Simple Graphoidal Covers in a Graph *

S. ARUMUGAM AND I. SAHUL HAMID

Department of Mathematics

Arulmigu Kalasalingam College of Engineering

Anand Nagar, Krishnankoil-626190.

INDIA

e-mail: s_arumugam_akce@yahoo.com

Abstract

A simple graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ , every edge of G is in exactly one path in ψ and any two paths in ψ have at most one vertex in common. The minimum cardinality of a simple graphoidal cover of G is called the simple graphoidal covering number of G and is denoted by $\eta_s(G)$. In this paper we determine the value of η_s for several families of graphs. We also obtain several bounds for η_s and characterize graphs attaining the bounds.

Keywords. Graphoidal cover, Simple graphoidal cover. 2000 Mathematics Subject Classification: 05C

1. Introduction

By a graph G = (V, E) we mean a finite, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by p and q respectively. For graph theoretic terminology we refer to Harary [4]. All graphs in this paper are assumed to be connected and non-trivial.

If $P = (v_0, v_1, v_2, \ldots, v_n)$ is a path or a cycle in a graph G, then $v_1, v_2, \ldots, v_{n-1}$ are called internal vertices of P and v_0, v_n are called external vertices of P. If $P = (v_0, v_1, v_2, \ldots, v_n)$ and $Q = (v_n = w_0, w_1, w_2, \ldots, w_m)$ are two paths in G, then the walk obtained by concatenating P and Q at v_n is denoted by $P \circ Q$ and the path $(v_n, v_{n-1}, \ldots, v_2, v_1, v_0)$ is denoted by P^{-1} . For a unicyclic graph G with cycle C, if w is a vertex of degree

^{*}Research supported by NBHM Project 48/2/2004/R&D-II/7372.

greater than 2 on C with $deg\ w=k$, let $e_1,e_2\ldots,e_{k-2}$ be the edges of E(G)-E(C) incident with w. Let $T_i,1\leq i\leq k-2$, be the maximal subtree of G such that T_i contains the edge e_i and w is a pendant vertex of T_i . Then T_1,T_2,\ldots,T_{k-2} are called the *branches* of G at w. Also the maximal subtree T of G such that $V(T)\cap V(C)=\{w\}$ is called the *subtree* rooted at w.

The concept of graphoidal cover was introduced by Acharya and Sampathkumar [1].

Definition 1.1. [1] A graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G satisfying the following conditions.

- (i) Every path in ψ has at least two vertices.
- (ii) Every vertex of G is an internal vertex of at most one path in ψ .
- (iii) Every edge of G is in exactly one path in ψ .

The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of G and is denoted by $\eta(G)$.

An elaborate review of results in graphoidal covers with several interesting applications and a large collection of unsolved problems is given in Arumugam et al.[3]. Pakkiam and Arumugam [5, 6] determined the graphoidal covering number of several families of graphs.

Theorem 1.2. [5] Let T be a tree with n pendant vertices. Then $\eta(T) = n - 1$.

Theorem 1.3. [6] Let G be a unicyclic graph with n pendant vertices. Let C be the unique cycle of G and let m denote the number of vertices of degree greater than 2 on C. Then

$$\eta(G) = \begin{cases} 1 & \text{if } m = 0\\ n+1 & \text{if } m = 1 \text{ and deg } v = 3, \text{ where } v \text{ is the}\\ & \text{unique vertex on } C \text{ with deg } v > 2.\\ n & \text{otherwise} \end{cases}$$

Theorem 1.4. [2] For any graph G with $\delta \geq 3$, we have $\eta = q - p$.

2. Main Results

For any graph G, $\psi = E(G)$ is trivially a graphoidal cover and has the interesting property that any two paths in ψ have at most one vertex in common. This observation motivates the following definition of simple graphoidal covers in a graph.

Definition 2.1. A simple graphoidal cover of a graph G is a graphoidal cover ψ of G such that any two paths in ψ have at most one vertex in common. The minimum cardinality of a simple graphoidal cover of G is called the simple graphoidal covering number of G and is denoted by $\eta_s(G)$ or simply η_s .

Remark 2.2. We observe that every path (cycle) in a simple graphoidal cover of a graph is an induced path (cycle) so that the behaviour of simple graphoidal covers is quite different from that of graphoidal covers.

Definition 2.3. Let ψ be a collection of internally disjoint paths in G. A vertex of G is said to be an interior vertex of ψ if it is an internal vertex of some path in ψ , otherwise it is called an exterior vertex of ψ .

Theorem 2.4. For any simple graphoidal cover ψ of a (p,q)-graph G, let t_{ψ} denote the number of exterior vertices of ψ and let $t=\min t_{\psi}$, where the minimum is taken over all simple graphoidal covers ψ of G. Then $\eta_s(G)=q-p+t$.

Proof. For any simple graphoidal cover ψ of G, we have

$$\begin{split} q &= \sum_{P \in \psi} |E(P)| \\ &= \sum_{P \in \psi} (t(P)+1) \ \, (t(P) \text{ denotes the number of internal vertices of } P) \\ &= \sum_{P \in \psi} t(P) + |\psi| \\ &= p - t_{\psi} + |\psi|. \end{split}$$

Hence $|\psi| = q - p + t_{\psi}$ so that $\eta_s(G) = q - p + t$.

Corollary 2.5. For any graph G, $\eta_s(G) \ge q - p$. Moreover, the following are equivalent.

- (i) $\eta_s(G) = q p$.
- (ii) There exists a simple graphoidal cover of G without exterior vertices.
- (iii) There exists a set P of internally disjoint and edge disjoint induced paths without exterior vertices such that any two paths in P have at most one vertex in common. (From such a set P of paths the required simple graphoidal cover can be obtained by adding the edges which are not covered by the paths in P).

