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Abstract In this paper we shall consider acquisition sequences of a graph. The forma-
tion of each acquisition sequence is a process that creates an independent set. Each
acquisition sequence is a sequence of "acquisitions" which are defined on a graph G
for which each vertex originally has a value of one associated with it. In an ecquisition
a vertex transfers all of its value to an adjacent vertex with equal or greater value. For
an acquisition sequence, one continues until no more acquisitions are possible. The pa-
rameter a(G) is defined to be the minimum possible number of vertices with a nonzero
value at the conclusion of such an acquisition sequence. Clearly, if S is a set of vertices
with nonzero values at the end of some acquisition sequence, then S is independent,
and we call such a set S an acquisition set. We show that for a given graph G, "Is
a{G) = 17" is NP-complete, and describe a linear time algorithm to determine the
acquisition number of a caterpillar.

1 Introduction

The acquisition number a(G) is related to the operation "acquisition” which
is defined on a graph G for which each vertex originally has a value of one
associated with it. In an acquisition, a vertex transfers all of its value to an
adjacent vertex with equal or greater value. For an acquisition sequence, one
continues until no more acquisitions are possible. The acquisition number a(G)
is defined to be the minimum number of vertices with a nonzero value at the
conclusion of such an acquisition sequence. Clearly for each graph G, a(G) > 1.

If S is a set of vertices with nonzero values at the end of some acquisition
sequence, then we call such a set S an acquisition set. Clearly an acquisition
set is independent. It is easy to verify the following proposition.

Proposition 1. FEvery mazimal independent set is an acquisition set. Thus
a(G) < i(G) < B(G), where the independence number B(G) and lower indepen-
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dence number i(G) are the mazimum and minimum cardinalities of mazimal
independent sets in G.

For any two given graphs G and G, with disjoint vertex sets X = {z;, zo,...,
zm} and Y = {y1,92,-..,¥n}, the Cartesian graph product G = G;0G; of
graphs G and G; is the graph with the vertex set X x Y, and v = (z;,y;) is
adjacent to v = (z,,y) Whenever x; = z, and y; is adjacent to y, in Gg, or
y; = yp and z; is adjacent to z, in Gy. For example, KoK, = C;.

Proposition 2. For any two given graphs G; and G, with disjoint vertex sets,
a(G10G?) < a(Gy) x a(Gz).

Proof. We use the same notation mentioned above in this proof. Let X; =
{(zi,y;)11 < j < n}for 1 <i<mandY; = {(zi,9;)|1 €< i < m} for
1 £ j £ n. Clearly the subgraph induced by Y; in G is isomorphic to G;, while
the subgraph induced by X; in G is isomorphic to G3, where 1 < ¢ < m and
1 < j £ n. Let S; be the acquisition set in G; at the end of some acquisition
sequence S; such that |S;| = a(G)), and S2 be the acquisition set in G5 at
the end of some acquisition sequence S; such that |S2| = a(Gz). Without
loss of generality, we can assume that Sz = {y1,2,... ,¥a(c,)}- Describe an
acquisition sequence on G as follows. First we can perform the acquisition
sequence S; on each subgraph induced by X;, where 1 < ¢ < m. After that, the
set of vertices with nonzero values in G is UJ“.LGI’)Y_,-. Furthermore, all vertices
in each set Y; have the same nonzero value for 1 < j < a(G3). Then we
can perform the acquisition sequence S, on each subgraph induced by Y; for
1 £ j £ a(Gy), which is G;. The resulting set is an acquisition set having
a(G1) % a(Gy) vertices. The proposition follows. -

We note that a(Ps) = 2 and a(Ps0P;5) = 3, as shown in [2]. Hence, one can
have a(Gﬂng) < a(Gl) X a(Gg). .

The k-cube Qy is the graph of order 2% with vertex set V(Qx) = {(a1, a2,
...,ax)|a; € {0,1} for 1 < i < k}, and two vertices u = (by,b,,...,b) and
v = (¢),¢2,...,¢k) are adjacent in Q if and only if there exists a positive
integer j such that b; # ¢; and b; = ¢; for all ¢ # j, where 1 < j < k. Notice
that Qx = Qx_10K> for k > 2. By Proposition 2, a(Qk) < a(Qk-1) X a(K3) =
a(Qx—1) for k > 2. That, together with the fact that a(Q2) = 1, implies the
following corollary.

