings, has a g-labeling.

When applied to 2-regular graphs and combined with the results of
Abrham and Kotzig [2], Theorem 8 yields the following.

Corollary 9. Let Gy € {Ciz+3,Ciz+3UCay+1,Caz+1J Cay+2}, where
z > 0 and y > 1 are integers. If G2 is a 2-regular bipartite graph of
order 0 (mod 4), then G; |J G- admits a o-labeling.

In [5], it is shown that if G admits an a-labeling and j > 1, then GUC3;41
admits a vy-labeling. Thus for example, both Cye UC4yUCyz41 and Cazq1 U
Cay+2UC4,42 admit vy-labelings. These results are generalized in [7], where
it is shown that every 2-regular almost-bipartite graph G # C3 U (kCy),
k € {0,1}, has a y-labeling.

3. MAIN RESULTS

Let r, s and t be positive integers > 3 and let G = C.|JC,s |JC:. We
shall show that G admits a o-labeling (or a more restricted labeling) if and
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onlyif r+s+t=0o0r3 (mod4). fr+s+t=1or2 (mod 4), then G
admits a p-labeling (see [3]). Table 1 summarizes the results for labeling
Cr U Cs U Ct-

Before proceeding, some additional definitions and notational conven-
tions are necessary. Denote the path with consecutive vertices a,,as,...,ax
by (a1,as,...,ax). By (a1,a2,...,ak) + (b1,bs,...,b;), where a = by, we
mean the path (ai,...,ar,b2,...,b;).

To simplify our consideration of various labelings, we will sometimes
consider graphs whose vertices are named by distinct nonnegative integers,
which are also their labels. Let a, b, and & be integers with 0 < a < b and
k > 0. Set d =b — a. We define the path

P(a,k,b) = (a,a+k+2d-1,a+1,a+k+2d-2,a+2,...,b-1,b+k,b).

12 11 10 9 8

0 1 2 3 4 5

Figure 1. The path P(0,3,5).

We note that the labeling of P(a, k, b) is a translation of a k-graceful labeling
of the path P44, (as introduced in 1982 by Slater [20] and by Maheo and
Thuillier [17]). It is easily checked that P(a, k,b) is simple and

V(P(a,k,b)) = [a,bJUb+ k, b+ k +d - 1].
Furthermore, the edge labels of P(a, k,b) are distinct and
E(P(a,k,b)) = [k, k+2d - 1].

These formulas will be used extensively in the proofs that follow.

As can be seen from Table 1, G = C,|JC;|JC; satisfies the parity
condition in 10 of the 20 possible cases. We shall present the new results
in four theorems, followed by our main theorem.

Theorem 10. Let z,y,z be positive integers with z < y < z, and let
G= C41+1UC4y+1UC42+1' Then G has a a-labeling.
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Proof. The three cycles G; = Caz41,G2 = Cayt1, and Gz = Cyyyq are
defined as follows:

G = PAdz+4y+4z+3,2z+4y+4z+ 3,5z + 4y + 42+ 3)

+ POBz+4y+4z+3,4y+42+3,6x+ 4y +42+2)

+ (6x+4y+4z+2,6z+4y+4z+ 5,82+ 8y + 8z + 6,4z + 4y + 4z + 3),
G2 = P(0,2z+2y+4z+3,y—z)+ Ply—-=z,42+4+4,2y-1)

+ (2y-1,2y,2x + 4y + 42+ 2,0),
Gz = P(6x+4y+4z+6,2z+ 3,6z + 4y + 5z + 6)

+ P(6x + 4y + 5z + 6,4,6x + 4y + 6z + 5)
+ (6z+ 4y + 6z +7,6x + 4y + 82 + 9,6z + 4y + 4z + 6).