Corollary 2.6. If there exists a simple graphoidal cover ψ of a graph G such that every vertex of G with degree at least two is interior to ψ , then ψ is a minimum simple graphoidal cover of G and $\eta_s(G) = q - p + n$, where n is the number of pendant vertices of G.

Remark 2.7. Since every graphoidal cover of a tree T is a simple graphoidal cover of T, it follows from Theorem 1.2 that $\eta_s(T) = \eta(T) = n - 1$, where n is the number of pendant vertices of T.

We now proceed to determine η_s for several families of graphs.

Theorem 2.8. Let G be a unicyclic graph with n pendant vertices. Let C be the unique cycle in G and let m be the number of vertices of degree greater than 2 on C. Then

$$\eta_s(G) = \left\{ egin{array}{ll} 1 & \mbox{if } m=0 \\ n+1 & \mbox{if } m=1 \mbox{ or 2 and any vertex on } C \\ & \mbox{has degree at most 3} \end{array}
ight.$$

Proof. Case 1. m=0.

Then G = C so that $\eta_s(G) = 1$.

Case 2. There exists a vertex v on C such that $deg v \ge 4$.

Let ψ_v be a minimum simple graphoidal cover of the subtree T_v of G rooted at v. Clearly v is interior to ψ_v . For any other vertex w on G with $deg \ w \ge 3$, let ψ_{w_i} be a minimum simple graphoidal cover of the branch T_i at w containing the edge ww_i , where $1 \le i \le (deg \ w) - 2$. Then

$$\psi = \psi_v \cup \left\{ \bigcup_{w \in V(C) - \{v\} \atop \deg w \geq 3} \begin{pmatrix} (\deg w) - 2 \\ \bigcup_{i=1} \psi_{w_i} \end{pmatrix} \right\} \cup \{C\},$$

where v is taken as the origin of C, is a simple graphoidal cover of G such that every vertex of degree at least two is interior to ψ . Hence it follows from Corollary 2.6 that $\eta_s(G) = n$.

Case 3. Every vertex on C has degree either 2 or 3.

Subcase 3.1 m=1.

Let v be the unique vertex of degree 3 on C. Let T_1 be the tree rooted at v. Then T_1 has n+1 pendant vertices so that $\eta_s(T_1) = n$. Let ψ_1 be a minimum simple graphoidal cover of T_1 . Then $\psi = \psi_1 \cup \{C\}$, where any

arbitrary vertex of C is taken as the origin of C, is a simple graphoidal cover of G and $|\psi|=n+1$. Hence $\eta_s(G)\leq n+1$. Further, for any simple graphoidal cover ψ of G, the n pendant vertices of G and at least one vertex on C are exterior to ψ so that $t\geq n+1$. Hence $\eta_s(G)=q-p+t\geq q-p+n+1=n+1$. Thus $\eta_s(G)=n+1$.

Subcase 3.2 m=2.

Let v and w be the vertices on C such that $deg \ v = deg \ w = 3$. Let P denote the (v, w)-section of C of length greater than 1. Let T_1 be the subgraph of G obtained by deleting all the internal vertices of P. Clearly T_1 is a tree with n pendant vertices and hence $\eta_s(T_1) = n - 1$. Let ψ_1 be a minimum simple graphoidal cover of T_1 . Let u be an internal vertex of P. Let P_1 and P_2 denote the (v, u)- section and (w, u)- section of P respectively. Then $\psi = \psi_1 \cup \{P_1, P_2\}$ is a simple graphoidal cover of G and $|\psi| = |\psi_1| + 2 = n + 1$. Thus $\eta_s(G) \le n + 1$. Further, for any simple graphoidal cover ψ of G, the n pendant vertices of G and at least one vertex on C are exterior to ψ so that $t \ge n + 1$. Hence $\eta_s(G) = q - p + t \ge q - p + n + 1 = n + 1$.

Thus $\eta_s(G) = n + 1$.

Subcase 3.3 $m \ge 3$.

Let $C=(v_1,v_2,...,v_r,v_1)$ and let $\deg v_{i_1}=\deg v_{i_2}=...=\deg v_{i_k}=3$, where $1\leq i_1< i_2<...< i_k\leq r$. Let $\psi_j,1\leq j\leq k$, be a minimum simple graphoidal cover of the tree T_j rooted at v_{i_j} . Let $P_1,\ P_2$ and P_3 denote respectively the paths in ψ_1,ψ_2 and ψ_3 having v_{i_1},v_{i_2} and v_{i_3} as its terminal vertices. Let

$$\begin{aligned} Q_1 &= P_1 \circ (v_{i_1}, v_{i_1+1}, \dots, v_{i_2}), \\ Q_2 &= P_2 \circ (v_{i_2}, v_{i_2+1}, \dots, v_{i_3}) \text{ and } \\ Q_3 &= P_3 \circ (v_{i_3}, v_{i_3+1}, \dots, v_{i_1}). \end{aligned}$$

Then

$$\psi = \left\{ \left(igcup_{j=1}^k \psi_j \ \right) - \{P_1, P_2, P_3\}
ight\} \cup \{Q_1, Q_2, Q_3\}$$

is a simple graphoidal cover of G in which every vertex of degree at least two is interior to ψ . Hence it follows from Corollary 2.6 that $\eta_s(G) = n$. \square

Corollary 2.9. Let G be as in Theorem 2.8. Then $\eta_s(G) \neq \eta(G)$ if and only if m = 2 and deg $v = \deg w = 3$, where v and w are the only vertices of degree greater than 2 on C.

