ON σ -LABELING THE UNION OF THREE CYCLES

ALEJANDRO AGUADO AND SAAD I. EL-ZANATI
4520 MATHEMATICS DEPARTMENT
ILLINOIS STATE UNIVERSITY
NORMAL, ILLINOIS 61790 4520, U.S.A.

ABSTRACT. Let G be a graph of size n with vertex set V(G) and edge set E(G). A σ -labeling of G is a one-to-one function $f:V(G) \to \{0,1,\ldots,2n\}$ such that $\{|f(u)-f(v)|:\{u,v\}\in E(G)\}=\{1,2,\ldots,n\}$. Such a labeling of G yields cyclic G-decompositions of K_{2n+1} and of $K_{2n+2}-F$, where F is a 1-factor of K_{2n+2} . It is conjectured that a 2-regular graph of size n has a σ -labeling if and only if $n \equiv 0$ or 3 (mod 4). We show that this conjecture holds when the graph has at most three components.

1. Introduction

If a and b are integers we denote $\{a, a+1, \ldots, b\}$ by [a, b] (if a > b, $[a, b] = \emptyset$). Let N denote the set of nonnegative integers and \mathbb{Z}_n the group of integers modulo n. For a graph G, let V(G) and E(G) denote the vertex set of G and the edge set of G, respectively. The order and the size of a graph G are |V(G)| and |E(G)|, respectively. Let k be a positive integer and let $V(K_k) = [0, k-1]$. The length of an edge $\{i, j\}$ in K_k is defined as $\min\{|i-j|, k-|i-j|\}$. It is easy to see that if k is odd, then K_k consists of k edges of length i for $i=1,2,\ldots,\frac{k-1}{2}$. Similarly, if k is even, then K_k consists of k edges of length i for $i=1,2,\ldots,\frac{k}{2}-1$ and $\frac{k}{2}$ edges of length $\frac{k}{2}$; moreover, in this case, the edges of length $\frac{k}{2}$ constitute a 1-factor in K_k .

Let $V(K_k) = \mathbb{Z}_k$ and let G be a subgraph of K_k . By clicking G, we mean applying the isomorphism $i \to i+1$ to V(G). Note that clicking preserves edge lengths. Let H and G be graphs such that G is a subgraph of H. A G-decomposition of H is a set $\Gamma = \{G_1, G_2, \ldots, G_t\}$ of pairwise disjoint subgraphs of H each of which is isomorphic to G and such that $E(H) = \bigcup_{i=1}^t E(G_i)$. If H is K_k , a G-decomposition Γ of H is cyclic if clicking is a permutation of Γ . If G is a graph and Γ is a positive integer, ΓG denotes the vertex disjoint union of Γ copies of G.

For any graph G, a one-to-one function $f:V(G)\to\mathbb{N}$ is called a *labeling* (or a *valuation*) of G. In [19], Rosa introduced a hierarchy of labelings. We add a few items to this hierarchy. Let G be a graph with n edges and no

isolated vertices and let f be a labeling of G. Let $f(V(G)) = \{f(u) : u \in V(G)\}$. Define a function $\bar{f}: E(G) \to \mathbb{Z}^+$ by $\bar{f}(e) = |f(u) - f(v)|$, where $e = \{u, v\} \in E(G)$. Let $\bar{E}(G) = \{\bar{f}(e) : e \in E(G)\}$. Consider the following conditions:

- $(\ell 1) \ f(V(G)) \subseteq [0, 2n],$
- $(\ell 2) \ f(V(G)) \subseteq [0, n],$
- ($\ell 3$) $\bar{E}(G) = \{x_1, x_2, \dots, x_n\}$, where for each $i \in [1, n]$ either $x_i = i$ or $x_i = 2n + 1 i$,
 - $(\ell 4) \ \bar{E}(G) = [1, n].$

If in addition G is bipartite with bipartition $\{A, B\}$ of V(G) (with every edge in G having one endvertex in A and the other in B) such that

- ($\ell 5$) for each $\{a,b\} \in E(G)$ with $a \in A$ and $b \in B$, we have f(a) < f(b),
- ($\ell 6$) there exists an integer λ (called the boundary value of f) such that $f(a) \leq \lambda$ for all $a \in A$ and $f(b) > \lambda$ for all $b \in B$.

Then a labeling satisfying the conditions:

- $(\ell 1)$, $(\ell 3)$ is called a ρ -labeling;
- $(\ell 1)$, $(\ell 4)$ is called a σ -labeling;
- $(\ell 2)$, $(\ell 4)$ is called a β -labeling.

A β -labeling is necessarily a σ -labeling which in turn is a ρ -labeling. If G is bipartite and a ρ , σ or β -labeling of G also satisfies (ℓ 5), then the labeling is *ordered* and is denoted by ρ^+ , σ^+ or β^+ , respectively. If in addition (ℓ 6) is satisfied, the labeling is *uniformly-ordered* and is denoted by ρ^{++} , σ^{++} or β^{++} , respectively.

A β -labeling is better known as a *graceful* labeling and a uniformly-ordered β -labeling is an α -labeling as introduced in [19].

Labelings are critical to the study of cyclic graph decompositions as seen in the following two results from [19] and [11], respectively.

Theorem 1. Let G be a graph with n edges. There exists a cyclic G-decomposition of K_{2n+1} if and only if G has a ρ -labeling.

Theorem 2. Let G be a graph with n edges that has a ρ^+ -labeling. Then there exists a cyclic G-decomposition of K_{2nx+1} for all positive integers x.

Note that a ρ -labeling f of a graph G with n edges is an embedding of G in K_{2n+1} (with $V(K_{2n+1}) = [0, 2n]$) so that there is exactly one edge in G of length i for i = 1, 2, ..., n. It is easy to see that if f is a σ -labeling, then G can be embedded in K_{2n+2} so that there is exactly one edge in G of length i for i = 1, 2, ..., n. Thus the following holds for σ -labelings (but not necessarily for ρ -labelings, in general).