0 1 2 3 4 5 46 47 48 49 50 51 52 33

Figure 2. A o-labeling of Cy U C13 U C17

Now we compute

V(G)) [z + 4y + 4z + 3,6z + 4y + 42 + 2| U [Tz + 8y + 8z + 6,8z + 8y + 82 + 5]

[6z + 8y + 82z + 5,7x + 8y + 8z + 3] U {6z + 4y + 4z + 5, 8x + 8y + 8z + 6},

0,2y —1U[z+3y+42+3,dy+ 42+ 2JU 2y + 42+ 3,2+ 3y + 42+ 1]

{2y, 2z + 4y + 42 + 2},

[6z + 4y + 4z + 6,6z + 4y + 62 + 5] U [6x + 4y + 7z + 9,62 + 4y + 8z + 8]
U [6z+4y+6z+9,6z+4y+ 7z + 7)U {6z + 4y + 6z + 7,6z + 4y + 82 + 9}.

We can order these as follows.

C

V(G2)

C

V(G3)

G; Vertex Labels G; Vertex Labels

G2 [0,2y — 1} Gs3 6z +4y+62+7

G2 2y Gs [6z+4y+6z2+9,6z+4y+7z+7)
G2 2y +4z+ 3,z + 3y +4z + 1] Gs [6z+4y+72+9,6z+ 4y + 8z + §)
G2 [e+3y+42+ 3,4y + 4z + 2) G3 6z + 4y +8z2+9

G2 21 + 4y + 4z + 2 G1 [6z+ 8y + 8z + 5,7z + 8y + 82 + 3]
Gy [4z+4y+4z+3,6z+4y+4z2+2] G [Tz+8y+8z+6,8c+8y+8z+5)
G, 6z +4y+4z+5 G 8 +8y+82+6

G3 [6z+ 4y + 42 + 6,6z + 4y + 6z + 5)

The vertices of the three cycles are distinct and contained in [0, 2(4z +
4y + 4z + 3)] = [0,8z + 8y + 8z + 6]. Note that if z = 1, the set [6z +
4y + 6z +9,6x + 4y + 72 + 7] is empty. If in addition y = z, then the set
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[z+3y+4z+3,4y+42+2]. Finally, if z = 1, the set [6z +8y+82+5,7z+

8y + 8z + 3] will also be empty. This however does not change the proof.
Likewise we compute

E(G1)

[2z + 4y + 4z + 3,4z + 4y + 42 + 2] U [4y + 4z + 3,2z + 4y + 42|
{3,2¢ + 4y + 4z + 1,4z + 4y + 4z + 3},

[2z+2y +42+ 3,4y + 42+ 2] U4z +4,2c + 2y + 4z + 1]
{1,2z + 2y + 4z + 2,2z + 4y + 4z + 2},

[2z + 3,4z + 2] U 4,2z + 1| U {2, 2z + 2,4z + 3}.

C

E(G2)

C

E(G3)

We can order these as follows.

Cycle Edge Labels Cycle Edge Labels

Gz 1 Go 2z +2y+4z+4+2

Ga 2 Ga 2z 4+ 2y + 2z + 3,4y + 42 + 2]
G 3 G [4y + 42 + 3,2z + 4y + 42]

G3 (4,22 + 1] G 2r+4y+4z+1

G3 2z+4+2 Ga 2c +4y+ 42+ 2

Gs 22+ 3,42+ 2] G [2z+4y+4z+3,4z+4y+4z+2)
G3 4z+3 G 4r +4y+4z+3

G2 [4z + 4,2z + 2y + 4z + 1]

Hence E(G) = [1,4z + 4y + 42 + 3]. Then we have a o-labeling.

As with the vertex labels, note that if z = 1, then [4,22 + 1] will be
empty. If in addition y = z, then [2z + 2y + 4z + 3,4y + 4z + 2] is empty.
Finally, if z = 1, the set [4y + 4z + 3,2z + 4y + 42| is empty. Neither
condition would however change the proof. O

Theorem 11. Let z,y,z be positive integers with y > z, and let G =
Ciz+2UC4y+1UC4z41. Then G has a o-labeling.