Proof. The result follows from Theorem 1.3 and Theorem 2.8. □

Theorem 2.10. For the complete graph $K_n (n \geq 3)$, we have

$$\eta_s(K_n) = \left\{ egin{array}{ll} 4 & \mbox{if } n=4 \ & \mbox{if } n \ \mbox{is odd} \ & \mbox{} rac{n(n-3)}{2} & \mbox{if } n > 4 \ \mbox{and } n \ \mbox{is even} \end{array}
ight.$$

Proof. We observe that, for any simple graphoidal cover ψ of K_n , any member of ψ is either a triangle or an edge. Let $V(K_n) = \{v_1, v_2, \dots, v_n\}$.

If n=4, then $\psi=\{(v_1,v_2,v_3,v_1),(v_1,v_4),(v_2,v_4),(v_3,v_4)\}$ is a simple graphoidal cover of K_4 so that $\eta_s(K_4) \leq 4$. Further, for any simple graphoidal cover ψ of K_4 , the number of vertices interior to ψ is at most 2 so that $t\geq 2$. Hence $\eta_s(K_4)=4$.

Now, suppose n=3 or $n\geq 5$. Let $P_i=(v_{2i-1},v_{2i},v_{2i+1},v_{2i-1})$, where $i=1,2,\ldots,\left\lfloor \frac{n}{2}\right\rfloor$ and let $Q=(v_{n-1},v_n,v_1,v_{n-1})$.

If n is odd, then $\psi = \left\{ P_1, P_2, \dots, P_{\left\lfloor \frac{n}{2} \right\rfloor} \right\} \cup S$, where S is the set of edges of K_n not covered by the triangles $P_1, P_2, \dots, P_{\left\lfloor \frac{n}{2} \right\rfloor}$ is a simple graphoidal cover of K_n such that v_1 is the only vertex exterior to ψ . Further, for any simple graphoidal cover ψ of K_n , at least one vertex is exterior to ψ . Hence $\eta_s(K_n) = q - p + 1 = \frac{(n-1)(n-2)}{2}$.

If n is even, then $\psi = \{P_1, P_2, \dots, P_{\frac{n}{2}-1}, Q\} \cup S$, where S is the set of edges of K_n not covered by the triangles $P_1, P_2, \dots, P_{\frac{n}{2}-1}, Q$ is a simple graphoidal cover of K_n without exterior vertices so that $\eta_s(K_n) = q - p = \frac{n(n-3)}{2}$.

Corollary 2.11. $\eta_s(K_n) = \eta(K_n)$ if and only if n = 3 or n is even and $n \ge 6$.

Theorem 2.12. For the wheel $W_n = K_1 + C_{n-1}$, we have

$$\eta_s(W_n) = \begin{cases}
4 & \text{if } n = 4,5 \\
5 & \text{if } n = 6 \\
n-2 & \text{if } n \ge 7
\end{cases}$$

Proof. Let $V(W_n) = \{v_0, v_1, v_2, \dots, v_{n-1}\}$ and $E(W_n) = \{v_0v_i : 1 \le i \le n-1\} \cup \{v_iv_{i+1} : 1 \le i \le n-2\} \cup \{v_1v_{n-1}\}.$

If n = 4, then $W_n = K_4$ so that $\eta_s(W_n) = 4$.

If n=5, let $\psi=\{(v_0,v_1,v_2,v_0),\,(v_0,v_3,v_4,v_0),(v_1,v_4),(v_2,v_3)\}$. If n=6, let $\psi=\{(v_0,v_1,v_2,v_0),\,(v_0,v_4,v_5,v_0),(v_2,v_3,v_4),(v_0,v_3),\,(v_1,v_5)\}$. Clearly ψ is a simple graphoidal cover of W_n with v_0 as its only exterior vertex. Further, for any simple graphoidal cover ψ of W_5 or W_6 , at least one vertex is exterior to ψ . Hence $\eta_s(W_5)=q-p+1=4$ and $\eta_s(W_6)=q-p+1=5$.

Now, let $n \geq 7$. Let $P_1 = (v_{n-1}, v_1, v_2)$, $P_2 = (v_{n-3}, v_0, v_1)$, $P_3 = (v_0, v_2, v_3, v_0)$, $P_4 = (v_0, v_{n-2}, v_{n-1}, v_0)$ and $P_5 = (v_3, v_4, \ldots, v_{n-2})$. Then $\psi = \{P_1, P_2, P_3, P_4, P_5\}$ is a collection of internally disjoint and edge disjoint induced paths of W_n without exterior vertices such that any two paths in ψ have at most one vertex in common. Hence it follows from Corollary 2.5 that $\eta_s(W_n) = q - p = n - 2$.

Corollary 2.13. $\eta_s(W_n) = \eta(W_n)$ if and only if $n \ge 7$.

Theorem 2.14.

(i)
$$\eta_s(K_{1,n}) = n - 1$$
, for all $n \ge 2$.

(ii)
$$\eta_s(K_{2,n}) = \begin{cases} 1 & \text{if } n = 2\\ 3 & \text{if } n = 3\\ 2(n-2) & \text{if } n \ge 4 \end{cases}$$

(iii)
$$\eta_s(K_{3,n}) = \begin{cases} 5 & \text{if } n = 3\\ 6 & \text{if } n = 4\\ 8 & \text{if } n = 5\\ 3(n-3) & \text{if } n \ge 6 \end{cases}$$

(iv) Let m and n be integers with $n \ge m \ge 4$. Then

$$\eta_s(K_{m,n}) = \begin{cases} mn - m - n & \text{if } n \leq {m \choose 2} + m \\ mn - m - n + r & \text{if } n = {m \choose 2} + m + r, r > 0 \end{cases}$$

Proof. We observe that, for any simple graphoidal cover ψ of $K_{m,n}$, any member of ψ is either a cycle of length 4 or a path of length 2 or an edge.