Theorem 3. If G with n edges has a σ -labeling, then there exists a cyclic G-decomposition of $K_{2n+2} - F$, where F is a 1-factor of K_{2n+2} .

A non-bipartite graph G is almost-bipartite if G contains an edge e whose removal renders the remaining graph bipartite (for example, odd cycles are

almost-bipartite). In [5], Blinco et al. introduced a variation of a ρ -labeling of an almost-bipartite graph G of size n that yields cyclic G-decompositions of K_{2nx+1} . They called this labeling a γ -labeling. Rather than restate the (lengthy) definition of a γ -labeling here, we direct the interested reader to [5]. We do note however that a γ -labeling is necessarily a ρ -labeling.

Let G be a graph with n edges and Eulerian components and let f be a β -labeling of G. It is well-known (see [19]) that we must have $n \equiv 0$ or $3 \pmod{4}$. Moreover, if such a G is bipartite, then $n \equiv 0 \pmod{4}$. These conditions hold since for such a G, $\sum_{e \in E(G)} \bar{f}(e) = n(n+1)/2$. This sum must in turn be even, since each vertex is incident with an even number of edges and $\bar{f}(e) = |f(u) - f(v)|$, where u and v are the end vertices of e. Thus we must have 4|n(n+1). Clearly, the same will hold if such a G admits a σ -labeling. We shall refer to this restriction as the parity condition. There are no such restrictions on |E(G)| if f is a ρ -labeling.

Theorem 4. (Parity Condition) If a graph G with Eulerian components and n edges has a σ -labeling, then $n \equiv 0$ or 3 (mod 4). If such a G is bipartite, then $n \equiv 0 \pmod{4}$.

In [19], Rosa presented α - and β -labelings of C_{4m} and of C_{4m+3} , respectively. It is also known that both C_{4m+1} and C_{4m+2} admit ρ -labelings. It was also shown in [11] that there exists a ρ^+ -labeling of C_{4m+2} , for all positive integers m. It can be easily checked that this labeling is actually a ρ^{++} -labeling.

In this manuscript, we will focus on labelings of 2-regular graphs (i.e., the vertex-disjoint union of cycles). If a 2-regular graph G is bipartite, then it is known that G admits a σ^+ -labeling if the parity condition is satisfied (see [11]) and a ρ^{++} -labeling otherwise (see [4]). Such a G need not admit an α -labeling, even if the parity condition is satisfied. It is well-known for example that $3C_4$ does not have an α -labeling (see [15]). Similarly, if G is not bipartite, then G need not admit a β -labeling even if the parity condition is satisfied. For example, it is shown in [16] that rC_3 does not admit a β -labeling for all r > 1 and rC_5 never admits a β -labeling. Moreover, it is known that $C_3 \cup C_3 \cup C_5$ is the smallest 2-regular graph that satisfies the parity condition, yet fails to have a β -labeling (see [2]). It is thus reasonable to focus on labelings that are less restrictive than β -labelings when studying 2-regular graphs.

Here, we shall show that every 2-regular graph G consisting of three components has a σ -labeling (or a more restricted labeling) if and only if the parity condition is satisfied. In a companion article [3], it is shown that if the parity condition is not satisfied, then such a G necessarily admits a ρ -labeling. These results provide further evidence in support of a conjecture of El-Zanati and Vanden Eynden that every 2-regular graph admits a σ -labeling if the parity condition is satisfied and a ρ -labeling otherwise.

Let r, s and t be positive integers ≥ 3 and let $G = C_r \cup C_s \cup C_t$. If we consider the congruences of r, s and t modulo 4, then G then belongs to one of 20 types of graphs (see Table 1). In each of the ten cases where the parity condition is satisfied, we will show that G has a σ -labeling (or a more restricted labeling). If G does not satisfy the parity condition, then G necessarily admits a ρ -labeling (see [3]).

mod 4			Labeling of $C_r \cup C_s \cup C_t$	Reference
r	s	t		Reference
0	0	0	σ^+ if $r = s = t = 4$ α otherwise	[11] [12]
0	0	1	γ (thus ρ)	[5]
0	0	2	ρ^{++}	[4]
0	0	3	σ	[14]
0	1	1	ρ	[3]
0	1	2	σ	[14]
0	1	3	σ	[14]
0	2	2	α	[12]
0	2	3	γ (thus ρ)	[7]
0	3	3	ρ	[3]
1	1	1	σ	This paper
1	1	2	σ	This paper
1	1	3	ρ	[3]
1	2	2	γ (Thus ρ)	[5]
1	2	3	ρ	[3]
1	3	3	σ	This paper
2	2	2	ρ++	[4]
2	2	3	σ	[14]
2	3	3	σ	This paper
3	3	3	ρ	[3]

Table 1. Labelings of $C_r \cup C_s \cup C_t$, $r, s, t \geq 3$

2. Summary of Some of the Known Results

As stated in the previous section, the following is known for cycles (see [18], [19] and [11]).

Theorem 5. Let $m \geq 3$ be an integer. Then, C_m admits an α -labeling if $m \equiv 0 \pmod{4}$, a ρ -labeling if $m \equiv 1 \pmod{4}$, a ρ^{++} -labeling if $m \equiv 2 \pmod{4}$, and a β -labeling if $m \equiv 3 \pmod{4}$.

For 2-regular graphs with two components, we have the following important result from Abrham and Kotzig [2].

Theorem 6. Let $m \geq 3$ and $n \geq 3$ be integers. Then the graph $C_m \cup C_n$ has a β -labeling if and only if $m+n \equiv 0$ or 3 (mod 4). Moreover, $C_m \cup C_n$ has an α -labeling if and only if both m and n are even and $m+n \equiv 0 \pmod{4}$.

If the parity condition is not satisfied, then $C_m \bigcup C_n$ has a ρ^{++} -labeling if both m and n are even [4] and a ρ -labeling otherwise [10].