Proof. The three cycles G = Cyz42,G2 = Cyyi1,and Gz = Cyqy are
defined as follows:

Gi1 = P(0,2z+4y+4z+4,z)+ Pz, 4y +42+5,22 - 1)

+ (2z-1,2c+4y+4z+ 3,2z + 1,4z + 4y + 42+ 4,0),
G2 = Pdz+4y+4z+52y+4z+4,4z + 5y + 4z +4)

+ P4z 45y +4z 44,4z + 3,4z + 6y + 4z + 4)

+ (4z+6y+4z+4,4c+6y+4z+ 5,4z + 8y + 8z + 8,4z + 4y + 42+ 5),
Gz = P(2x+2,2:+4+22c+2z+2)+P2z+2+2,3,2z+2z2+1)

(2 + 22+ 1,2z + 22+ 3,2z + 42 + 4,2z + 2).
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0 1 2 3 5 25 26 27 28 6 7

24 23 22 20 19 40 29 1 9

Figure 3. A o-labeling of Cy1o U CoUCs

Now we compute

V(G1) = [0,2z—-1)U[3z+4y +4z+ 4,4z + 4y + 4z + 3]
U [Re+4y+4z+4,3c+4y+42+2
U {2z +4y+4z+ 3,2z + 1,4z + 4y + 4z + 4},
V(G2) = [z+4y+42+5,4z2+6y+42+4|U[dx + Ty + 8z + 8,4z + 8y + 82 + 6]
U [4z+6y+8z+ 7,4z + Ty + 82+ 6] U {4z + 6y + 4z + 5,4z + 8y + 8z + 8},
V(Gs) = [2z+42,2c+2z4+1)U[2c+32+4+4,2x+4z+ 3]

U [2z+22+4+4,2c+ 32+ 2]U {2z + 22 + 3,2z + 42 + 4}.

We can order these as follows.

Cycle Vertex Labels Cycle Vertex Labels
G [0,22 — 1] Gy [2c+ 4y + 4z + 4,3z + 4y + 42 + 2]
G 2z + 1 G [3z + 4y + 4z + 4,4z + 4y + 42 + 3]
Gz 2z + 2,2z + 22+ 1] Gy dz+4y+4z+4
G3 2z + 2z + 3 G2 [dz+ 4y +4z+ 5,4z + 6y + 4z + 4]
Gs3 2z +2z+ 4,22+ 3z + 2] G2 4z + 6y +4z+5
Gs [2z+3z+4,2x+ 42+ 3] G2 [4z+6y+8z+ 7,4z + Ty + 8z + 6}
Gs 2z +4z+4 G2 [4z+T7y+8z+ 8,4z + 8y + 8z + 6]
G) 2r+4y+4z+3 G2 4r +8y+82+8

The vertices of the three cycles are distinct and contained in [0,2(4z +
4y + 4z + 4)] = [0,82 + 8y + 8z + 8]. Note that if z = 1, the set [2z +
2z 4+ 4,2z + 3z + 2] will be empty. If in addition y = 1, then the set
4z + Ty + 8z + 8,4z + 8y + 8z + 6] will be empty. Finally, if in addition
z = 1, the set 2z + 4y + 42 + 4, 3z + 4y + 42 + 2] will also be empty. This
however does not change the proof.

Likewise we compute

E(G)) [2r+4y+4z+4,4c+ 4y + 4z + 3| U [dy + 4z + 5,22 + 4y + 4z + 2]
{4y + 4z + 4,4y + 4z + 2,2z + 4y + 4z + 3,4z + 4y + 4z + 4},
2y + 42+ 4,4y +4z+ 1)U (42 + 3,2y + 42 + 2]

{1,2y + 4z + 3,4y + 4z + 3},
2z + 2,42+ 1] U [3,22] U {2,22 + 1,42 + 2}.

c

E(G2)

c

E(G3)
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We can order these as follows.