Corollary 3. a(Qy) = 1, where k is any positive integer.

From the definition of acquisition, each acquisition to a vertex at most dou-
bles its value. Therefore we have the following results. We use deg(v) to denote
the degree of vertex v.
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Theorem 4. [2] The mazimum value that may be concentrated at any one
vertez v by any sequence of acquisitions is 29€9(%),

Theorem 5. For a vertez v not in the acquisition set S, the mazimum value
attained by v at any point during the acquisition sequence is 24¢9(v)=1,

From Theorem 4, it easily follows for path P, and cycle C,, on n vertices
that a(P,) = a(Cn) = [3]. The following Theorem gives us an upper bound
for a(G).

Theorem 6. [2] For any connected graph G with the number of vertices n > 2,
a(G) < 2L,

From |[2], the upper bound is achievable by the tree illustrated in Figure 1.

Vk1 Vk2 Uk3

Figure 1. Tree Tar42 with a(Tap42) =k +1

In Section 2, we show that deciding, for a given graph G, "Is a(G) = 17" is
NP-complete. In Section 3, we consider caterpillars and describe a linear time
algorithm to determine the acquisition number of a caterpillar.

2 NP-completeness

Although Theorem 6 gives an upper bound for a(G), it can be seen from this
section that determining a(G) for an arbitrary graph is believed to be very
difficult. In this section, we shall prove that deciding, for a given graph G, "Is
a(G) = 17" is NP-complete. For a formal definition of NP-completeness and a
list of NP-complete problems, see [1].

Theorem 7. Deciding, for a given graph G, "Is a(G) = 12" is NP-complete.
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Proof. We shall relate the problem *Is a(G) = 17" for a given graph G to
the three-dimension matching problem (3DM), which has been shown to be
NP-complete (see [1], page 221). Recall that the 3DM problem is stated as
follows:

3DM Problem: Let X = {31)321 vee 1$m}’y = {y11y21- .. )yWI}1 Z= {21’22)
...yzm}andlet M C X xY x Z. Does there exist a subset of M of size m such
that each pair of elements of the subset disagree in all three coordinates?

We demonstrate that a solution to the problem 3DM is equivalent to a
solution of the problem “Is a(G) = 17" for a specified graph G. Here G can be
constructed from the set M in time polynomial in m. In other words, there is a
polynomial transformation from the problem 3DM to the problem "Is a(G) =
177, Next we shall describe the construction of G from a given 3DM problem.

For a given 3DM problem, let |M| = ¢. Clearly we can assume that t > m.
Each element in X,Y,Z and M is represented by a vertex in G. X,Y,Z and
M are independent subsets of V(G). Each vertex in X is adjacent to two end-
vertices, while each vertex in Y is adjacent to one end-vertex. If (z:,y;, 2:) € M,
then the corresponding vertex of M in G is adjacent to the vertices z; of X, y; of
Y and 2; of Z. All the vertices in M are adjacent to a vertex u ¢ XUYUZUM
and the subgraph induced by N[y] is K} 48, a star of t + 9 vertices. Note that
every vertex in M has degree four. The graph G is illustrated in Figure 2. For
illustrative purposes (z1,¥1,21) is assumed to be an element of M. All other
edges are precisely as depicted.

(z1,91,21) o ¢ \, ..N]M

z....z Z

Figure 2. The graph G corresponding to the problem 3DM

Clearly, G has 6m +t +9 vertices and can be constructed from a given 3DM
problem in polynomial time.
Claim 1. If there exists a solution to the problem 3DM, then a(G) = 1.
Suppose that we have a solution to the problem 3DM. It follows that there
exists an m-subset A of M such that each pair of elements of the subset disagree
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in all three coordinates. By applying appropriate permutations of the indices
on Y and Z, we can assume that A = {a; = {z;,y:,2}|1 < i < m}. Next we
shall describe an acquisition sequence such that there will be only one vertex
with nonzero value left at the end of this sequence, the vertex u.