For 2-regular graphs with more than two components, the following is known. In [15], Kotzig shows that if r > 1, then rC_3 does not admit a β -labeling. Similarly, he shows that rC_5 does not admit a β -labeling for any r. In [16], Kotzig shows that $3C_{4k+1}$ admits a β -labeling for all $k \geq 2$. From results in [8], it can be shown that rC_3 admits a ρ -labeling for all $r \geq 1$. The ρ -labeling in [8] can be modified to produce a σ -labeling of rC_3 when the parity condition is satisfied. In [12], Eshghi shows that $C_{2m} \cup C_{2n} \cup C_{2k}$ has an α -labeling for all m, n, and $k \geq 2$ with $m+n+k \equiv 0 \pmod{2}$ except when m=n=k=2. In [1], Abrham and Kotzig show that rC_4 has an α -labeling for all positive integers $r \neq 3$. In [9], it is shown that $3C_m$ and $4C_m$ admit σ -labelings if the parity condition is satisfied and ρ -labelings otherwise. An additional result follows by combining results from [11] and from [4].

Theorem 7. Let G be a 2-regular bipartite graph of order n. Then G has a σ^+ -labeling if $n \equiv 0 \pmod{4}$ and a ρ^{++} -labeling if $n \equiv 2 \pmod{4}$.

A result by Hevia and Ruiz [14] proves very useful.

Theorem 8. The disjoint union of a graph with a β -labeling, together with a collection of graphs with α -labelings, has a σ -labeling.

When applied to 2-regular graphs and combined with the results of Abrham and Kotzig [2], Theorem 8 yields the following.

Corollary 9. Let $G_1 \in \{C_{4x+3}, C_{4x+3} \bigcup C_{4y+1}, C_{4x+1} \bigcup C_{4y+2}\}$, where $x \geq 0$ and $y \geq 1$ are integers. If G_2 is a 2-regular bipartite graph of order 0 (mod 4), then $G_1 \bigcup G_2$ admits a σ -labeling.

In [5], it is shown that if G admits an α -labeling and j>1, then $G \cup C_{2j+1}$ admits a γ -labeling. Thus for example, both $C_{4x} \cup C_{4y} \cup C_{4z+1}$ and $C_{4x+1} \cup C_{4y+2} \cup C_{4z+2}$ admit γ -labelings. These results are generalized in [7], where it is shown that every 2-regular almost-bipartite graph $G \neq C_3 \cup (kC_4)$, $k \in \{0,1\}$, has a γ -labeling.

3. Main results

Let r, s and t be positive integers ≥ 3 and let $G = C_r \bigcup C_s \bigcup C_t$. We shall show that G admits a σ -labeling (or a more restricted labeling) if and

only if $r + s + t \equiv 0$ or 3 (mod 4). If $r + s + t \equiv 1$ or 2 (mod 4), then G admits a ρ -labeling (see [3]). Table 1 summarizes the results for labeling $C_r \bigcup C_s \bigcup C_t$.

Before proceeding, some additional definitions and notational conventions are necessary. Denote the path with consecutive vertices a_1, a_2, \ldots, a_k by (a_1, a_2, \ldots, a_k) . By $(a_1, a_2, \ldots, a_k) + (b_1, b_2, \ldots, b_j)$, where $a_k = b_1$, we mean the path $(a_1, \ldots, a_k, b_2, \ldots, b_j)$.

To simplify our consideration of various labelings, we will sometimes consider graphs whose vertices are named by distinct nonnegative integers, which are also their labels. Let a, b, and k be integers with $0 \le a \le b$ and k > 0. Set d = b - a. We define the path

$$P(a,k,b) = (a,a+k+2d-1,a+1,a+k+2d-2,a+2,\ldots,b-1,b+k,b).$$

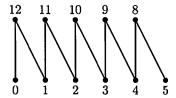


Figure 1. The path P(0,3,5).

We note that the labeling of P(a, k, b) is a translation of a k-graceful labeling of the path P_{2d+1} (as introduced in 1982 by Slater [20] and by Maheo and Thuillier [17]). It is easily checked that P(a, k, b) is simple and

$$V(P(a, k, b)) = [a, b] \cup [b + k, b + k + d - 1].$$

Furthermore, the edge labels of P(a, k, b) are distinct and

$$\bar{E}(P(a,k,b)) = [k,k+2d-1].$$

These formulas will be used extensively in the proofs that follow.

As can be seen from Table 1, $G = C_r \bigcup C_s \bigcup C_t$ satisfies the parity condition in 10 of the 20 possible cases. We shall present the new results in four theorems, followed by our main theorem.

Theorem 10. Let x, y, z be positive integers with $x \leq y \leq z$, and let $G = C_{4x+1} \bigcup C_{4y+1} \bigcup C_{4z+1}$. Then G has a σ -labeling.

Proof. The three cycles $G_1 = C_{4x+1}, G_2 = C_{4y+1}$, and $G_3 = C_{4z+1}$ are defined as follows:

$$G_{1} = P(4x + 4y + 4z + 3, 2x + 4y + 4z + 3, 5x + 4y + 4z + 3)$$

$$+ P(5x + 4y + 4z + 3, 4y + 4z + 3, 6x + 4y + 4z + 2)$$

$$+ (6x + 4y + 4z + 2, 6x + 4y + 4z + 5, 8x + 8y + 8z + 6, 4x + 4y + 4z + 3),$$

$$G_{2} = P(0, 2x + 2y + 4z + 3, y - x) + P(y - x, 4z + 4, 2y - 1)$$

$$+ (2y - 1, 2y, 2x + 4y + 4z + 2, 0),$$

$$G_{3} = P(6x + 4y + 4z + 6, 2z + 3, 6x + 4y + 5z + 6)$$

$$+ P(6x + 4y + 5z + 6, 4, 6x + 4y + 6z + 5)$$

$$+ (6x + 4y + 6z + 7, 6x + 4y + 8z + 9, 6x + 4y + 4z + 6).$$

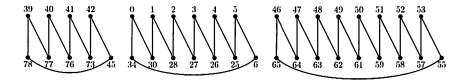


Figure 2. A σ -labeling of $C_9 \cup C_{13} \cup C_{17}$

Now we compute

$$V(G_1) = [4x + 4y + 4z + 3, 6x + 4y + 4z + 2] \cup [7x + 8y + 8z + 6, 8x + 8y + 8z + 5]$$

$$\cup [6x + 8y + 8z + 5, 7x + 8y + 8z + 3] \cup \{6x + 4y + 4z + 5, 8x + 8y + 8z + 6\},$$

$$V(G_2) = [0, 2y - 1] \cup [x + 3y + 4z + 3, 4y + 4z + 2] \cup [2y + 4z + 3, x + 3y + 4z + 1]$$

$$\cup \{2y, 2x + 4y + 4z + 2\},$$

$$V(G_3) = [6x + 4y + 4z + 6, 6x + 4y + 6z + 5] \cup [6x + 4y + 7z + 9, 6x + 4y + 8z + 8]$$

$$\cup [6x + 4y + 6z + 9, 6x + 4y + 7z + 7] \cup \{6x + 4y + 6z + 7, 6x + 4y + 8z + 9\}.$$

