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Abstract

A simple graphoidal cover of a graph G is a collection % of (not
necessarily open) paths in G such that every path in ¢ has at least
two vertices, every vertex of G is an internal vertex of at most one
path in %, every edge of G is in exactly one path in ¥ and any
two paths in % have at most one vertex in common. The minimum
cardinality of a simple graphoidal cover of G is called the simple
graphoidal covering number of G and is denoted by 7:(G). In this
paper we determine the value of ns for several families of graphs. We
also obtain several bounds for 7, and characterize graphs attaining
the bounds.
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1. Introduction

By a graph G = (V, E) we mean a finite, undirected graph with neither
loops nor multiple edges. The order and size of G are denoted by p and ¢
respectively. For graph theoretic terminology we refer to Harary [4]. All
graphs in this paper are assumed to be connected and non-trivial.

If P = (vo,v1,v2,...,Upn) is a path or a cycle in a graph G, then
v1,V2,...,Un—1 are called internal vertices of P and vg, v, are called external
vertices of P. If P = (vg,v1,v2,...,Vn) and Q = (vp, = wo, w1, W2, ..., W)
are two paths in G, then the walk obtained by concatenating P and @ at
v, is denoted by P o @ and the path (vp,vn—1,...,v2,v1,v0) is denoted
by P~!. For a unicyclic graph G with cycle C, if w is a vertex of degree

*Research supported by NBHM Project 48/2/2004/R&D-11/7372.

JCMCC 64 (2008), pp. 79-95



greater than 2 on C with deg w = k, let ej,ez...,ex.2 be the edges of
E(G) - E(C) incident with w. Let T;,1 < i < k — 2, be the maximal
subtree of G such that T; contains the edge e; and w is a pendant vertex
of T;. Then T3,T5,...,Tk_2 are called the branches of G at w. Also the
maximal subtree T of G such that V(T)NV(C) = {w} is called the subtree
rooted at w.
The concept of graphoidal cover was introduced by Acharya and Sampath-

kumar [1].

Definition 1.1. [1] A graphoidal cover of a graph G is a collection i of
(not necessarily open) paths in G satisfying the following conditions.

(i) Every path in ¢ has at least two vertices.
(ii) Every verter of G is an internal vertex of at most one path in .
(iii) Every edge of G is in exactly one path in 1.

The minimum cardinality of a graphoidal cover of G is called the graph-
otdal covering number of G and is denoted by n(G).

An elaborate review of results in graphoidal covers with several inter-
esting applications and a large collection of unsolved problems is given
in Arumugam et al.[3]. Pakkiam and Arumugam [5, 6] determined the
graphoidal covering number of several families of graphs.

Theorem 1.2. [5] Let T be a tree with n pendant vertices. Then n(T) =
n—1.

Theorem 1.3. [6] Let G be a unicyclic graph with n pendant vertices.
Let C be the unique cycle of G and let m denote the number of vertices of
degree greater than 2 on C. Then

1 ifm=0

n+1 if m=1 and deg v = 3, where v is the
unique vertez on C with deg v > 2.

n otherwise

n(G) =

Theorem 1.4. [2] For any graph G with § > 3, we have n = q — p.
2. Main Results

For any graph G, ¥ = E(G) is trivially a graphoidal cover and has
the interesting property that any two paths in 1 have at most one vertex
in common. This observation motivates the following definition of simple
graphoidal covers in a graph.
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Definition 2.1. A simple graphoidal cover of a graph G is a graphoidal
cover ¥ of G such that any two paths in i have at most one vertezr in
common. The minimum cardinality of o simple graphoidal cover of G is
called the simple graphoidal covering number of G and is denoted by 15(G)
or simply ns.

Remark 2.2.  We observe that every path (cycle) in a simple graphoidal
cover of a graph is an induced path (cycle) so that the behaviour of simple
graphoidal covers is quite different from that of graphoidal covers.

Definition 2.83.  Let ¥ be a collection of internally disjoint paths in G.
A vertez of G is said to be an interior vertex of ¥ if it is an internal vertex
of some path in 1, otherwise it is called an exterior vertez of 1.

Theorem 2.4.  For any simple graphoidal cover ¢ of a (p,q)-graph G,
let ty, denote the number of exterior vertices of ¥ and let t = min ty, where
the minimum is taken over all simple graphoidal covers ¢ of G. Then

7s(G) =q—p+t.