Cycle Edge Labels Cycle Edge Labels

Ga 1 Ga [2y+4z+ 4,4y + 4z + 1)

G3 2 G dy+4z+2

G3 [3,22] G2 dy+4z+3

Gs 2z+41 G, y+4z+4

G3 {2z 4+ 2,4z + 1) Gy [y +4z+ 5,2z + 4y + 42 + 2]
Gs 4z 42 G 2z +4y + 4243

Gz [4243,2y+4z+2) G1 [2z+4y+4z+4,4z+4y+42+3)
Ga 2y+4z+4+3 Gy 4dr+4y+4z+4

Hence E(G) = 1,4z + 4y + 4z + 4]. Then we have a o-labeling.

As with the vertex labels, note that if z = 1, the set [3,2z] is empty.
If in addition y = 1, then [2y + 42 + 4,4y + 4z + 1] is empty. Finally, if
in addition = = 1, then [4y + 4z + 5,2z + 4y + 4z + 2] will also be empty.
Neither condition would however change the proof. 0

Theorem 12. Let x > 1, y > z be nonnegative integers and let G =
Caz+1UC1y+3UCsz43. Then G has a o-labeling.

Proof. We will distinguish two cases according to whether y =0 or y > 1.

Case 1: y=0.

If y = 0, then 2 must be 0. The three cycles Gy = Cyry1, G2 = C3, and
G3 = (3 are defined as follows:

P(4z + 7,2z 4+ 7,5¢ + 7) + P(5z + 7,8,6z + 6)

+ (6z+46,6x+8,8z+ 14,4z + 7),

= (0,3,7,0),

= (4,5,10,4).

15 16 17 18 0 4

30 0 7 3 10 5

Figure 4. A o-labeling of Co UC3 U C3

Now we compute

V(G1)
V(G2)
V(G3)

4z + 7,6z + 6] U [Tz + 14,8z + 13] U [6z + 14, 7z + 12) U {6z + 8,8z + 14},
{0,3)7}’
{4,5,10}.
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We can order these as 0,3 from G2, then 4,5 from Gj3, then 7 from Go
and 10 from Gj3, and finally

[Az + 7,6z + 6], 6z + 8, [6z + 14, Tz + 12], 7z + 14, 8z + 13},8z + 14

from G;.
The vertices of the three cycles are distinct and contained in [0, 8z +8y+
8z + 14]. Note that if z = 1, the set [6z + 14, 7z + 12] will be empty. This

however does not change the proof.
Finally we compute

E(G1) = [2z+47,4z+6]U[8,2z + 5| U {2,2z + 6,4z + T},
E(Gy) = {3,4,7}
E(Gs) = {1,56}.

We can order these as edge label 1 from Gj3, 2 from G;, 3 and 4 from
Gs, 5 and 6 from G3, 7 from G2, and

8,2z + 5],2z + 6, [2z + 7,4z + 6],4z + 7

from G;. Thus E(G) = [1,4z + 7). Then we have a o-labeling. Again, if
z = 1 the set [8,2z + 5] will be empty. This however does not change the
proof.

Case 2: y > 1.
The three cycles G; = Cypt1,G2 = Caytaz,and Gy = Cy.43 are defined as
follows:

Gi = PlAzr+4y+4z+T72c+4y+42+7,5x+4y+42+7)

+ POBzr+4y+42+7,4y+4z4 8,6z +4y+4z+6)

+ (6x+4y+4z+6,62+4dy+42+8,8c+8y+ 82+ 14,4z +4y+4z+7),
G2 = P(0,2y+4z+5,9y+ 1)+ P(y+ 1,42+ 6,2y) + (2y,2y + 3,4y + 4z + 7,0),
Gy = PGzr+4y+4z+92z+5,6c+4y+52+9)

+ P(6z+4y+52+9,4,6z+ 4y + 62+ 9)

+ (6x + 4y + 6z + 9,6z + 4y + 6z + 10,6z + 4y + 8z + 14,6z + 4y + 4z + 9).