We can order these as follows.

G_i	Vertex Labels	G_i	Vertex Labels
$\overline{G_2}$	[0, 2y - 1]	G_3	6x + 4y + 6z + 7
G_2	2y	G_3	[6x + 4y + 6z + 9, 6x + 4y + 7z + 7]
G_2	[2y+4z+3,x+3y+4z+1]	G_3	[6x + 4y + 7z + 9, 6x + 4y + 8z + 8]
G_2	[x+3y+4z+3,4y+4z+2]	G_3	6x + 4y + 8z + 9
G_2	2x + 4y + 4z + 2	G_1	[6x + 8y + 8z + 5, 7x + 8y + 8z + 3]
G_1	[4x + 4y + 4z + 3, 6x + 4y + 4z + 2]	G_1	[7x + 8y + 8z + 6, 8x + 8y + 8z + 5]
G_1	6x + 4y + 4z + 5	G_1	8x + 8y + 8z + 6
G_3	[6x + 4y + 4z + 6, 6x + 4y + 6z + 5]		

The vertices of the three cycles are distinct and contained in [0, 2(4x + 4y + 4z + 3)] = [0, 8x + 8y + 8z + 6]. Note that if z = 1, the set [6x + 4y + 6z + 9, 6x + 4y + 7z + 7] is empty. If in addition y = x, then the set

[x+3y+4z+3,4y+4z+2]. Finally, if x=1, the set [6x+8y+8z+5,7x+8y+8z+3] will also be empty. This however does not change the proof. Likewise we compute

$$\overline{E}(G_1) = [2x + 4y + 4z + 3, 4x + 4y + 4z + 2] \cup [4y + 4z + 3, 2x + 4y + 4z]$$

$$\cup \{3, 2x + 4y + 4z + 1, 4x + 4y + 4z + 3\},$$

$$\overline{E}(G_2) = [2x + 2y + 4z + 3, 4y + 4z + 2] \cup [4z + 4, 2x + 2y + 4z + 1]$$

$$\cup \{1, 2x + 2y + 4z + 2, 2x + 4y + 4z + 2\},$$

$$\overline{E}(G_3) = [2z + 3, 4z + 2] \cup [4, 2z + 1] \cup \{2, 2z + 2, 4z + 3\}.$$

We can order these as follows.

Cycle	Edge Labels	Cycle	Edge Labels
$\overline{G_2}$	1	G_2	2x + 2y + 4z + 2
G_3	2	G_2	[2x + 2y + 2z + 3, 4y + 4z + 2]
G_1	3	G_1	[4y+4z+3,2x+4y+4z]
G_3	[4, 2z + 1]	G_1	2x + 4y + 4z + 1
G_3	2z + 2	G_2	2x + 4y + 4z + 2
G_3	[2z+3,4z+2]	G_1	[2x+4y+4z+3,4x+4y+4z+2]
G_3	4z + 3	G_1	4x + 4y + 4z + 3
G_2	[4z+4,2x+2y+4z+1]		

Hence $\overline{E}(G) = [1, 4x + 4y + 4z + 3]$. Then we have a σ -labeling.

As with the vertex labels, note that if z = 1, then [4, 2z + 1] will be empty. If in addition y = x, then [2x + 2y + 4z + 3, 4y + 4z + 2] is empty. Finally, if x = 1, the set [4y + 4z + 3, 2x + 4y + 4z] is empty. Neither condition would however change the proof.

Theorem 11. Let x, y, z be positive integers with $y \ge z$, and let $G = C_{4x+2} \bigcup C_{4y+1} \bigcup C_{4z+1}$. Then G has a σ -labeling.

Proof. The three cycles $G_1 = C_{4x+2}, G_2 = C_{4y+1}, \text{and } G_3 = C_{4z+1}$ are defined as follows:

$$G_{1} = P(0, 2x + 4y + 4z + 4, x) + P(x, 4y + 4z + 5, 2x - 1)$$

$$+ (2x - 1, 2x + 4y + 4z + 3, 2x + 1, 4x + 4y + 4z + 4, 0),$$

$$G_{2} = P(4x + 4y + 4z + 5, 2y + 4z + 4, 4x + 5y + 4z + 4)$$

$$+ P(4x + 5y + 4z + 4, 4z + 3, 4x + 6y + 4z + 4)$$

$$+ (4x + 6y + 4z + 4, 4x + 6y + 4z + 5, 4x + 8y + 8z + 8, 4x + 4y + 4z + 5),$$

$$G_{3} = P(2x + 2, 2z + 2, 2x + z + 2) + P(2x + z + 2, 3, 2x + 2z + 1)$$

$$+ (2x + 2z + 1, 2x + 2z + 3, 2x + 4z + 4, 2x + 2).$$

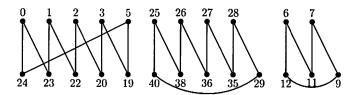


Figure 3. A σ -labeling of $C_{10} \cup C_9 \cup C_5$

Now we compute

$$\begin{array}{lll} V(G_1) & = & [0,2x-1] \cup [3x+4y+4z+4,4x+4y+4z+3] \\ & \cup & [2x+4y+4z+4,3x+4y+4z+2] \\ & \cup & \{2x+4y+4z+3,2x+1,4x+4y+4z+4\}, \\ V(G_2) & = & [4x+4y+4z+5,4x+6y+4z+4] \cup [4x+7y+8z+8,4x+8y+8z+6] \\ & \cup & [4x+6y+8z+7,4x+7y+8z+6] \cup \{4x+6y+4z+5,4x+8y+8z+8\}, \\ V(G_3) & = & [2x+2,2x+2z+1] \cup [2x+3z+4,2x+4z+3] \\ & \cup & [2x+2z+4,2x+3z+2] \cup \{2x+2z+3,2x+4z+4\}. \end{array}$$

We can order these as follows.