Proof.  For any simple graphoidal cover ¥ of G, we have

g= 3 |E(P)

Pey
= Y (¢(P)+1) (¢(P) denotes the number of internal vertices of P)
Pey

= Y HP)+ ¥l
Pey

=p—ty+[¥|
Hence [¢| = ¢ — p+ ty so that n;(G) =q—p +¢. O

Corollary 2.5.  For any graph G, 1s(G) = q—p. Moreover, the following
are equivalent.

() 7s(G) =q—p.
(it) There exists a simple graphoidal cover of G without exterior vertices.

(1) There exists a set P of internally disjoint and edge disjoint induced
paths without exterior vertices such that any two paths in P have at
most one vertex in common. (From such a set P of paths the required
simple graphoidal cover can be obtained by adding the edges which are
not covered by the paths in P).
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Corollary 2.6.  If there exists a simple graphoidal cover ¢ of a graph G
such that every vertez of G with degree at least two is interior to 1, then v
is a minimum simple graphoidal cover of G and 1,(G) = q — p + n, where
n 18 the number of pendant vertices of G.

Remark 2.7.  Since every graphoidal cover of a tree T is a simple graph-
oidal cover of T, it follows from Theorem 1.2 that ns(T) = n(T) = n —1,
where n is the number of pendant vertices of T.

We now proceed to determine 7, for several families of graphs.

Theorem 2.8. Let G be a unicyclic graph with n pendant vertices. Let
C be the unique cycle in G and let m be the number of vertices of degree
greater than 2 on C. Then

1 fm=0

n+1 if m =1 or 2 and any vertex on C

1s(G) = has degree at most 3

n otherwise

Proof. Casel. m=0.
Then G = C so that 7,(G) = 1.

Case 2. There exists a vertex v on C such that deg v > 4.

Let 1, be a minimum simple graphoidal cover of the subtree T, of G
rooted at v. Clearly v is interior to 1,. For any other vertex w on C with
deg w > 3, let ¢, be a minimum simple graphoidal cover of the branch T;
at w containing the edge ww;, where 1 < ¢ < (deg w) — 2. Then

(deg w)-2
b=t ul | U | puicy
weV(C)—{v} i=1
deg w23

where v is taken as the origin of C, is a simple graphoidal cover of G such
that every vertex of degree at least two is interior to . Hence it follows
from Corollary 2.6 that 7,(G) = n.

Case 3. Every vertex on C has degree either 2 or 3.

Subcase 3.1 m=1.

Let v be the unique vertex of degree 3 on C. Let T be the tree rooted
at v. Then T has n + 1 pendant vertices so that 7,(T1) = n. Let 1; be a
minimum simple graphoidal cover of T;. Then ¢ = 3, U {C}, where any
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arbitrary vertex of C is taken as the origin of C, is a simple graphoidal
cover of G and |¢)| = n + 1. Hence 05(G) < n + 1. Further, for any simple
graphoidal cover 9 of G, the n pendant vertices of G and at least one
vertex on C are exterior to 1 so that ¢t > n+ 1. Hence 7,(G) = g—p+1t >
g—p+n+l=n+1 Thus7(G)=n+1.

Subcase 3.2 m=2.

Let v and w be the vertices on C such that deg v =deg w = 3. Let
P denote the (v, w)-section of C of length greater than 1. Let T} be the
subgraph of G obtained by deleting all the internal vertices of P. Clearly
T, is a tree with n pendant vertices and hence n,(T1) = n — 1. Let ¢
be a minimum simple graphoidal cover of T;. Let u be an internal vertex
of P. Let P, and P, denote the (v, u)- section and (w,u)- section of P
respectively. Then ¥ = 9; U {P1, P2} is a simple graphoidal cover of G
and |¢| = [¢¥1]| + 2 =n + 1. Thus 1,(G) < n+ 1. Further, for any simple
graphoidal cover ¥ of G, the n pendant vertices of G and at least one
vertex on C are exterior to ¢ so that t > n+ 1. Hence 75(G) = q—p+1t >
g—-p+n+l=n+1.

Thus 5(G) =n + 1.