27 28 29 30 0 1 2 3 4q 33 34 35

54 32 19 7 42 6

Figure 5. A o-labeling of Cy UC1, UCy

43



Now we compute

V(G1) = [z+4y+42+47,6z+4y+42+6]U[7z + 8y + 8z + 14,8z + 8y + 8z + 13

U [6z+8y+82+ 14,7z + 8y + 8z + 12] U {63 + 4y + 4z + 8,8z + 8y + 8z + 14},
V(G2) = [0,2y]U[3y+42+6,4y+4z+6]U[2y + 42+ 6,3y + 4z + 4]

U {2y+3,4y+4z+7),
V(G3) = [62+4y+4z+9,6z + 4y + 62 + 9 U [6z + 4y + 7z + 14, 6z + dy + 8z + 13]

U [6z+4y+62z+13,6c+4y+ Tz+ 12) U {6z + 4y + 6z + 10,6z + 4y + 8z + 14}.

We can order these as follows.

G, Vertex Labels G; Vertex Labels

G2 [0,2y] Gs 6z + 4y + 6z + 10

G2 2y+3 Gs [6z+4y+6z+13,6z+4y+ Tz + 12
G» [2y + 42 + 6,3y + 4z + 4] G3 [6z+4y+ 72+ 14,6z + 4y + 8z + 13
G2 [By + 4z + 6,4y + 4z + 6) G3 6z +4y+8z+14

G2 dy+4z+7 Gy [6z+8y+8z+ 14,7z + 8y + 8z + 12|
Gi [z+4y+4z+7,6z+4y+424+6] Gi1 [Tz +8y+8z+ 14,8z + 8y + 8z + 13|
G 6x+4y+4z+8 Gy 8z +8y+8z+14

Gs [6z+4y+4z+9,6z+ 4y + 62+ 9]

The vertices of the three cycles are distinct and contained in [0,2(4z +
4y+4z+7)] = [0,8z + 8y + 8z + 14]. Note that if z = 0, the sets [6z + 4y +
6z + 13,6z + 4y + 7z + 12] and (6 + 4y + 7z + 14,6z + 4y + 8z + 13| are
empty. If in addition y = 1, then the set [2y + 42z +6, 3y + 42 +4] is empty.
Finally, if in addition z = 1, the set [6z + 8y + 8z + 14, 7z + 8y + 82z + 12]
will also be empty. This however does not change the proof.

Likewise we compute

E(G1)) = [r+4y+4z2+T,4z+4y+42+6]U[dy + 42+ 8,2z + 4y + 4z + 5)
{2,224+ 4y + 42+ 6,4z + 4y + 42 + 7},

[2y + 42+ 5,4y + 4z + 6] U [42 + 6,2y + 4z + 3]
{3,2y + 4z + 4,4y + 4z + 7},
[2z + 5,4z + 4) U [4,2z + 3] U {1,22 + 4,42z + 5}.

Cc

E(G2)

Cc

E(G3)

We can order these as follows.

Cycle Edge Labels Cycle Edge Labels
G3 1 Ga 2u+4z+4
G, 2 G2 2y + 42 + 5,4y + 4z + 6]
Ga 3 Ga [dy + 4z + 7]
Gy [4,22 + 3] G [4y + 4z + 8,2z + 4y + 42 + 5}
G3 22+ 4 G1 2z +4y+42+6
G3 [2z + 5,4z + 4] G [2z + 4y + 4z 4+ 7,4z + 4y + 42 + 6]
Gs 4z+5 G dx+4y +4z+7

G2 [4z + 6,2y + 42 + 3]



Hence E(G) = [1,4z + 4y + 4z + 7). Then we have a o-labeling.