Cycle	Vertex Labels	Cycle	Vertex Labels
G_1	[0, 2x-1]	$\overline{G_1}$	[2x+4y+4z+4,3x+4y+4z+2]
G_1	2x + 1	G_1	[3x + 4y + 4z + 4, 4x + 4y + 4z + 3]
G_3	[2x+2,2x+2z+1]	G_1	4x + 4y + 4z + 4
G_3	2x + 2z + 3	G_2	[4x + 4y + 4z + 5, 4x + 6y + 4z + 4]
G_3	[2x+2z+4,2x+3z+2]	G_2	4x + 6y + 4z + 5
G_3	[2x+3z+4,2x+4z+3]	G_2	[4x + 6y + 8z + 7, 4x + 7y + 8z + 6]
G_3	2x+4z+4	G_2	[4x + 7y + 8z + 8, 4x + 8y + 8z + 6]
G_1	2x + 4y + 4z + 3	G_2	4x + 8y + 8z + 8

The vertices of the three cycles are distinct and contained in [0, 2(4x + 4y + 4z + 4)] = [0, 8x + 8y + 8z + 8]. Note that if z = 1, the set [2x + 2z + 4, 2x + 3z + 2] will be empty. If in addition y = 1, then the set [4x + 7y + 8z + 8, 4x + 8y + 8z + 6] will be empty. Finally, if in addition x = 1, the set [2x + 4y + 4z + 4, 3x + 4y + 4z + 2] will also be empty. This however does not change the proof.

Likewise we compute

$$\overline{E}(G_1) = [2x + 4y + 4z + 4, 4x + 4y + 4z + 3] \cup [4y + 4z + 5, 2x + 4y + 4z + 2]$$

$$\cup \{4y + 4z + 4, 4y + 4z + 2, 2x + 4y + 4z + 3, 4x + 4y + 4z + 4\},$$

$$\overline{E}(G_2) = [2y + 4z + 4, 4y + 4z + 1] \cup [4z + 3, 2y + 4z + 2]$$

$$\cup \{1, 2y + 4z + 3, 4y + 4z + 3\},$$

$$\overline{E}(G_3) = [2z + 2, 4z + 1] \cup [3, 2z] \cup \{2, 2z + 1, 4z + 2\}.$$

We can order these as follows.

Cycle	Edge Labels	Cycle	Edge Labels
G_2	1	G_2	[2y+4z+4,4y+4z+1]
G_3	2	G_1	4y+4z+2
G_3	[3, 2z]	G_2	4y+4z+3
G_3	2z + 1	G_1	4y+4z+4
G_3	[2z+2,4z+1]	G_1	[4y+4z+5,2x+4y+4z+2]
G_3	4z + 2	G_1	2x + 4y + 4z + 3
G_2	[4z+3,2y+4z+2]	G_1	[2x+4y+4z+4,4x+4y+4z+3]
G_2	2y + 4z + 3	G_1	4x + 4y + 4z + 4

Hence $\overline{E}(G) = [1, 4x + 4y + 4z + 4]$. Then we have a σ -labeling.

As with the vertex labels, note that if z = 1, the set [3, 2z] is empty. If in addition y = 1, then [2y + 4z + 4, 4y + 4z + 1] is empty. Finally, if in addition x = 1, then [4y + 4z + 5, 2x + 4y + 4z + 2] will also be empty. Neither condition would however change the proof.

Theorem 12. Let $x \ge 1$, $y \ge z$ be nonnegative integers and let $G = C_{4x+1} \bigcup C_{4y+3} \bigcup C_{4z+3}$. Then G has a σ -labeling.

Proof. We will distinguish two cases according to whether y = 0 or $y \ge 1$. Case 1: y = 0.

If y = 0, then z must be 0. The three cycles $G_1 = C_{4x+1}$, $G_2 = C_3$, and $G_3 = C_3$ are defined as follows:

$$G_1 = P(4x+7,2x+7,5x+7) + P(5x+7,8,6x+6)$$

$$+ (6x+6,6x+8,8x+14,4x+7),$$

$$G_2 = (0,3,7,0),$$

$$G_3 = (4,5,10,4).$$

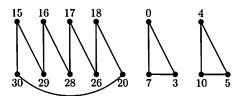


Figure 4. A σ -labeling of $C_9 \cup C_3 \cup C_3$

Now we compute

$$V(G_1) = [4x+7,6x+6] \cup [7x+14,8x+13] \cup [6x+14,7x+12] \cup \{6x+8,8x+14\},$$

 $V(G_2) = \{0,3,7\},\$

 $V(G_3) = \{4,5,10\}.$

We can order these as 0,3 from G_2 , then 4,5 from G_3 , then 7 from G_2 and 10 from G_3 , and finally

$$[4x + 7, 6x + 6], 6x + 8, [6x + 14, 7x + 12], [7x + 14, 8x + 13], 8x + 14$$
 from G_1 .

The vertices of the three cycles are distinct and contained in [0, 8x + 8y + 8z + 14]. Note that if x = 1, the set [6x + 14, 7x + 12] will be empty. This however does not change the proof.