Subcase 3.3 m > 3.
Let C = (vy,v2,...,vr,v1) and let deg v, = deg v;, = ... = deg v;, = 3,
where 1 < 43 < 43 < ... < @ < 7. Let 9;,1 < j < k, be a minimum
simple graphoidal cover of the tree T; rooted at v;;. Let P;, P, and P3
denote respectively the paths in 91,2 and 3 having v;,, v;, and v;, as its
terminal vertices. Let

Ql = Pl ° (vilavi1+1,~ --aviz)a
Q2 = Py o (viy,Vig+1,. .-, Vig) and
Q3 = P30 (vig, Vig41,- - -1 Viy)-

Then
k
P = { ( U ¥; ) - {P1,P2,P3}} U {Q1,Q2,Q3}
j=1

is a simple graphoidal cover of G in which every vertex of degree‘ at least
two is interior to ¢. Hence it follows from Corollary 2.6 that 7s(G) =n. O

Corollary 2.9.  Let G be as in Theorem 2.8. Then 1,(G) # n(G) if and
only if m = 2 and deg v = deg w = 3, where v and w are the only vertices
of degree greater than 2 on C.

Proof.  The result follows from Theorem 1.3 and Theorem 2.8. O
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Theorem 2.10.  For the complete graph K,(n > 3), we have

4 ifn=4¢4
s (Kn) = -(—"_1)2("_2) if n is odd
z "2_3) ifn>4 and n is even

Proof.  We observe that, for any simple graphoidal cover ¥ of K, any
member of ¢ is either a triangle or an edge. Let V(K,) = {v1,v2,...,v,}.

If n = 4, then ¢ = {(v1,v2,v3,v1), (v1,v4), (v2,v4), (v3,v4)} is a sim-
ple graphoidal cover of K4 so that n,(K4) < 4. Further, for any simple
graphoidal cover ¥ of K4, the number of vertices interior to % is at most 2
so that ¢ > 2. Hence n,(K4) = 4.

Now, suppose n =3 or n > 5. Let P; = (v2i—1,v2i, V2i+1,V2i—1), Where
i=12,...,|%] and let Q = (vn_1,Vn,v1,n_1).

If n is odd, then ¢ = {Pl, B,..., P|_=':"J }US, where S is the set of edges
of K, not covered by the triangles Py, P, ..., P 3 is a simple graphoidal

cover of K, such that v; is the only vertex exterior to +. Further, for any
simple graphoidal cover ¢ of K, at least one vertex is exterior to . Hence

ns(Kn)=q_p+1 =£n__l)én__21.

If n is even, then ¢ = {Pl,Pg,...,P.z'L_l,Q} U S, where S is the set of
edges of K, not covered by the triangles P, P, ... » P31, Q is a simple

graphoidal cover of K, without exterior vertices so that n,(K,) =q—p=
n(n—3) O
7.

Corollary 2.11.  7,(K,) = n(K,) if and only if n = 3 or n is even and
n > 6.

Theorem 2.12.  For the wheel W, = K, + C,,_;, we have

4 ifn=4,5
ns(Wp)=1¢ 5 fn==6
n-2 ifn>T

Proof.  Let V(W,) = {vo,v1,v2,...,Un-1} and E(W,,) = {vovi :1<i<
n-— 1} U {'U,"U,;+1 1<i<n~- 2} U {vlvn_l}.

If n = 4, then W,, = K, so that n,(W,,) = 4.

If n = 5’ let "l) = {(0010171)27”0)1 (v()’ v3, V4, ‘Uo), (vly U4)7 ('U2, ’U3)}. If
n= 6; let 1/) = {(vO’ v, V2, vO)a (UO) V4, Vs, 00)1 (‘U2, v3, ’U4), (UO) '03), (vla US)}-
Clearly v is a simple graphoidal cover of W,, with vy as its only exterior
vertex. Further, for any simple graphoidal cover ¥ of W5 or W, at least
one vertex is exterior to 1. Hence ns(Ws) = g —p+ 1 =4 and n,(Ws) =
g—p+1=5.
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Now, let n > 7. Let P, = (vp-1,v1,%2), Po = (Vpn-3,v0,v1), P53 =
(vo,v2,v3,v0) , Py = (v0,Vn-2,Vn-1,%0) and Ps = (v3,vs,...,vn—2). Then
v = {Py, Ps, P3, P4, Ps} is a collection of internally disjoint and edge disjoint
induced paths of W,, without exterior vertices such that any two paths in
1 have at most one vertex in common. Hence it follows from Corollary 2.5
that n,(W,) =q—-p=n—-2. O

Corollary 2.13. 7,(W,) =n(W,) if and only if n > 7.
Theorem 2.14.
(i) ns(K1n)=n—1, for alln > 2.