First transfer the value of all end-vertices in V(G) — Z to the vertices that
are adjacent to them. Then each vertex in X has value 3, each vertex in Y has
value 2, and u has value 9.

Second, performing the following acquisitions: z; — {z;,y:,2:) € Afor 1 <
i < m, will make each vertex in A have value 2 and each vertex in Z have value
0.

Third, by the fact that each vertex in AUY has value 2, performing the
following acquisitions: y; — (zi,¥:, z:i) € A for 1 < i < m, will make each vertex
in A have value 4 and each vertex in Y have value 0.

Fourth, noticing that each vertex in X has value 3, we can do the following
acquisitions: z; — (x;,¥:,2:) € A for 1 £ i < m, to make the values of each
vertex in A and X, respectively, be 7 and 0.

Finally, notice that the value of each vertex in M is either 7 or 1, which is
smaller than 9, the value of u. And M U {u} is the set of vertices with nonzero
value at this time. So performing the following acquisitions: v — u for all
v € M, will leave us only one vertex with nonzero value, namely u. By the
above discussion, a(G) = 1.

Claim 2. o(G) =1 implies that there exists a solution to the problem 3DM.

The case when m = 1 is trivial. Consider m > 2. Then |V(G)| > 23.
Let S be any acquisition sequence that will achieve ¢(G) = 1, and .S be the
corresponding acquisition set. Let S = {v}. Suppose that v # u. Note that the
degree of every vertex in M is four. By Theorem 4, v € X UY U Z. To achieve
a(G) = 1, the acquisition sequence S can be assumed to transfer the value of
all end-vertices in V(G) — Z to the vertices that are adjacent to them first. So
now the value of u is 9, each vertex in X has a value of 3 and each vertex in
Y has a value of 2. By Theorem 5 and the assumption that v € X UY U Z,
the maximum value of all vertices in M during the acquisition sequence S is at
most 8, which makes u© — w impossible, where w € M. It follows that » cannot
acquire u, a contradiction. Therefore v = u, that is, S = {u}.

Notice that in order to transfer the value of any vertex in X to u, S has
to transfer the value of that vertex to a vertex in M at some point. Without
loss of generality, we can assume that the value of z; is transferred to the ith
element in M in S, say m;. Let A" = {m; € M, where 1 < i < m}. Next we
shall show that A’ is a solution to the problem 3DM.

Since S = {u} and each vertex in Z is adjacent to some vertices in M, where
each vertex in M is adjacent to four vertices with values 1, 2, 3 and 9 respectively,
then S has to perform the following acquisitions first: for each z € Z, z —» w
for some w € M. After performing these acquisitions, we claim that all vertices
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in A must have value 2. If the claim is not true, then there exists j such that
mj € A" has value 1 after doing the above acquisitions. Consider m;. The
vertex m; with value 1 is adjacent to four vertices with values 0,2,3 and 9
respectively, and the subgraph induced by N{m;] is K; 4 with m; as the center
of the star. It follows that £; — m; is not feasible, a contradiction. Thus all
vertices in A’ should have value 2 after performing the above acquisitions. Smce
any vertex in A’ is adjacent to only one vertex in Z, each pair of elements in A’
disagrees in z coordinates.

Since S = {u} and each vertex in Y with a value of 2 is adjacent to some
vertices in M, then S has to perform the following acquisitions: for each z € Z,
z — w for some w € M. Notice that for w € A’, w has a value of 2 and is
ad_]acent to four vertices with values 0,2,3 and 9 respectlvely, while for w €
M — A’, w has a value of 1 and is a.djacent to four vertices with values 0, 2, 3
and 9 respectlvely It follows that z — w, where w € A". As any vertex in A
is adjacent to only one vertex in Y, each pair of elements in A" disagrees in y
coordinates.

By the above discussion, we know that each pair of elements in A" disagrees
in the z,y, z coordinates. Thus A" is one solution to the problem 3DM.