- (i) Since $K_{1,n}$ is a tree with n pendant vertices, it follows from Remark 2.7 that $\eta_s(K_{1,n}) = n 1$.
- (ii) Since $K_{2,2} = C_4$, we have $\eta_s(K_{2,2}) = 1$.

Now, let $X = \{x_1, x_2\}$ and $Y = \{y_1, y_2, \dots, y_n\}$ be the bipartition of $K_{2,n}$.

If n=3, then $\psi=\{(x_1,y_1,x_2,y_2,x_1),(y_3,x_1),(y_3,x_2)\}$ is a simple graphoidal cover of $K_{2,3}$ with x_1 and y_3 as its exterior vertices. Further, for any simple graphoidal cover ψ of $K_{2,3}$, we have $t_{\psi} \geq 2$. Hence $\eta_s(K_{2,3})=q-p+2=3$.

Now, suppose $n \geq 4$. Let $P_1 = (x_1, y_1, x_2, y_2, x_1)$ and $P_2 = (y_3, x_1, y_4)$. Then $\psi = \{P_1, P_2\} \cup S$, where S is the set of edges of $K_{2,n}$ not covered by P_1 and P_2 is a simple graphoidal cover of $K_{2,n}$ with n-2 exterior vertices.

Further, for any simple graphoidal cover ψ of $K_{2,n}$, at most two vertices in Y are interior to ψ so that $t \ge n-2$. Hence $\eta_s(K_{2,n}) = q-p+(n-2) = 2(n-2)$.

(iii) Let $X=\{x_1,x_2,x_3\}$ and $Y=\{y_1,y_2,\ldots,y_n\}$ be the bipartition of $K_{3,n}$.

If n=3, then $\psi=\{(x_1,y_1,x_2,y_2,x_1),(x_1,y_3,x_3),(x_2,y_3),(x_3,y_1),(x_3,y_2)\}$ is a simple graphoidal cover of $K_{3,3}$ with x_1 and x_3 as its exterior vertices. Further, $t_{\psi} \geq 2$ for any simple graphoidal cover ψ of $K_{3,3}$ so that $\eta_s(K_{3,3})=q-p+2=5$. By a similar argument, it can be easily proved that $\eta_s(K_{3,4})=q-p+1=6$ and $\eta_s(K_{3,5})=q-p+1=8$.

Now, suppose $n \ge 6$. Let $P_1 = (x_1, y_1, x_2, y_2, x_1)$, $P_2 = (x_2, y_3, x_3, y_4, x_2)$ and $P_3 = (x_3, y_5, x_1, y_6, x_3)$. Then $\psi = \{P_1, P_2, P_3\} \cup S$, where S is the set of edges of $K_{3,n}$ not covered by P_1, P_2 and P_3 is a simple graphoidal cover of $K_{3,n}$ with n-6 exterior vertices. Further, for any simple graphoidal cover ψ of $K_{3,n}$ the number of vertices in Y which are interior to ψ is at most 6 and hence $t \ge n-6$. Hence $\eta_s(K_{3,n}) = q - p + (n-6) = 3(n-3)$.

(iv) Let m and n be integers with $n \ge m \ge 4$. Let $X = \{x_1, x_2, \ldots, x_m\}$ and $Y = \{y_1, y_2, \ldots, y_n\}$ be the bipartition of $K_{m,n}$.

If m=n=4, then $\psi=\{(x_1,y_1,x_2,y_2,x_1),(x_2,y_3,x_4),(x_2,y_4,x_3),(y_3,x_1,y_4),(y_1,x_3,y_3),(y_1,x_4,y_4),(x_3,y_2),(x_4,y_2)\}$ is a simple graphoidal cover of $K_{4,4}$ without exterior vertices so that $\eta_s(K_{4,4})=8$.

Assume that $m \ge 4$ and $n \ge 5$ with $m \le n$. Suppose n < 2m. Let

$$\begin{split} P_i &= (x_i, y_{2i-1}, x_{i+1}, y_{2i}, x_i), \, i = 1, 2, \dots, \left\lceil \frac{n}{2} \right\rceil - 1, \\ P_{\left\lceil \frac{n}{2} \right\rceil} &= \left\{ \begin{array}{ll} (x_{\frac{n}{2}}, \ y_{n-1}, \ x_1, \ y_n, \ x_{\frac{n}{2}}) & \text{if n is even} \\ (x_2, \ y_n, \ x_4) & \text{if n is odd,} \end{array} \right. \\ P &= (y_3, x_1, y_5) \text{ and} \\ Q_i &= (y_1, x_{\left\lceil \frac{n}{2} \right\rceil + i}, y_{i+2}), \text{ where } i = 1, 2, \dots, m - \left\lceil \frac{n}{2} \right\rceil. \end{split}$$

Now, let $\psi_1 = \{P_i : 1 \leq i \leq \lceil \frac{n}{2} \rceil\} \cup \{Q_i : 1 \leq i \leq m - \lceil \frac{n}{2} \rceil\}$ if n is even and $\psi_1 = \{P_i : 1 \leq i \leq \lceil \frac{n}{2} \rceil\} \cup \{Q_i : 1 \leq i \leq m - \lceil \frac{n}{2} \rceil\} \cup \{P\}$ if n is odd. Then ψ_1 is a collection of internally disjoint and edge disjoint induced paths in $K_{m,n}$ without exterior vertices such that any two paths in ψ_1 have at most one vertex in common and hence $\eta_s(K_{m,n}) = q - p = mn - m - n$.

Now, suppose
$$n = {m \choose 2} + m$$
. Let $P_i = (x_i, y_{2i-1}, x_{i+1}, y_{2i}, x_i)$, where $i = 1, 2, ..., m-1$, and $P_m = (x_m, y_{2m-1}, x_1, y_{2m}, x_m)$.