(i)
1 ifn=2
Ns(Ka2n)=1¢ 3 fn=3
2(n —2) ifn>4

(4i)
5 fn=3
ns(KS,n) = g :;Z : g
3(n~3) ifn>6

(iv) Let m and n be integers with n > m > 4. Then

mn-m-n fn<(3)+m

Us(Km,n) = {

mn—-—m-n+7r ifn:(';)+m+r,r>0

Proof.  'We observe that, for any simple graphoidal cover ¥ of K, », any
member of 1 is either a cycle of length 4 or a path of length 2 or an edge.

(i) Since K is a tree with n pendant vertices, it follows from Remark 2.7
that ng(Kyn) =n—1.
(ii) Since K2 2 = C4, we have 75(K22) = 1.

Now, let X = {z;,22} and Y = {y1,%2,...,yn} be the bipartition of
Kop.

Ifn = 3, then ¢ = {(xliylaxi”yz’xl)a(y3,ml)a(y3’x2)} is a Simple
graphoidal cover of K3 3 with z; and y3 as its exterior vertices. Further, for
any simple graphoidal cover ¢ of K33, we have t, > 2. Hence ns(K33) =
g-p+2=3.

Now, suppose n > 4. Let P, = (z1,¥1,%2,y2,21) and Py = (y3, 1, y4).
Then ¥ = {P,, P2} U S, where S is the set of edges of K5, not covered by
P, and P, is a simple graphoidal cover of K3, with n — 2 exterior vertices.

85



Further, for any simple graphoidal cover ¢ of K », at most two vertices in Y
are interior to 1 so that ¢ > n—2. Hence 75(K2,,) = g—p+(n—2) = 2(n—2).

(ili) Let X = {z1,z2,z3} and Y = {y1,y2,...,yn} be the bipartition of
K3 .

Ifn= 31 then 1tb = {(1‘1, Y1, 172,1!2,371), (zla y3,$3), (‘TZ’ y3), (2?3,!/1), (3:31
y2)} is a simple graphoidal cover of K33 with z; and z3 as its exterior
vertices. Further, ty, > 2 for any simple graphoidal cover ¢ of K33 so that
ns(K3,3) = ¢ — p+ 2 = 5. By a similar argument, it can be easily proved
that 7s(K34) =¢—p+1=06and n(Kss) =g—p+1=38.

Now, supposen > 6. Let P; = (x1,y1,Z2,y2,Z1), P2 = (2,y3, %3, Y4, T2)
and P3 = (z3,ys,21,Y6,23). Then ¢ = {P,P,, 3} US, where S is the
set of edges of K3, not covered by P, P, and P; is a simple graphoidal
cover of K3 ,, with n—6 exterior vertices. Further, for any simple graphoidal
cover ¥ of K3, the number of vertices in Y which are interior to % is at
most 6 and hence ¢t > n — 6. Hence 75(K3,) =¢—p+ (n—6) =3(n - 3).

(iv) Let m and n be integers with n > m > 4. Let X = {z;,22,...,Zm}
and Y = {y1,¥2,...,yn} be the bipartition of K, 5.

Ifm=n-= 41 then ¢ = {(xlaylax2ay2)xl)1 (-’52,3/3,334), (-’172,1/4,-'1?3),
(¥3,71,94), (y1,23,93), (1,24, Y1), (£3,92), (T4, 72)} is a simple graphoidal
cover of K44 without exterior vertices so that n,(K4.4) = 8.

Assume that m > 4 and n > 5 with m < n.
Suppose n < 2m. Let

P = (zi,Y2i-1, Tig1, Y2, Ti), 6 = 1,2,..., [3] - 1,

Proq = (zg-, Yn—-1, T1, Yn, x%) if n is even
(3171 (@2, ¥n, z4) if 7 is odd,

P = (y3,z1,¥s) and

Qi = (yl’mr%]+i,yi+2)1 where i = L2,...,m— [%]

Now,let 1 = {P:1<i< [3]JU{Qi:1<i<m~—[%]}ifnis
evenand ) = {P;:1<i< [FJU{@Qi:1<i<m-— [3]}u{P}ifnis
odd. Then %, is a collection of internally disjoint and edge disjoint induced
paths in K, », without exterior vertices such that any two paths in v, have
at most one vertex in common and hence 7;(Kmn) =¢—p=mn—m—n.