Finally we compute

$$\overline{E}(G_1) = [2x+7,4x+6] \cup [8,2x+5] \cup \{2,2x+6,4x+7\},$$

$$\overline{E}(G_2) = \{3,4,7\},$$

$$\overline{E}(G_3) = \{1,5,6\}.$$

We can order these as edge label 1 from G_3 , 2 from G_1 , 3 and 4 from G_2 , 5 and 6 from G_3 , 7 from G_2 , and

$$[8, 2x + 5], 2x + 6, [2x + 7, 4x + 6], 4x + 7$$

from G_1 . Thus $\overline{E}(G) = [1, 4x + 7]$. Then we have a σ -labeling. Again, if x = 1 the set [8, 2x + 5] will be empty. This however does not change the proof.

Case 2: $y \ge 1$.

The three cycles $G_1 = C_{4x+1}$, $G_2 = C_{4y+3}$, and $G_3 = C_{4z+3}$ are defined as follows:

$$G_{1} = P(4x + 4y + 4z + 7, 2x + 4y + 4z + 7, 5x + 4y + 4z + 7)$$

$$+ P(5x + 4y + 4z + 7, 4y + 4z + 8, 6x + 4y + 4z + 6)$$

$$+ (6x + 4y + 4z + 6, 6x + 4y + 4z + 8, 8x + 8y + 8z + 14, 4x + 4y + 4z + 7),$$

$$G_{2} = P(0, 2y + 4z + 5, y + 1) + P(y + 1, 4z + 6, 2y) + (2y, 2y + 3, 4y + 4z + 7, 0),$$

$$G_{3} = P(6x + 4y + 4z + 9, 2z + 5, 6x + 4y + 5z + 9)$$

$$+ P(6x + 4y + 5z + 9, 4, 6x + 4y + 6z + 9)$$

$$+ (6x + 4y + 6z + 9, 6x + 4y + 6z + 10, 6x + 4y + 8z + 14, 6x + 4y + 4z + 9).$$

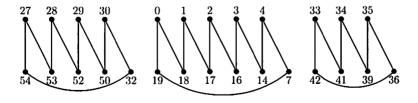


Figure 5. A σ -labeling of $C_9 \cup C_{11} \cup C_7$

Now we compute

$$V(G_1) = [4x + 4y + 4z + 7, 6x + 4y + 4z + 6] \cup [7x + 8y + 8z + 14, 8x + 8y + 8z + 13]$$

$$\cup [6x + 8y + 8z + 14, 7x + 8y + 8z + 12] \cup \{6x + 4y + 4z + 8, 8x + 8y + 8z + 14\},$$

$$V(G_2) = [0, 2y] \cup [3y + 4z + 6, 4y + 4z + 6] \cup [2y + 4z + 6, 3y + 4z + 4]$$

$$\cup \{2y + 3, 4y + 4z + 7\},$$

$$V(G_3) = [6x + 4y + 4z + 9, 6x + 4y + 6z + 9] \cup [6x + 4y + 7z + 14, 6x + 4y + 8z + 13]$$

$$\cup [6x + 4y + 6z + 13, 6x + 4y + 7z + 12] \cup \{6x + 4y + 6z + 10, 6x + 4y + 8z + 14\}.$$

We can order these as follows.

G_i	Vertex Labels	G_i	Vertex Labels
G_2	[0,2y]	G_3	6x + 4y + 6z + 10
G_2	2y + 3	G_3	[6x + 4y + 6z + 13, 6x + 4y + 7z + 12]
G_2	[2y+4z+6,3y+4z+4]	G_3	[6x + 4y + 7z + 14, 6x + 4y + 8z + 13]
G_2	[3y+4z+6,4y+4z+6]	G_3	6x + 4y + 8z + 14
G_2	4y+4z+7	G_1	[6x + 8y + 8z + 14, 7x + 8y + 8z + 12]
G_1	[4x + 4y + 4z + 7, 6x + 4y + 4z + 6]	G_1	[7x + 8y + 8z + 14, 8x + 8y + 8z + 13]
G_1	6x + 4y + 4z + 8	G_1	8x + 8y + 8z + 14
G_3	[6x + 4y + 4z + 9, 6x + 4y + 6z + 9]		-

The vertices of the three cycles are distinct and contained in [0, 2(4x + 4y + 4z + 7)] = [0, 8x + 8y + 8z + 14]. Note that if z = 0, the sets [6x + 4y + 6z + 13, 6x + 4y + 7z + 12] and [6x + 4y + 7z + 14, 6x + 4y + 8z + 13] are empty. If in addition y = 1, then the set [2y + 4z + 6, 3y + 4z + 4] is empty. Finally, if in addition x = 1, the set [6x + 8y + 8z + 14, 7x + 8y + 8z + 12] will also be empty. This however does not change the proof.

Likewise we compute

$$\overline{E}(G_1) = [2x + 4y + 4z + 7, 4x + 4y + 4z + 6] \cup [4y + 4z + 8, 2x + 4y + 4z + 5]
\cup \{2, 2x + 4y + 4z + 6, 4x + 4y + 4z + 7\},
\overline{E}(G_2) = [2y + 4z + 5, 4y + 4z + 6] \cup [4z + 6, 2y + 4z + 3]
\cup \{3, 2y + 4z + 4, 4y + 4z + 7\},
\overline{E}(G_3) = [2z + 5, 4z + 4] \cup [4, 2z + 3] \cup \{1, 2z + 4, 4z + 5\}.$$

We can order these as follows.

Cycle	Edge Labels	Cycle	Edge Labels
$\overline{G_3}$	1	G_2	2y + 4z + 4
G_1	2	G_2	[2y+4z+5,4y+4z+6]
G_2	3	G_2	[4y+4z+7]
G_3	[4, 2z + 3]	G_1	[4y + 4z + 8, 2x + 4y + 4z + 5]
G_3	2z + 4	G_1	2x + 4y + 4z + 6
G_3	[2z+5,4z+4]	G_1	[2x + 4y + 4z + 7, 4x + 4y + 4z + 6]
G_3	4z + 5	G_1	4x + 4y + 4z + 7
G_2	[4z+6,2y+4z+3]		

Hence $\overline{E}(G) = [1, 4x + 4y + 4z + 7]$. Then we have a σ -labeling.