By Claim 1 and Claim 2, we know that a solution to the problem 3DM is
equivalent to a solution of the problem "Is a(G) = 17" for a specified graph G.
Hence Theorem 7 holds. -

3 Results on the Acquisition Number of Cater-
pillars
Given a tree T of order at least 3, we shall denote by T" the subtree of T
obtained by removing all the end-vertices of T', where an end-vertex is a vertex
of degree one. A tree T is called a caterpillar if T' is a path, and we call T
the spine of the caterpillar 7. In this section we shall describe a linear time
algorithm for determining the acquisition number of a caterpillar, and present
two theorems regarding how to achieve the lower bound and the upper bound
of a(T).
First, we consider the tree T, on seven vertices illustrated in Figure 3.

w

z1 T2 z3

n Y2 Y3
Figure 3. A tree Ty with o(T) =2
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Doing the following acquisition sequence in T7: z; — w,y2 — Z2,y3 —
z3,79 — w,T3 — w, will give us an acquisition set {y,w} with cardinality 2.
Thus a(T7) < 2. It is easy to verify that w cannot acquire the values of all
vertices in T7. That, together with the facts that w is the only vertex in T4
with the maximum degree 3 and the order of T7 is 7, implies that a(T%7) > 2.
By the above discussion, a(T7) = 2. Notice that any acquisition sequence in T7
that results in an acquisition set of cardinality 2 cannot have every acquisition
in the form of y; — z;, where 1 < ¢ £ 3. Unlike the case for T7, for any
caterpillar T', we can assume that all the acquisitions of transferring the value
of all end-vertices to the vertices that are adjacent to them can be included in
an acquisition sequence. We shall restate this observation as follows.

Proposnlon 8. Let T be a caterpillar. Then there is always an acquisition set
X c V(T') with |X| = a(T).

Proof. Let S be an acquisition sequence of T', and X be the corresponding
acquisition set at the end of S, where |X| = a(T"). Suppose that u is any end-
vertex of T and uv € E(T). The proposition holds if we can assume that S has
the acquisition © — v. Consider the value of u at the end of S. At the very
beginning, u has a value of one. Besides the acquisition u — v, there are only
two other possibilities regarding the value of u. They are that v — u appears
in § and then makes the value of u equal to two, or that the value of 4 remains
unchanged. First, if v — u is in &, then this acquisition will only affect the
value of u and v because u is an end-vertex. At the end of S, v € X. We do as
well by doing u — v to make v € X possible at the end of S instead of u € X.
Second, assume that the value of u is unchanged at the end of S, then u € X.
Since u has value one at the end of S and u is adjacent to v, by the definition of
acquisition sequences, we must have that v — w for some w € V(T') in S. Notice
that deg(w) = 1 implies that w € X, which contradicts the fact that | X| = a(T)
because we can do better by doing the following acquisitions: w — v and u — v,
to make v € X possible instead of {u,w} C X. Thus deg(w) # 1. It follows
that w is in the spine. We shall consider two cases.

Case 1. w € X. Then {u,w} cX. Consider all acquisitions involving w
in S. If there exists an acquisition w — win S and w' is in the spine, noticing
that each element in N(w) — {v,w'} is an end-vertex, we do as well by doing
v — v, and z — wfor all z € N(w) — {v,w'}, and domg either w' — w or
w — w at the end, because by doing it this way, instead of {u,w} C X we
still have |{u,v,w,w’} N X| < 2. If such an acquisition does not exist, then
either v — w is the only acqlusttlon involving w in &, or all other acquisitions
involving w are in the form of w — w in & with the property that w is an
end-vertex. Under this circumstance, we can do better by performing u — v
first, because by doing it this way, we shall have |[{u,v,w} N X| = 1 instead of
{v,w} C X.
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Case 2. w ¢ X. Then w — w for some w' € V(T) in S. Smce now w has
a value of at least 2, w’ is also in the spine. Clearly the value of w'’ is at least
the value of w. If w' ¢ X, we do as well by doing u — v, and w — w’ in S and
at the end of S, v may be in X instead of « € X. Otherwise we have w’ € X.
Consider all acquisitions involving w’ in S. By a similar argument as in Case
1, we do as well by doing u — v first.

By the above discussion, we can assume that S has the acquisition © — v.
The proof of Proposition 8 is complete. -

The following observation gives a lower bound and an upper bound of a(T),
where T is a caterpillar.