Now, suppose n = (%) + m. Let
}Di = (xia'y2i—lazi+l3y2iyz‘i)v where i = 1, 21 cee, M — 1: and
Pm = (xm,yZm—laxlv y2m1xm)'

Let S={(4,j):1<i<j<m}and §; ={(3,i+1):1<i<m—-1} U
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{(1,m)} so that |§| = (7) and |S1| = m. Fix a bijection f : § - S —
{v2m+1:¥2m+2, . .-, yn}. Let Qr = (%i, Yk, ;), where 2m+1 < k < n and
f(&,5) =yk. Then¢y = {P: 1 <i<m}u{Qr:2m+1< k <n}is
a collection of internally disjoint and edge disjoint induced paths in K, ,
without exterior vertices such that any two paths in 3, have at most one
vertex in common. Hence ns(Kmn) =¢—p=mn—m-—n.

Suppose 2m < n < () + m. Let n =2m +7, where 1 <r < (3) —m.
Then ¢, = {P;: 1 <i <m}u{Qr:2m+1 < k < n} is a collection of
internally disjoint and edge disjoint induced paths in K, , without exterior
vertices such that any two paths in 1, have at most one vertex in common.
Hence ns(Kmn) =¢g—-p=mn—-m—n.

Suppose n = (") +m +r, where r > 0. Then in any simple graphoidal
cover v at least r vertices are exterior to ¢ and hence t, > r. Further,
exactly r vertices are exterior to ¢; and hence ny(Kmn)=q—p+r. 0O

Corollary 2.15.  For the complete bipartite graph K, n(m < n), s =17
ifandonlyif m=1landn>1orm=n=2o0orm>4 andn < (’g)+m.

It is obvious that for any graph, 1, > 7. The difference n; — 1 can
be made arbitrarily large. For example, for the complete bipartite graph
Km’(,;.)+m+r, wherem >3 andr >0, wehaven;, =gq—p+randn=qg—p
so that ; — 7 = r. Further, Remark 2.7 and Corollaries 2.9, 2.11, 2.13
and 2.15 give several families of graphs for which » = 5,. Also one can

construct infinite families of graphs for which n = 7.

Example 2.16. Let C,, = (v1,v2,...,Vn,v1) be the cycle on n vertices.
Let G,, be the graph obtained from C, by adding the vertices wy,ws, ..., Wy
and joining w; with v;,vi4, suffices being taken modulo n. It can be easily
verified that 1;(Grn) = 7(Gr) = ¢ —p.

Example 2.17. Let G be a connected (p,q)-graph. Then n(G*) =
1s(Gt) = q, where G* is the graph obtained from G by attaching one
pendant edge to every vertex of G. Since the p pendant vertices of G* are
exterior to any (simple) graphoidal cover of G, it follows that ns(G*) >
|E(GH)| = |V (G*)|+p = q. Similarly n(G*) > q. Further, it can be proved
by induction on q that n,(G*) < q and n(G*) < gq, so that n(G*) =
7s(G*) =q.

The above results lead to the following problems.
Problem 2.18. Characterize the class of graphs for which
() n=mn,.
(it) ns = q - p.
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In the following theorems we obtain bounds for 7, and characterize
graphs attaining the bounds.

Theorem 2.19.  For any graph G with girth g, we have n5(G) < g—g+1.
Further, equality holds if and only if G is isomorphic to one of the graphs
G;, 1 £i <8, given in Figure 1.

© O

v

Figure 1

Proof.  Let C be an induced cycle of length g in G. Then ¢ = {C} U
(E(G) — E(C)) is a simple graphoidal cover of G such that |[¢| = g—g+1.
Hence 75(G) <g—g+1.

Now, let G be a graph of girth g with 7,(G) = q—g+ 1. Let C =
(v1,v2,...,74,v1) be a cycle of length g in G. If there exists an induced
path P in G such that length of P is at least 2 and |[V/(P)NV(C)| = 1, then
{C,P}U S, where S is the set of edges of G not covered by C and P is a
simple graphoidal cover of G and |¢| < ¢ — g + 1, which is a contradiction.
Thus every induced path P in G with |V(P) N V(C)| = 1 has length 1.
Hence it follows that every vertex not on C is adjacent to a vertex on C,
the set of all vertices not on C is independent and every vertex on C has
degree at most 3.

Claim 1. A(G) <3.