As with in the vertex labels, if z = 0 the sets [4, 2z+3] and [22+5,42+4]
will be empty. If in addition y = 1, then [4z + 6, 2y + 4z + 3] will be empty.
Finally, if in addition z = 1, then [4y + 42 + 8,2z + 4y + 4z + 5] will also
be empty. Neither condition would change the proof. O

Theorem 13. Let z > 1, y > z be nonnegative integers, and let G =
Ciz+2UC4y+3JCaz+3. Then G has a o-labeling.

Proof. The three cycles G; = Cyz42,G2 = Cyyya, and Gz = Cy43 are
defined as follows:

Gi = P(0,2z+4y+4z+8,z) + P(z, 4y + 42+ 9,2¢ - 1)

(2z - 1,2z 4+ 4y + 4z + 7,2z + 1,4z + 4y + 42 + 8,0),

Pdz + 4y + 42+ 9,2y + 4z + 6,42 + 5y + 42 + 9)

P4z + 5y + 42 + 9,42 + 5,4x + 6y + 42 1+ 9)

(4z + 6y + 4z + 9,4z + 6y + 4z + 11,4z + 8y + 8z + 16,4x + 4y + 42+ 9),
Gs = P(2x+22z+4,2z+2+2)+P(2x+2+2,3,2z+2z+2)

(2 +22+2,204+2z+3,22+424+6,2c + 2).

+

G2

+ +

+

16 15 13 28 1 8

[}

Figure 6. A o-labeling of Cs UC7 U C3

Now we compute
V(G1)

0,2z - 1U[Bz+4y+4z+ 8,4z + 4y + 42+ 7]

[2x + 4y + 4z + 8,3z + 4y + 4z + 6]

{2z + 1,2z + 4y + 42 + 7,4z + 4y + 4z + 8},

4z + 4y + 4z + 9,42 + 6y + 42+ 9)

[4z + Ty + 8z + 15,4z + 8y + 8z + 14]

[4z + 6y + 8z + 14,4z + Ty + 8z + 13]

{4z + 6y + 42 + 11,4z + 8y + 82 + 16},

2z + 2,22+ 22+ 2] U2z + 32+ 6,2z + 42 + 5]

2z + 2z + 5,2z + 3z + 4] U {2z + 2z + 3,22 + 4z + 6}.

cC C

V(G2)

ccci

V(G3)

C

We can order these as follows.
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Cycle Vertex Labels Cycle Vertex Labels

Gy [0,2z — 1] G [2z + 4y + 42 + 8,3z + 4y + 4z + 6)
Gy 2z + 1 Gi1 Bz +4y+4z+8,4z + 4y + 4z + T}
Gs [2z + 2,2z + 22 + 2] G 4z +4y+42+8
Gs 2 +2z+3 G2 [4z + 4y + 4z + 9,4z + 6y + 4z + 9]
G3 [2z + 22+ 5,2z + 3z + 4] Go 4z 4 6y + 4z + 11
G3 [2z + 32+ 6,22 + 42 + 5) G2 [4z+6y+8z+ 14,4z + Ty + 8z + 13]
G3 2r+42+6 Go 4z + Ty + 8z + 15,4z + 8y + 8z + 14]
G 2r+ 4y +4z+47 G2 4z + 8y + 8z + 16

The vertices of the three cycles are distinct and contained in [0,2(4z +
4y + 4z + 8)] = 0,8z + 8y + 8z + 8]. Note that if z = 0, the sets [2z +
2z 45,2z 4 3z + 4] and 2z + 3z + 6,2z + 4z + 5] will be empty. If in
addition y = 0, then the sets [4z + 6y + 8z + 14,42 + Ty + 8z + 13] and
[4z + Ty + 82 + 15,4z + 8y + 8z + 14] will be empty. Finally, if z = 1, the
set [2z + 4y + 4z + 8,3z + 4y + 4z + 6] will also be empty. This however
does not change the proof.