Let
$$S = \{(i, j) : 1 \le i < j \le m\}$$
 and $S_1 = \{(i, i+1) : 1 \le i \le m-1\} \cup i \le m-1$

 $\{(1,m)\}$ so that $|S|=\binom{m}{2}$ and $|S_1|=m$. Fix a bijection $f:S-S_1\to\{y_{2m+1},y_{2m+2},\ldots,y_n\}$. Let $Q_k=(x_i,y_k,x_j)$, where $2m+1\le k\le n$ and $f(i,j)=y_k$. Then $\psi_1=\{P_i:1\le i\le m\}\cup\{Q_k:2m+1\le k\le n\}$ is a collection of internally disjoint and edge disjoint induced paths in $K_{m,n}$ without exterior vertices such that any two paths in ψ_1 have at most one vertex in common. Hence $\eta_s(K_{m,n})=q-p=mn-m-n$.

Suppose $2m \leq n < {m \choose 2} + m$. Let n = 2m + r, where $1 \leq r < {m \choose 2} - m$. Then $\psi_1 = \{P_i : 1 \leq i \leq m\} \cup \{Q_k : 2m + 1 \leq k \leq n\}$ is a collection of internally disjoint and edge disjoint induced paths in $K_{m,n}$ without exterior vertices such that any two paths in ψ_1 have at most one vertex in common. Hence $\eta_s(K_{m,n}) = q - p = mn - m - n$.

Suppose $n = {m \choose 2} + m + r$, where r > 0. Then in any simple graphoidal cover ψ at least r vertices are exterior to ψ and hence $t_{\psi} \geq r$. Further, exactly r vertices are exterior to ψ_1 and hence $\eta_s(K_{m,n}) = q - p + r$. \square

Corollary 2.15. For the complete bipartite graph $K_{m,n}(m \le n)$, $\eta_s = \eta$ if and only if m = 1 and $n \ge 1$ or m = n = 2 or $m \ge 4$ and $n \le {m \choose 2} + m$.

It is obvious that for any graph, $\eta_s \geq \eta$. The difference $\eta_s - \eta$ can be made arbitrarily large. For example, for the complete bipartite graph $K_{m,\binom{m}{2}+m+r}$, where m>3 and r>0, we have $\eta_s=q-p+r$ and $\eta=q-p$ so that $\eta_s-\eta=r$. Further, Remark 2.7 and Corollaries 2.9, 2.11, 2.13 and 2.15 give several families of graphs for which $\eta=\eta_s$. Also one can construct infinite families of graphs for which $\eta=\eta_s$.

Example 2.16. Let $C_n = (v_1, v_2, \ldots, v_n, v_1)$ be the cycle on n vertices. Let G_n be the graph obtained from C_n by adding the vertices w_1, w_2, \ldots, w_n and joining w_i with v_i, v_{i+1} , suffices being taken modulo n. It can be easily verified that $\eta_s(G_n) = \eta(G_n) = q - p$.

Example 2.17. Let G be a connected (p,q)-graph. Then $\eta(G^+) = \eta_s(G^+) = q$, where G^+ is the graph obtained from G by attaching one pendant edge to every vertex of G. Since the p pendant vertices of G^+ are exterior to any (simple) graphoidal cover of G, it follows that $\eta_s(G^+) \geq |E(G^+)| - |V(G^+)| + p = q$. Similarly $\eta(G^+) \geq q$. Further, it can be proved by induction on q that $\eta_s(G^+) \leq q$ and $\eta(G^+) \leq q$, so that $\eta(G^+) = \eta_s(G^+) = q$.

The above results lead to the following problems.

Problem 2.18. Characterize the class of graphs for which

- (i) $\eta = \eta_s$.
- (ii) $\eta_s = q p$.

In the following theorems we obtain bounds for η_s and characterize graphs attaining the bounds.

Theorem 2.19. For any graph G with girth g, we have $\eta_s(G) \leq q - g + 1$. Further, equality holds if and only if G is isomorphic to one of the graphs G_i , $1 \leq i \leq 6$, given in Figure 1.

Figure 1

Proof. Let C be an induced cycle of length g in G. Then $\psi = \{C\} \cup (E(G) - E(C))$ is a simple graphoidal cover of G such that $|\psi| = q - g + 1$. Hence $\eta_s(G) \leq q - g + 1$.

Now, let G be a graph of girth g with $\eta_s(G)=q-g+1$. Let $C=(v_1,v_2,\ldots,v_g,v_1)$ be a cycle of length g in G. If there exists an induced path P in G such that length of P is at least 2 and $|V(P)\cap V(C)|=1$, then $\{C,P\}\cup S$, where S is the set of edges of G not covered by G and G is a simple graphoidal cover of G and $|\psi|< q-g+1$, which is a contradiction. Thus every induced path G in G with $|V(P)\cap V(C)|=1$ has length 1. Hence it follows that every vertex not on G is adjacent to a vertex on G, the set of all vertices not on G is independent and every vertex on G has degree at most 3.

Claim 1. $\Delta(G) \leq 3$.

Suppose there exists a vertex v of G with $deg\ v \geq 4$. Then v is not on C. Let $v_{i_1}, v_{i_2}, v_{i_3}$ and v_{i_4} be neighbours of v on C, where $1 \leq i_1 < i_2 < i_3 < i_4 \leq g$. We may assume without loss of generality that the length of the path $P' = (v_{i_1}, v_{i_1+1}, \ldots, v_{i_2})$ is at most $\frac{g}{4}$. Then $Z = P' \circ (v_{i_2}, v, v_{i_1})$

is a cycle of length at most $\frac{g}{4} + 2$. Hence $g \leq \frac{g}{4} + 2$ so that g < 3, which is a contradiction. Thus $\Delta(G) \leq 3$.