Observation 9. Let T be a caterpillar with T' = vivg---v. Then1 < a(T) <

r3.

Proof. By Proposition 8, to determine a(T'), first we can transfer the value of all
end-vertices to the vertices that are adjacent to them. Let X be an acquisition
set of T' obtained by doing it this way Then X C {v1,v2,...,vk—1,vk}. That,
together with the fact that 8(Px) = [%], implies that |X| < [£]. Thus o(T) <

[ %]. This completes the proof of Observatlon 9. [
We next present a linear time algorithm to determine a(T') for caterpillar T'.

Algorithm ACQUISITION_CATERPILLAR (To determine an acquisi-
tion set X of a caterpillar T such that |X | =a(T).)

Input: a caterpillar T with T = vy, -

Step 1. Transfer the value of each end-vertex to the vertex that is adjacent to
it. Then after step 1, a weighted path P = v,v; - - - v, is obtained, where v; has
the value w(v;) for 1 <i<n.

Step 2. Iterate the following on the weighted path P until |V (P)| < 2.

2.1 For as long as possible, transfer the value of the first remaining left
endpoint v; to its neighbor v;4; and delete v; from P. That is, if v; is the
left endpoint of P and w(v;) < w(vi41), then w(vi1) = w(viy1) + w(v;) and
P := P —v;, where the operator ":=" means that the value of the right side of
an expression is assigned to the left side of the expression.

2.2 If v; is the first remaining left endpoint and w(v;) > w(v;41), then let
k be the largest integer with k > i + 1 such that we can acquire the values of
Vitl,- .., Vk ONEO V341 Let w(vigr) 1= w(vigr) +- - -+wlvg). I w(v) > w(wisr),
then v; € X. Otherwise, v;4; € X. Now let P := P — {v;,vi41,...,v}.

Step 3. If [V(P)| = 1, then X := XUV(P). If [V(P)| = 2, then X := X U{u},
where u is the vertex with larger value on P.

For example, for tree T33 in Figure 4a, after the execution of Step 1, we
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have w(vy) = 2, w(vz) = 3, w(vs) = 5, w(vg) = 6, w(vs) = 3, w(vg) = 2,
w(vy) = 1, w(vs) = 3, w(ve) = 2, w(vi) = 2, w(vn1) = 1, w(vi2) = 1 and
w(v13) = 2, which is shown in Figure 4b. Notice that we can transfer the values
of v; and v2 to v3 and we can acquire the values of vs,vg,v7 onto vy. Thus
after the first execution of Step 2, w(vi) = w(v2) = w(vz) = 0, w(vg) = 22,
w(vs) = w(ve) = w(vr) = 0, w(vg) = 3, w(wg) = 2, w(vyg) = 2, w(vn1) = 1,
w(vyg) = 1 and w(vi3) = 2, and X = {v4}, and the weighted path changes
to vsvgu19v11v12v13, Which is shown in Figure 4c. Similarly after the second
execution of Step 2, w(vg) = 0, w(vg) = 7, w(vio) =0, w(vyy) =1, w(viz) =1
and w(vy3) = 2, and X = {v4, v}, and the weighted path changes to vy;v122;3,
which is shown in Figure 4d. Finally after the third execution of Step 2 and the
execution of Step 3, w(vy)) = w(vy2) = 0, and w(v;3) = 4, and the acquisition
set X = {v4,v9,v13}. Therefore a(T33) = 3.

Figure 4a. A caterpillar T33

vy VY3 V3 Vg VU5 Yg V7 Vg Yg Vg Vi1 Vi2 U13
Value: 2 3 5 6 3 2 1 3 2 2 1 1 2

Figure 4b. The weighted path obtained after the execution of Step 1 on T33

vg Vg V10 Y11 Vi2 Vi3
*r—o—0—0—0—9
Value: 3 2 2 1 1 2

Figure 4c. The weighted path obtained after the first execution of Step 2,
where X = {4} and k=7

Uil V12 13
Value: 1 1 2

Figure 4d. The weighted path obtained after the second execution of Step 2,
where X = {v4,v9} and k = 10

Theorem 10. Algorithm ACQUISITION.CATERPILLAR is a correct linear
time algorithm.