Likewise we compute

E(G1) [2z + 4y + 4z + 8,4z + dy + 42 + T| U [4y + 4z + 9, 2z + 4y + 4z + 6]
{4y + 4z + 8,4y + 42 + 6,2z + 4y + 42 + 7,4z + 4y + 42 + 8},

2y +4z2+ 6,4y + 4z + 5] U [42 + 5,2y + 4z + 4]

{2,2y + 4z + 5,4y + 42 + 7},

(2z + 4,4z + 3] U [3,2z + 2] U {1,2z + 3,4z + 4}.

c

E(G2)

c

E(G3)

‘We can order these as follows.

Cycle Edge Labels Cycle Edge Labels

G3 1 G2 [2y + 4z + 6,4y + 4z + 5]

Ga 2 G1 y+4z+6

G3 [3,2z + 2} G2 u+4z+7

G3 2z+43 G1 y+4z+8

G [2z + 4,4z + 3) G [dy + 424+ 9,2z + 4y + 42 + 6]
G3 4z +4 Gy 2z +4y+42+7

G2 4z + 5,2y + 4z + 4] G [2z+4y +4z+ 8,4z + 4y + 42+ 7)
G2 2y+4z+5 G1 dr+4y+4z+8

Hence E(G) = [1,4z + 4y + 42z + 4]. Then we have a o-labeling.

As with the vertex labels, note that if z = 0, then 3,2z + 2] and [2z +
4,4z + 3] will be empty. If in addition y = 0, then [4z + 5,2y + 42 + 4] and
[2y + 4z + 6,4y + 42 + 5] are empty. Finally, if z = 1, the set [4y + 4z +
9,2z + 4y + 4z + 6] is empty. Neither condition would however change the
proof. a

We conclude this section with our main result.

Theorem 14. Let G be a 2-regular graph of size n and at most three
components. Then G admits a o-labeling if and only if » = 0 or 3 (mod 4).
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Proof. The condition n = 0 or 3 (mod 4) is necessary by Theorem 4 (the
parity condition). If G has at most two components, then sufficiency is
obtained from Theorems 5 and 6. Now let r, s and t be positive integers
>3andlet G =C.UC,UC, (thus n =r+s+t). fr=s=t=0
(mod 4), or 7 = 0 (mod 4) and s = t = 2 (mod 4), then G admits an
a-labeling by Eshghi’s results [12], unless r = s = ¢ = 4 in which case G
has a o*-labeling by [11). If r = s =0 (mod 4) and ¢t = 3 (mod 4), then G
admits a o-labeling by Theorem 8. If r = 0 (mod 4), s = 1 (mod 4) and
t = 2 or 3 (mod 4), then G admits a o-labeling by Corollary 9. The case
r=s =2 (mod 4), t = 3 (mod 4), is obtained similarly. The rest of the
cases are done by the previous four theorems. a

4. CONCLUDING REMARKS

The study of graph decompositions is a popular branch of modern com-
binatorial design theory (see [6] for an overview). In particular, the study
of G-decompositions of Ko,4+1 (and of Kopz+1) when G is a graph with
n edges (and z is a positive integer) has attracted considerable attention.
The study of graph labelings is also quite popular (see Gallian [13] for a
dynamic survey). Theorems 1 and 2 provide powerful links between the
two areas. Much of the attention on labelings has been on graceful label-
ings (i.e., S-labelings). Unfortunately, the parity condition “disqualifies”
large classes of graphs from admitting graceful labelings. This difficulty
is compounded by the fact that certain classes of graphs with p-labelings
meet the parity condition, yet fail to be graceful (Cs5 |J Cs |J Cs is one such
example).

In conclusion, we note that our results here, along with results from
(3], [8] and [14] among others, provide further evidence in support of the
following conjecture of El-Zanati and Vanden Eynden.

Conjecture 15. Every 2-regular G graph of size n has a p-labeling. More-
over, if n =0 or 3 (mod 4) then G has a o-labeling.

As a final comment, we note that this work was done while the first
author was enrolled in an undergraduate research program at Illinois State
University.
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