Claim 2. There exist at most two vertices not on C.

Suppose there exist vertices u,v and w not on C. Let v_{i_1},v_{i_2} and v_{i_3} be vertices on C such that v_{i_1},v_{i_2} and v_{i_3} are adjacent to u,v and w respectively. It follows from by Claim 1 that the vertices v_{i_1},v_{i_2} and v_{i_3} are distinct so that we may assume that $1 \leq i_1 < i_2 < i_3 \leq g$. Let $P_1 = (u, v_{i_1}, v_{i_1+1}, \ldots, v_{i_2}), P_2 = (v,v_{i_2},v_{i_2+1},\ldots,v_{i_3})$ and $P_3 = (w,v_{i_3},v_{i_3+1},\ldots,v_{i_1})$. Since the girth of G is g, it follows that P_1,P_2 and P_3 are induced paths in G. Now, $\psi = \{P_1,P_2,P_3\} \cup S$, where S is the set of edges not covered by P_1,P_2 and P_3 is a simple graphoidal cover of G and $|\psi| = q - g$, which is a contradiction.

Thus there exist at most two vertices not on C.

Claim 3. If there exists a vertex v not on C with deg v = 2, then g = 3 or 4.

Let v_{i_1} and v_{i_2} be the neighbours of v on C, where $1 \le i_1 < i_2 \le g$. Let us assume without loss of generality that the length of the path $P = (v_{i_1}, v_{i_1+1}, \ldots, v_{i_2})$ is at most $\frac{g}{2}$. Then $Z = P \circ (v_{i_2}, v, v_{i_1})$ is a cycle of length at most $\frac{g}{2} + 2$. Hence $g \le \frac{g}{2} + 2$ so that $g \le 4$. Thus g = 3 or 4.

Claim 4. If there exists a vertex v not on C with deg v = 3, then g = 3.

Proof of Claim 4 is similar to that of Claim 3.

Claim 5. If there exist two vertices v and w not on C, then deg v = deg w = 1.

It follows from Claim 1 and Claim 4 that, $deg \ v \leq 2$ and $deg \ w \leq 2$.

Suppose $deg\ v=deg\ w=2$. Then by Claim 1 and Claim 3, we have g=4. Hence $C=(v_1,v_2,v_3,v_4,v_1)$ and G is isomorphic to the graph given in Figure 2(a). Now, $\psi=\{(v_1,v_2,v_3,w,v_1),\,(v_3,v_4,v),(v,v_2),(v_1,v_4)\}$ is a simple graphoidal cover of G with $|\psi|=4< q-g+1$, which is a contradiction.

Suppose $deg\ v=1$ and $deg\ w=2$. Then by Claim 3, we have g=3 or g=4. If g=3, then $C=(v_1,v_2,v_3,v_1)$ and G is isomorphic to the graph given in Figure 2(b). Now, $\psi=\{(v_3,v_2,w,v_3),(v_3,v_1,v),(v_1,v_2)\}$ is a simple graphoidal cover of G with $|\psi|=3< q-g+1$, which is a contradiction. If g=4, then $C=(v_1,v_2,v_3,v_4,v_1)$ and G is isomorphic to the graph given in Figure 2(c). Now, $\psi=\{(v_1,v_2,v_3,w,v_1),(v_1,v_4,v),(v_4,v_3)\}$ is a simple graphoidal cover of G with $|\psi|=3< q-g+1$, which is again a contradiction.

Thus $deg \ v = deg \ w = 1$.

Figure 2

Now, let m denote the number of vertices not on C. By Claim 2, we have $m \leq 2$. If m = 0 then $G = G_1$.

Suppose m=1. Let v be the unique vertex not on C. By Claim 1, we have $deg\ v\leq 3$. If $deg\ v=1$, then $G=G_2$. Suppose $deg\ v=2$. By Claim 3, we have g=3 or 4. If g=3, then $G=G_4$ and if g=4, then $G=G_6$. If $deg\ v=3$, it follows from Claim 4 that g=3 and hence $G=G_5$.

Suppose m = 2. Let v and w be the vertices not on C. It follows from Claim 5 that $deg \ v = deg \ w = 1$ and hence $G = G_3$.

Conversely, it can be easily verified that $\eta_s(G_i) = q - g + 1$, for all $i = 1, 2, \ldots, 6$.

Theorem 2.20. For any graph G with diameter d, we have $\eta_s(G) \leq q - d + 1$. Further, equality holds if and only if for any diameter path $P = (u = v_1, v_2, \ldots, v_{d+1} = v)$ the following are satisfied.

- 1. $deg \ u = deg \ v = 1$.
- 2. If w is a vertex not on P, then
 - (i) $N(w) \subseteq V(P)$.
 - (ii) $deg \ w \leq 3$.
 - (iii) If deg w = 3 and $N(w) = \{v_i, v_j, v_k\}$, where $2 \le i < j < k \le d$, then j = i + 1 and k = i + 2.
 - (iv) If deg w = 2 and $N(w) = \{v_i, v_j\}$, where $2 \le i < j \le d$, then either j = i + 1 or j = i + 2. Further, if j = i + 2, then deg $v_{i+1} = 2$.
 - (v) If deg w = 1 and $N(w) = \{v_i\}$, where $2 \le i \le d$, then all the neighbours of v_i not on P are pendant vertices.
- 3. If x and y are two vertices of degree greater than 1 not on P, then $N(x) \cap N(y) = \phi$.

Proof. Let u and v be any two vertices of G with d(u,v)=d. Let P be a shortest u-v path in G. Then $\psi=\{P\}\cup (E(G)-E(P))$ is a simple graphoidal cover of G and hence $\eta_s(G)\leq q-d+1$.