Proof. Let S be an acquisition sequence of T, and X be the corresponding
acquisition set such that |X| = a(T). Note that Proposition 8 justifies the first
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step of the algorithm. After Step 1, the vertices of nonzero values will form a
path, say P = v1v2 - - -v,. Let w(v;) be the value of v;, where 1 < i< n.

Claim 1. If w(v1) € w(vy), then we can assume that S has the acquisition
vy — V9.

Consider the value of v; at the end of S. Since w(v1) < w(v2), by the
definition of acquisition sequence, there are three possibilities regarding the
value of v; in S: v; — va, or w(v;) = w(vz) and vz — vy, or the value of v; is
unchanged at the end of S. If w(v;) = w(vz) and v — vy, then v; € X. We do
as well by doing v; — v, because by doing it this way, v may be in X instead
of v; € X. Assume that the value of »; is unchanged in &, then v; € X. Since
v is adjacent to vy that has nonzero values, we can assume that ve — v3 is in
S. Let k be the largest positive integer such that the following acquisitions are
in §: vg — vs,v3 — v4,-++ ,vk—1 — V. Then {vy,vc} C X. It is easy to verify
that we do as well by doing v; — v and v3 — vy, - ,vk—1 — v in this case.
The proof of Claim 1 is complete.

Claim 2. Suppose that w(v;) > w(vg). Let k be the largest positive integer
such that the following acquisitions are feasible:

Vg — Vg—1,Vk-1 = Vk—2,°"* ,V3 — V2. (%)

Then we can assume that S has the above acquisitions ().

By performing (%), {v1,v2,...,%}NX = v; or {v1,vz,..., %} N X = va.
Consider the possible acquisitions that are related with v in S.

Case 1. w41 — v is in S. By the definition of & and the fact that
w(vy) > w(vg), at least two vertices among vy, va, . .., v, have nonzero values at
the end of S. We do as well by doing (*) and doing either v; — v or v = 1
and keeping all the other acquisitions involving v except vg+1 — vk, because
doing it this way gives us either {vy,vk41} C X or {ve,vk41} € X.

Case 2. vx — vk41 and vgyo — viq arein S. It follows that |{vy, vo}NX| =
1 and vx41 € X. We do as well by doing (*) and do either v; — v or v2 — vy,
and at the end of S, perform either vg41 — Vg2 OF Vg2 — V41, because doing
it this way also gives us |{v],v2,..., Uk, Vks1, Vks2} N X| = 2.

Case 3. v — Ur4+] and Vg4 — Uryo are in S. Let | be the largest positive
integer such that the following acquisitions are in S: vg41 — Vk42, V42 —
k43, Ukl — Vkai+1. Then [{v,v2} N X| =1 and veyr41 € X. It is
easy to verify that we do as well by doing (%) and doing vk41 — vit2,Vk42 —
Vk43,° " Ukl — Uk4i+1, and doing either vy — vg or v — vy.

The proof of Claim 2 is complete.

Claim 1 and Claim 2 respectively prove the correctness of Step 2.1 and Step
2.2. Next we shall explain how to determine k& with the property mentioned in
Claim 2 in the algorithm ACQUISITION.CATERPILLAR.

74



Claim 3. Define a sequence {z; | > 1} as follows:
1 = w(vz)
z; = min{zic1 — wvis1),w(vi41)} fori > 2

Let k& — 1 be the positive integer such that z; > 0for 1 < j < k—1and zx <O0.
Then k is the largest positive integer such that the acquisitions (*) in Claim 2
are feasible.