As with in the vertex labels, if z = 0 the sets [4, 2z+3] and [2z+5, 4z+4] will be empty. If in addition y = 1, then [4z+6, 2y+4z+3] will be empty. Finally, if in addition x = 1, then [4y+4z+8, 2x+4y+4z+5] will also be empty. Neither condition would change the proof.

Theorem 13. Let $x \ge 1$, $y \ge z$ be nonnegative integers, and let $G = C_{4x+2} \bigcup C_{4y+3} \bigcup C_{4z+3}$. Then G has a σ -labeling.

Proof. The three cycles $G_1 = C_{4x+2}, G_2 = C_{4y+3}$, and $G_3 = C_{4z+3}$ are defined as follows:

```
G_{1} = P(0, 2x + 4y + 4z + 8, x) + P(x, 4y + 4z + 9, 2x - 1) 
+ (2x - 1, 2x + 4y + 4z + 7, 2x + 1, 4x + 4y + 4z + 8, 0),
G_{2} = P(4x + 4y + 4z + 9, 2y + 4z + 6, 4x + 5y + 4z + 9) 
+ P(4x + 5y + 4z + 9, 4z + 5, 4x + 6y + 4z + 9) 
+ (4x + 6y + 4z + 9, 4x + 6y + 4z + 11, 4x + 8y + 8z + 16, 4x + 4y + 4z + 9),
G_{3} = P(2x + 2, 2z + 4, 2x + z + 2) + P(2x + z + 2, 3, 2x + 2z + 2) 
+ (2x + 2z + 2, 2x + 2z + 3, 2x + 4z + 6, 2x + 2).
```

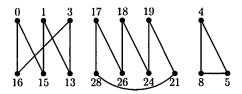


Figure 6. A σ -labeling of $C_6 \cup C_7 \cup C_3$

Now we compute

$$V(G_1) = [0, 2x - 1] \cup [3x + 4y + 4z + 8, 4x + 4y + 4z + 7]$$

$$\cup [2x + 4y + 4z + 8, 3x + 4y + 4z + 6]$$

$$\cup \{2x + 1, 2x + 4y + 4z + 7, 4x + 4y + 4z + 8\},$$

$$V(G_2) = [4x + 4y + 4z + 9, 4x + 6y + 4z + 9]$$

$$\cup [4x + 7y + 8z + 15, 4x + 8y + 8z + 14]$$

$$\cup [4x + 6y + 8z + 14, 4x + 7y + 8z + 13]$$

$$\cup \{4x + 6y + 4z + 11, 4x + 8y + 8z + 16\},$$

$$V(G_3) = [2x + 2, 2x + 2z + 2] \cup [2x + 3z + 6, 2x + 4z + 5]$$

$$\cup [2x + 2z + 5, 2x + 3z + 4] \cup \{2x + 2z + 3, 2x + 4z + 6\}.$$

We can order these as follows.

Cycle	Vertex Labels	Cycle	Vertex Labels
G_1	[0, 2x - 1]	G_1	[2x+4y+4z+8,3x+4y+4z+6]
G_1	2x + 1	G_1	[3x + 4y + 4z + 8, 4x + 4y + 4z + 7]
G_3	[2x+2,2x+2z+2]	G_1	4x + 4y + 4z + 8
G_3	2x + 2z + 3	G_2	[4x + 4y + 4z + 9, 4x + 6y + 4z + 9]
G_3	[2x+2z+5,2x+3z+4]	G_2	4x + 6y + 4z + 11
G_3	[2x+3z+6,2x+4z+5]	G_2	[4x + 6y + 8z + 14, 4x + 7y + 8z + 13]
G_3	2x + 4z + 6	G_2	[4x + 7y + 8z + 15, 4x + 8y + 8z + 14]
G_1	2x + 4y + 4z + 7	G_2	4x + 8y + 8z + 16

The vertices of the three cycles are distinct and contained in [0, 2(4x + 4y + 4z + 8)] = [0, 8x + 8y + 8z + 8]. Note that if z = 0, the sets [2x + 2z + 5, 2x + 3z + 4] and [2x + 3z + 6, 2x + 4z + 5] will be empty. If in addition y = 0, then the sets [4x + 6y + 8z + 14, 4x + 7y + 8z + 13] and [4x + 7y + 8z + 15, 4x + 8y + 8z + 14] will be empty. Finally, if x = 1, the set [2x + 4y + 4z + 8, 3x + 4y + 4z + 6] will also be empty. This however does not change the proof.

Likewise we compute

$$\overline{E}(G_1) = [2x + 4y + 4z + 8, 4x + 4y + 4z + 7] \cup [4y + 4z + 9, 2x + 4y + 4z + 6]
\cup \{4y + 4z + 8, 4y + 4z + 6, 2x + 4y + 4z + 7, 4x + 4y + 4z + 8\},
\overline{E}(G_2) = [2y + 4z + 6, 4y + 4z + 5] \cup [4z + 5, 2y + 4z + 4]
\cup \{2, 2y + 4z + 5, 4y + 4z + 7\},
\overline{E}(G_3) = [2z + 4, 4z + 3] \cup [3, 2z + 2] \cup \{1, 2z + 3, 4z + 4\}.$$

We can order these as follows.

Cycle	Edge Labels	Cycle	Edge Labels
G_3	1	$\overline{G_2}$	[2y+4z+6,4y+4z+5]
G_2	2	G_1	4y+4z+6
G_3	[3,2z+2]	G_2	4y+4z+7
G_3	2z + 3	G_1	4y + 4z + 8
G_3	[2z+4,4z+3]	G_1	[4y + 4z + 9, 2x + 4y + 4z + 6]
G_3	4z + 4	G_1	2x + 4y + 4z + 7
G_2	[4z+5,2y+4z+4]	G_1	[2x+4y+4z+8,4x+4y+4z+7]
G_2	2y + 4z + 5	G_1	4x + 4y + 4z + 8

Hence $\overline{E}(G) = [1, 4x + 4y + 4z + 4]$. Then we have a σ -labeling.