Now, let G be a graph with diameter d and $\eta_s(G) = q - d + 1$. Let $P = (u = v_1, v_2, \ldots, v_d, v_{d+1} = v)$ be a diameter path in G. Then any induced path Q in G with $|V(Q) \cap V(P)| = 1$ has length 1. Hence it follows that every vertex not on P is adjacent to a vertex on P and $N(w) \subseteq V(P)$ for any vertex w not on P. This proves 2(i) of the theorem.

We now claim that $deg\ u = deg\ v = 1$. Suppose $deg\ u > 1$. Then there exists a vertex w not on P which is adjacent to u. If $deg\ w = 1$, then $(w, v_1, v_2, \ldots, v_{d+1})$ is a shortest path of length d+1, which is a contradiction. Hence $deg\ w \geq 2$. Let i>1 be the least positive integer such that v_i is adjacent to w. Let $C=(v_1, v_2, \ldots, v_i, w, v_1)$ and $Q=(v_i, v_{i+1}, \ldots, v_{d+1})$. Then $\psi=\{C,Q\}\cup S$, where S is the set of edges of G not covered by C and Q is a simple graphoidal cover of G such that $|\psi|< q-d+1$, which is a contradiction. Hence $deg\ u=1$. By a similar argument, we have $deg\ v=1$. This proves condition (1) of the theorem.

Since P is a diameter path, condition 2(ii), 2(iii) and first part of 2(iv) follow immediately.

We now prove 2(v). Suppose $deg \ w = 1$, $N(w) = \{v_i\}$, where $2 \le i \le d$ and $x \in N(v_i) - V(P)$. We claim that $deg \ x = 1$. Suppose $deg \ x > 1$. Then $deg \ x = 2$ or 3.

Case 1. deg x = 2.

Without loss of generality let $N(x) = \{v_i, v_j\}$, where j = i+1 or i+2. Let

$$C = \begin{cases} (v_i, v_{i+1}, x, v_i) & \text{if } j = i+1\\ (v_i, v_{i+1}, v_{i+2}, x, v_i) & \text{if } j = i+2, \end{cases}$$

$$P_1 = (u = v_1, v_2, \dots, v_i, w) \text{ and } P_2 = (v_j, v_{j+1}, \dots, v_{d+1} = v).$$

Then $\psi = \{P_1, P_2, C\} \cup S$, where S is the set of edges of G not covered by P_1, P_2 and C is a simple graphoidal cover of G such that $|\psi| < q - d + 1$, which is a contradiction.

Case 2. deg x = 3.

Without loss of generality let $N(x) = \{v_i, v_{i+1}, v_{i+2}\}$ or $\{v_{i-1}, v_i, v_{i+1}\}$. Let $P_1 = (u = v_1, v_2, \dots, v_i, w)$, $P_2 = (v_{i+1}, v_{i+2}, \dots, v_{d+1} = v)$ and $C = (v_i, v_{i+1}, x, v_i)$. Then $\psi = \{P_1, P_2, C\} \cup S$, where S is the set of edges of G not covered by P_1, P_2 and C is a simple graphoidal cover of G such that $|\psi| < q - d + 1$, which is a contradiction.

Thus deg x = 1. This proves condition 2(v) of the theorem.

We now proceed to prove (3). Let x and y be two distinct vertices of degree greater than 1 not on P. We claim that $N(x) \cap N(y) = \phi$. We have the following possibilities.

- (i) $deg \ x = deg \ y = 3$
- (ii) deg x = 3 and deg y = 2.
- (iii) $deg \ x = deg \ y = 2$.

Suppose $deg\ x=deg\ y=3$. Let $N(x)=\{v_i,v_{i+1},v_{i+2}\}$ and $N(y)=\{v_j,v_{j+1},v_{j+2}\}$ for some i,j, where $2\leq i\leq j\leq d$. Suppose $N(x)\cap N(y)\neq \phi$.

If j = i, let $P_1 = (v_1, \ldots, v_i)$, $P_2 = (v_{i+2}, \ldots, v_{d+1})$, $C_1 = (v_i, v_{i+1}, x, v_i)$ and $C_2 = (v_{i+1}, v_{i+2}, y, v_{i+1})$. If j = i+1 or j = i+2, let $P_1 = (v_1, \ldots, v_{j-1})$, $P_2 = (v_{j+1}, \ldots, v_{d+1})$, $C_1 = (v_{j-1}, v_j, x, v_{j-1})$ and $C_2 = (v_j, v_{j+1}, y, v_j)$. Then $\psi = \{P_1, P_2, C_1, C_2\} \cup S$, where S is the set of edges of G not covered by P_1, P_2, C_1 and C_2 is a simple graphoidal cover of G such that $|\psi| < q - d + 1$, which is a contradiction. Hence it follows that $N(x) \cap N(y) = \phi$.

The proof for the cases when deg x = 3 and deg y = 2 or when deg x = deg y = 2 is similar and we omit the details.

We now prove the second part of 2(iv). Let w be a vertex not on P such that $deg \ w=2$ and $N(w)=\{v_i,v_{i+2}\}$, where $2\leq i\leq d$. We claim that $deg \ v_{i+1}=2$. Suppose there exists a vertex x not on P, which is adjacent to v_{i+1} . Now, it follows from (3) that $N(x)=\{v_{i+1}\}$ or $\{v_{i+1},v_{i+3}\}$ or $\{v_{i+1},v_{i+1}\}$. Since the conditions $N(x)=\{v_{i+1},v_{i+3}\}$ and $N(x)=\{v_{i-1},v_{i+1}\}$ are similar, we assume that $N(x)=\{v_{i+1}\}$ or $\{v_{i+1},v_{i+3}\}$. Now, let $P_1=(v_1,v_2,\ldots,v_i,v_{i+1},x)$ and $P_2=(v_i,w,v_{i+2},\ldots,v_{d+1})$. Then $\psi=\{P_1,P_2\}\cup S$, where S is the set of edges of G not covered by P_1 and P_2 is a simple graphoidal cover of G such that $|\psi|< q-d+1$, which is a contradiction. Hence $deg \ v_{i+1}=2$. This proves the second part of condition 2(iv) of the theorem.