To make (*) in Claim 2 feasible, we need to have

w(vjyr) < wlv;)for2<ji<k-1 (2.1)

j
S wvpoi) € wlrojy) for0<j<k-3 (2.2)
=0

As0<j<k-3,wehave2<k—j—1<k—-1. Let p be any integer such
that 2 < p < k—1. Asz,—; = min{z,_2—w(v,), w(vp)}, we have z,_1 < w(vy).
Since z,, = min{zp_1 — w(vp+1), w(vps1)}, we have x, < zp-1 — w(vp41). Thus
zp < w(vp) — w(vpsy), that is,

zp + w(vps1) < wlvp) (2.3)

That, together with the fact that =, > 0 for 2 < p < k — 1, implies that
w(vpy1) € w(vy) for 2 < p < k— 1. Thus (2.1) holds. As x,41 = min{z, —
w(vp+2)vw(vp+2)}’ we have

Tpi1 S Tp — w(Vps2) = Tpt1 + w(vps2) < .
That, together with (2.3), implies that
Tpi1 + W(vps2) + W(vps1) < wlvp).
Continuing this process and noticing that z4_; > 0, we shall have

k-1-p
Z wlvg—;) Swyy) for2<p<k-1.

=0
Hence (2.2) holds. This completes the proof of Claim 3.
Claim 3 proves that the complexity of finding k£ with the property mentioned

in Step 2.2 is linear. By the fact that a(P,) = a(P;) = 1, Step 3 is correct. The
proof is complete. =

We conclude with two theorems regarding how to achieve the lower bound
and the upper bound of a(7T") of order n which is mentioned in Observation 9 for
caterpillars. This also means that the bounds given in Observation 9 are sharp.
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Theorem 11. Given k > 2. There exists a caterpillar T with T = Vv Uk
such that a(T) = 1 if and only if n > n(k), where

n(k) = 2%+1 when k is even
T 3-2"%  whenk is odd

Proof. (<) Let a; be the number of end-vertices that are adjacent to v; for
1<i<k Defineaj=ar=1,a =ap41-i =2""1—-1for2<i< ["2;1J
When k is even, define ay/; = 2¢/2-1 — 1 and ayp4) = n — 2F/2 - 2k/2-1 _ 1,
When k is odd, define a(x41y/2 = n — 2(5+1)/2 — 1. Clearly the order of T is n.
Next we need to show that a(T) = 1.

By Proposition 8, first we can transfer the value of all end-vertices to the ver-
tices that are adjacent to them. Let w(v;) be the value of v; at this time, where
1 < i< k. When k is even, (w(v1), w(v2),w(v3),: - , w(vgy2), w(vrsas1), -,
w(vg—2), wvk—1), w(vy)) = (2,2,4,---,25/2"  n — 2k/2 _ 9k/2-1 ... 4 9 9)
As n > 2K/2+1 we have w(vy/a41) = n — 2K/2 — 2k/2-1 > 9k/2-1  Thys we
can perform the acquisitions vx — vk—1,Vk—1 — Uk-2," " ,Vkj242 — Vikj241
and the acquisitions vy — wo,v2 — v3, -, Vgy2-1 — Vis2, to make vy
and wg/24) the only two vertices with nonzero values. Since they are ad-
jacent, a(T) = 1. When k is odd, by the fact that n(k) > 3- 2T, we
have w(v(ki1)/2) = n — 26+0/2 > 2(k=1/2 > 4(yy_1y/5). Thus we can
perform the acquisitions vk — vg—1,vk-1 — Vk-2,"", Vk48)/2 = V(k+1)/2)
v & V2,V & VU3, , Yk-1)/2 Y(k+1)/2> to make Uk+1)/2 the only vertex
with nonzero values, which means o(T) = 1.

(=) Suppose now a(T) = 1. Then there exists an acquisition sequence S
such that there will be only one vertex with nonzero values left at the end of S.
Clearly this vertex must be in T'. Thus we can assume that the vertex is V4,
where 1 <d<k.

Let u be an end-vertex that is adjacent to vy. The existence of u is guaranteed
by the definition of caterpillars. Since vq is the only vertex with nonzero value
left at the end of S, § must have the following acquisitions:

U=V, V2,000, Ud-2 7 VUd—-1,Ud-1 — U4

Notice that after u — vy, v; has a value of at least 2. After v; — v, v has a
value of at least 4. Continuing this process, we know that v4_; has a value of
at least 29-1. Let w be an end-vertex that is adjacent to vx. It is obvious that
S needs to have the following acquisitions:

W = Vg, Ve = V-1, , Vd+2 = Vd41, Vd41 = Vd-

Similarly, v44+1 has a value of at least 25=%. To make the acquisitions vg—; — vg
and vg41 — vq feasible, v4 needs to have a value of at least min{2¢-1,2%-4}.
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By the above discussion, we have
n > 2971 4 min{2971,2k~9} 4 2k—¢,