Suppose there exists a vertex v of G with deg v > 4. Then v is not on
C. Let v;,,v;,,v;; and v;, be neighbours of v on C, where 1 < i; < ip <
i3 < 24 < g. We may assume without loss of generality that the length of
the path P’ = (v;,,vi; 41, ..., v;,) is at most 4. Then Z = P’ o (v;,,v,v;,)
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is a cycle of length at most £ + 2. Hence g < ¢ + 2 so that g < 3, which is
a contradiction. Thus A(G) < 3.

Claim 2. There exist at most two vertices not on C.

Suppose there exist vertices u,v and w not on C. Let v;,,v;, and vy,
be vertices on C such that v;,v;, and v;, are adjacent to u,v and w
respectively. It follows from by Claim 1 that the vertices v;,,v;, and v,
are distinct so that we may assume that 1 < 4} < 45 < i3 < g. Let
Pl = (‘U, Viys Vip41, ---, Uig)v P2 = (vavigavi2+11"'avi3) and P3 =
(w, vig,Vig+1,- .-, i, ). Since the girth of G is g, it follows that P, P, and
P3 are induced paths in G. Now, ¢ = {P, P,, P3} U S, where S is the set
of edges not covered by P;, P, and P; is a simple graphoidal cover of G and
[¥| = g — g, which is a contradiction.

Thus there exist at most two vertices not on C.

Claim 3. If there exists a vertex v not on C with deg v = 2, then g = 3
or 4. ‘

Let v;; and v;, be the neighbours of v on C, where 1 < i; < i3 < g.
Let us assume without loss of generality that the length of the path P =
(viysViy+1,.+-,0i,) is at most 2. Then Z = P o (v;,,v,v;,) is a cycle of
length at most £ + 2. Hence g < £ +2 so that g < 4. Thus g =3 or 4.

L

Claim 4. If there exists a vertex v not on C with deg v = 3, then g =
Proof of Claim 4 is similar to that of Claim 3.

Claim 5. If there exist two vertices v and w not on C, then deg v =
deg w = 1.

It follows from Claim 1 and Claim 4 that, deg v < 2 and deg w < 2.

Suppose deg v = deg w = 2. Then by Claim 1 and Claim 3, we have
g = 4. Hence C = (v, v2,v3,v4,v1) and G is isomorphic to the graph given
in Figure 2(a). Now, ¢ = {(v1,v2,v3, w,v1), (v3,vs, V), (v,v2), (v1,v4)} is
a simple graphoidal cover of G with || = 4 < ¢ — g + 1, which is a
contradiction.

Suppose deg v = 1 and deg w = 2. Then by Claim 3, we have g = 3
or g =4. If g =3, then C = (v1,v2,v3,v1) and G is isomorphic to the
graph given in Figure 2(b). Now, ¥ = {(v3,v2, w, v3), (v3,v1,), (v1,v2)} is
a simple graphoidal cover of G with || = 3 < ¢ — g + 1, which is a con-
tradiction. If g = 4, then C = (vq, v2,v3,v4,v;) and G is isomorphic to the
graph given in Figure 2(c). Now, ¥ = {(v1,va,v3, w,v1), (v1,v4,v), (v4,v3)}
is a simple graphoidal cover of G with |¢| = 3 < ¢ ~ g + 1, which is again
a contradiction.

Thus deg v = deg w = 1.
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Now, let m denote the number of vertices not on C. By Claim 2, we
have m < 2. If m =0 then G = G;.

Suppose m = 1. Let v be the unique vertex not on C. By Claim 1,
we have deg v < 3. If deg v =1, then G = G;. Suppose deg v = 2.
By Claim 3, we have g = 3 or 4. If ¢ = 3, then G = G4 and if g = 4,
then G = Gg. If deg v = 3, it follows from Claim 4 that g = 3 and hence
G =Gs.

Suppose m = 2. Let v and w be the vertices not on C. It follows from
Claim 5 that deg v = deg w = 1 and hence G = G3.

Conversely, it can be easily verified that 7,(G;) = ¢ ~ g + 1, for all
i=1,2,...,6. O

Theorem 2.20.  For any graph G with diameter d, we have 15(G) <
g —d + 1. Further, equality holds if and only if for any diameter path
P =(u=wv,vs,..., vat+1 = v) the following are satisfied.