Thus if $\eta_s(G) = q - d + 1$, then conditions (1),(2) and (3) of the theorem are satisfied.

Conversely, suppose conditions (1),(2) and (3) of the theorem are satisfied for any diameter path $P=(u=v_1,v_2,\ldots,v_{d+1}=v)$. Let ψ be a minimum simple graphoidal cover of G

Case 1. P is a member in ψ .

We claim that every vertex not on P is exterior to ψ . Suppose there exists a vertex w not on P which is interior to ψ . Let Q be the path (cycle) in ψ having w as an internal vertex. It follows from condition 2(i) that P and Q have two vertices in common, which is a contradiction. Hence the number of vertices interior to ψ is d-1 so that t=p-(d-1)=p-d+1. Thus $\eta_s(G)=q-p+t=q-d+1$.

Case 2. P is not a member in ψ .

We claim that if there exists a vertex w not on P which is interior to ψ , then there exists a vertex v_j on P, where $2 \le j \le d$, which is exterior to ψ . Let Q be the path (cycle) in ψ having w as an internal vertex. Now, by conditions 2(i) to 2(iv), we have $N(w) = \{v_i, v_{i+1}\}$ or $\{v_i, v_{i+2}\}$ or $\{v_i, v_{i+1}, v_{i+2}\}$ for some i, where $2 \le i \le d$.

Suppose $N(w) = \{v_i, v_{i+1}\}$. Then we may assume without loss of generality that $Q = (v_i, w, v_{i+1}, v_i)$. Now, by conditions 2(v) and 3(v) we have $deg \ v_i = 3$ and hence v_i is exterior to ψ .

Suppose $N(w) = \{v_i, v_{i+2}\}$. If Q is a cycle, then we may assume that $Q = (v_i, w, v_{i+2}, v_{i+1}, v_i)$. Now, by conditions 2(v) and (3) we have $\deg v_i = 3$ and hence v_i is exterior to ψ . If Q is a path, then (v_i, w, v_{i+2}) is a section of Q and hence by condition 2(iv), $\deg v_{i+1} = 2$ so that v_{i+1} is exterior to ψ .

Suppose $N(w) = \{v_i, v_{i+1}, v_{i+2}\}$. If Q is a cycle, then we may assume that $Q = (v_i, w, v_{i+1}, v_i)$ and hence by conditions 2(v) and 3 the vertex v_i is exterior to ψ . If Q is a path, then (v_i, w, v_{i+2}) is a section of Q and hence by conditions 2(v) and 3, the vertex v_{i+1} is exterior to ψ .

Thus for every vertex w not on P which is interior to ψ there exists a vertex v_j on P, where $2 \le j \le d$, which is exterior to ψ . Also it is clear that for any two distinct vertices not on P which are interior to ψ the corresponding vertices on P which are exterior to ψ are also distinct. Hence number of vertices interior to ψ is at most d-1 so that $t \ge p-(d-1)=p-d+1$. Hence $\eta_s(G)=q-p+t \ge q-d+1$.

Thus
$$\eta_s(G) = q - d + 1$$
.

Theorem 2.21. For any graph G, $\eta_s(G) \geq \lceil \frac{\Delta}{2} \rceil$. Moreover, the following are equivalent.

(i)
$$\eta_s(G) = \lceil \frac{\Delta}{2} \rceil$$
.

(ii)
$$\eta(G) = \left\lceil \frac{\Delta}{2} \right\rceil$$
.

(iii) G is homeomorphic to one of the graphs given in Figure 3.

Figure 3

Proof. The inequality is obvious.

Suppose $\eta_s(G) = \lceil \frac{\Delta}{2} \rceil$. Let ψ be a minimum simple graphoidal cover of G. Let v be a vertex of G with $\deg v = \Delta$. Then v lies on every member of ψ and except possibly for at most one member, all other members of ψ cover two edges incident with v. Also, among the members of ψ which cover two edges incident with v except possibly for at most one member all other members are cycles. Thus G is homeomorphic to one of the graphs given in Figure 3. Hence (i) and (iii) are equivalent. Equivalence of (ii) and (iii) can be proved by a similar argument.

References

- [1] B. D. Acharya and E. Sampathkumar, Graphoidal covers and graphoidal covering number of a graph, *Indian J. pure appl. Math.*, 18(10)(1987), 882 890.
- [2] B.D. Acharya, Further results on the graphoidal covering number of a graph, *Graph Theory Newsletter*, 17(4)(1988), 1.
- [3] S. Arumugam, B. D. Acharya and E. Sampathkumar, Graphoidal covers of a graph A creative review, Proceedings of the National workshop on Graph Theory and its Applications, Manonmaniam Sundaranar University, Tirunelveli, Eds. S. Arumugam, B. D. Acharya and E. Sampathkumar, Tata McGraw Hill, (1996), 1 28.
- [4] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1972.
- [5] C. Pakkiam and S. Arumugam, On the graphoidal covering number of a graph, *Indian J. pure appl. Math.*, **20**(4) (1989), 330 333.
- [6] C. Pakkiam and S. Arumugam, The graphoidal covering number of unicyclic graphs, *Indian J. pure appl. Math.*, 23(2)(1992), 141 - 143.