It is easy to show from this that n > 2¥/2*1 when n is even, and n > 3.2(k—1)/2
when n is odd.
The proof of Theorem 11 is complete. -

Theorem 12. Given k > 3. There exists a caterpillar T with T =vvg--vg
such that a(T) = [g] if and only if n > g(k), where

(k) = % when k is even
W= £ when k is odd

Proof. (<) Let a; be the number of end-vertices that are adjacent to v; for
1 < i < k. Define a; = 0 when ¢ = 0(mod 2) and ¢; = 1 when ¢ = 1(mod 2)
for1<i<k-2, and ax_; =0, and ar = n — g(k) + 1. Clearly the order of T
is n.

By Proposition 8, first we can transfer the value of all end-vertices to the
vertices that are adjacent to them. Let w(v;) be the value of v; at this time,

where 1 < ¢ < k. When k is even, (w(v1),w(ve), w(vs), - ,w(vg—3), w(ve—2),
w(ve—1),wlve)) = (2,1,2,---,2,1,1,n — g(k) + 2). Notice that each vertex in
X = {v1,vs, - ,vk_5,Vk—3,Vx} has a value of at least 2 and it is adjacent to

vertices having a value of one. Thus X must be a subset of any acquisition
set of T and then o(T) > !;- That, together with the fact that 8(P:) = [%],
implies that a(T) = £ when k is even. When k is odd, (w(v), w(vz), w(vs), - ,
‘LU(‘Uk_g),lU(vk_g),lU(Uk_l),’lD(vk)) = (27 1, 2) -1, 2,1,n— g(k) + 2) Notice
that each vertex in X = {v1,vs, ,Uk—2,v:} has a value of at least 2 and it
is adjacent to vertices having a value of one. By a similar argument as is given
above, a(T) = [£] when k is odd.

By the above discussion, a(T) = |'§'|

(=) By contradiction. Suppose that there exists a caterpillar T with T' =
vvg - « - v such that o(T) = [%] and n < g(k). If n < g(k), then by Theorem 6,

n+1 _gk) &k k

<l —mem———_ L ———==<|=].
s 3= =353
So the result holds unless each of the inequalities in the previous equation are
equalities, and hence k is even and n = 32,5 — 1. The case when £ = 4 is

trivial. We can assume that k > 6. Define Y; = {vg;—1,v2:} for 1 £¢ < —’25 As

n= -325 — 1, the number of end-vertices in T is % — 1. Notice that v; and v

are adjacent to at least one end-vertex. Thus there exists an integer m with
2<m< -2'5 — 1 such that each vertex in Y, is not adjacent to any end-vertex.

717



Describe an acquisition sequence S as follows. First transfer the value of all
end-vertices to the vertices that are adjacent to them. At this time, vs,,—; and
Vo, have a value of one. Second perform the acquisitions vy, .1 — vo,m_2 and
Ugm — Ugm+1. Now the vertices with nonzero values in T form two disjoint
paths P] = N1V2' V2 -3VU2m-2 and P2 = V2m41V2m42 ¢ V25 -1V25- Finally
perform acquisitions on P; and P.. Since the acquisition set obtained at the
end of S has at most B(P) +B(P;) =m—1+(§-m)=%—-1,0(T) <% -1,
a contradiction. Hence such T does not exist.

The proof of Theorem 12 is complete. -

Acknowledgement. The authors would like to express their sincere thanks for
the referees’ critical comments and constructive suggestions which led to this
improved version.

References

[1] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, Freeman, New York (1979).

[2] D. E. Lampert and P. J. Slater, The acquisition number of a graph, Congr.
Numer., 109 (1995) 203-210.

{3] D. E. Lampert and P. J. Slater, Interior parameters in ir < 7y <i < .-+ <
B < T < IR, Congr. Numer., 122 (1996) 129-143.

[4] D. E. Lampert and P. J. Slater, Parallel knockouts in the complete graph,
Amer. Math. Monthly, 105 (1998) 77-88.

78