As with the vertex labels, note that if z = 0, then [3, 2z + 2] and [2z + 4, 4z + 3] will be empty. If in addition y = 0, then [4z + 5, 2y + 4z + 4] and [2y + 4z + 6, 4y + 4z + 5] are empty. Finally, if x = 1, the set [4y + 4z + 9, 2x + 4y + 4z + 6] is empty. Neither condition would however change the proof.

We conclude this section with our main result.

Theorem 14. Let G be a 2-regular graph of size n and at most three components. Then G admits a σ -labeling if and only if $n \equiv 0$ or 3 (mod 4).

Proof. The condition $n \equiv 0$ or $3 \pmod 4$ is necessary by Theorem 4 (the parity condition). If G has at most two components, then sufficiency is obtained from Theorems 5 and 6. Now let r, s and t be positive integers ≥ 3 and let $G = C_r \bigcup C_s \bigcup C_t$ (thus n = r + s + t). If $r \equiv s \equiv t \equiv 0 \pmod 4$, or $r \equiv 0 \pmod 4$ and $s \equiv t \equiv 2 \pmod 4$, then G admits an α -labeling by Eshghi's results [12], unless r = s = t = 4 in which case G has a σ +-labeling by [11]. If $r \equiv s \equiv 0 \pmod 4$ and $t \equiv 3 \pmod 4$, then G admits a σ -labeling by Theorem 8. If $r \equiv 0 \pmod 4$, $s \equiv 1 \pmod 4$ and $t \equiv 2$ or $3 \pmod 4$, then G admits a σ -labeling by Corollary 9. The case $r \equiv s \equiv 2 \pmod 4$, $t \equiv 3 \pmod 4$, is obtained similarly. The rest of the cases are done by the previous four theorems.

4. Concluding Remarks

The study of graph decompositions is a popular branch of modern combinatorial design theory (see [6] for an overview). In particular, the study of G-decompositions of K_{2n+1} (and of K_{2nx+1}) when G is a graph with n edges (and x is a positive integer) has attracted considerable attention. The study of graph labelings is also quite popular (see Gallian [13] for a dynamic survey). Theorems 1 and 2 provide powerful links between the two areas. Much of the attention on labelings has been on graceful labelings (i.e., β -labelings). Unfortunately, the parity condition "disqualifies" large classes of graphs from admitting graceful labelings. This difficulty is compounded by the fact that certain classes of graphs with ρ -labelings meet the parity condition, yet fail to be graceful $(C_3 \cup C_3 \cup C_5)$ is one such example).

In conclusion, we note that our results here, along with results from [3], [8] and [14] among others, provide further evidence in support of the following conjecture of El-Zanati and Vanden Eynden.

Conjecture 15. Every 2-regular G graph of size n has a ρ -labeling. Moreover, if $n \equiv 0$ or 3 (mod 4) then G has a σ -labeling.

As a final comment, we note that this work was done while the first author was enrolled in an undergraduate research program at Illinois State University.

REFERENCES

- J. Abrham and A. Kotzig, All 2-regular graphs consisting of 4-cycles are graceful, Discrete Math. 135 (1994), 1 14.
- [2] J. Abrham and A. Kotzig, Graceful valuations of 2-regular graphs with two components, Discrete Math. 150 (1996), 3-15.
- [3] A. Aguado, S.I. El-Zanati, H. Hake, J. Stob, and H. Yayla, On ρ-labeling the union of three cycles, Australas. J. Combin., to appear.
- [4] A. Blinco and S.I. El-Zanati, A note on the cyclic decomposition of complete graphs into bipartite graphs, Bull. Inst. Combin. Appl. 40, (2004), 77-82.

- [5] A. Blinco, S.I. El-Zanati, and C. Vanden Eynden, On the cyclic decomposition of complete graphs into almost-bipartite graphs, *Discrete Math.* 284 (2004), 71-81.
- [6] J. Bosák, Decompositions of Graphs, Kluwer Academic Publishers Group, Dordrecht. 1990.
- [7] R.C. Bunge, S.I. El-Zanati, and C. Vanden Eynden, On γ -labelings of almost-bipartite graphs, in preparation.
- [8] J.H. Dinitz and P. Rodney, Disjoint difference families with block size 3, Util. Math. 52 (1997), 153-160.
- [9] D. Donovan, S.I. El-Zanati, C. Vanden Eynden, and S. Sutinuntopas, Labelings of unions of up to four uniform cycles, *Australas. J. Combin.* 29(2004), 323-336.
- [10] J. Dumouchel and S.I. El-Zanati, On labeling the union of two cycles, J. Comb. Math. Comb. Comput. 53 (2005), 3-11.
- [11] S.I. El-Zanati, C. Vanden Eynden and N. Punnim, On the cyclic decomposition of complete graphs into bipartite graphs, Australas. J. Combin. 24 (2001), 209-219.
- [12] K. Eshghi, The existence and construction of α-valuations of 2-regular graphs with 3 components, Ph.D. Thesis, Industrial Engineering Dept., University of Toronto, 1997.
- [13] J.A. Gallian, A dynamic survey of graph labeling, *Electron. J. Combin.*, Dynamic Survey 6, 148 pp.
- [14] H. Hevia and S. Ruiz, Decompositions of complete graphs into caterpillars, Rev. Mat. Apl. 9 (1987), 55-62.
- [15] A. Kotzig, β-valuations of quadratic graphs with isomorphic components, Util. Math., 7 (1975), 263-279.
- [16] A. Kotzig, Recent results and open problems in graceful graphs, Congress. Numer. 44 (1984), 197-219.
- [17] M. Maheo and H. Thuillier, On d-graceful graphs, Ars Combin. 13 (1982), 181-192.
- [18] A. Rosa, On the cyclic decomposition of the complete graph into polygons with odd number of edges, Časopis Pēst. Mat. 91 (1966), 53-63.
- [19] A. Rosa, On certain valuations of the vertices of a graph, in: Théorie des graphes, journées internationales d'études, Rome 1966 (Dunod, Paris, 1967), 349-355.
- [20] P.J. Slater, On k-graceful graphs, Congr. Numer. 36 (1982), 53-57.