1. degu=degv=1.
2. If w is a vertex not on P, then

(i) N(w) C V(P).
(ii) deg w < 3.
(i) If deg w = 3 and N(w) = {v;,vj, v}, where2 <i<j< k <d,
thenj=i+1andk=1+2.
() If deg w = 2 and N(w) = {v;,v;}, where 2 < i < j < d, then
either j = i+ 1 or j = i+ 2. Further, if j = i + 2, then
deg Vil = 2.
(v) If deg w =1 and N(w) = {v;}, where 2 < i < d, then all the
neighbours of v; not on P are pendant vertices.

3. If z and y are two vertices of degree greater than 1 not on P, then
N(z)NN(y) = ¢.
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Proof. Let u and v be any two vertices of G with d(u,v) = d. Let P
be a shortest u-v path in G. Then ¢ = {P} U (E(G) — E(P)) is a simple
graphoidal cover of G and hence 75;(G) < g—d+ 1.

Now, let G be a graph with diameter d and (G} = ¢ —d + 1. Let
P = (u=v1,v9, ...,vq, V441 = v) be a diameter path in G. Then any
induced path Q in G with |V(Q)NV(P)| = 1 has length 1. Hence it follows
that every vertex not on P is adjacent to a vertex on P and N(w) C V(P)
for any vertex w not on P. This proves 2(i) of the theorem.

We now claim that deg v = deg v = 1. Suppose deg u > 1. Then
there exists a vertex w not on P which is adjacent to u. If deg w = 1,
then (w,v;,vs,...,v441) is a shortest path of length d + 1, which is a
contradiction. Hence deg w > 2. Let i > 1 be the least positive integer
such that v; is adjacent to w. Let C = (v1,vq,...,v;,w,v1) and Q =
(viy¥it1,---,V4+1). Then ¢ = {C,Q}U S, where S is the set of edges of
G not covered by C and @ is a simple graphoidal cover of G such that
{¥| < ¢ — d + 1, which is a contradiction. Hence deg u = 1. By a similar
argument, we have deg v = 1. This proves condition (1) of the theorem.

Since P is a diameter path, condition 2(ii), 2(iii} and first part of 2(iv)
follow immediately.

We now prove 2(v). Suppose deg w = 1, N(w) = {v;}, where 2<i < d
and z € N(v;) — V(P). We claim that deg z = 1. Suppose deg = > 1.
Then deg = = 2 or 3.

"Case 1. deg z =2.
Without loss of generality let N(x) = {v;,v;}, where j =i+ 1ori+2.
Let

c =] Wivie1,2,0) ifj=i+1
(Ui,vi+1,’lli+2,l','vi) lfj =i+ 2,

P, = (u=v,vs,...,v,w) and

Py = (v,Vj41,-..,Va+1 = ).

Then ¢ = {P;, P,C} U S, where S is the set of edges of G not covered by
P, P; and C is a simple graphoidal cover of G such that |¢| < ¢ —d+ 1,
which is a contradiction.

Case 2. degz =3.
Without loss of generality let N(z) = {v;, viy1,vie2} or {vi—1,vi, vit1}-
Let P, =(u=wvy,v2,...,0;,w), .
Py = (Vi41,Vig2,...,V44+1 = v) and
C = (vi,viq1, T, vi}.
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Then ¢ = {P;, P»,C} U S, where S is the set of edges of G not covered by
Py, P, and C is a simple graphoidal cover of G such that |¢| < ¢—-d+1,
which is a contradiction.

Thus deg z = 1. This proves condition 2(v) of the theorem.

We now proceed to prove (3). Let z and y be two distinct vertices of
degree greater than 1 not on P. We claim that N(z) N N(y) = ¢. We have
the following possibilities.

(i) degz=degy =3
(ii) deg x = 3 and deg y = 2.
(iii) deg z = deg y = 2.

Suppose deg x = deg y = 3. Let N(z) = {vi, vi41,vi+2} and N(y) =
{vj,vj41, vj42} for some i, j, where 2 < i < j < d. Suppose N(z)"N(y) #
¢.

Ifj =1i,let P, = (v1,...,%), P2 = (vis2,...,va41), C1 = (vi, Vig1, T, v;)
and Cy = (Viy1, Vig2, ¥, Vig1). f j=i+1lorj=i+2 let P, =
(vl,...,vj_l), P2 = (vj+1,...,vd+1), Cl = (vj_l,vj,:z:,v_,-._l) and Cz =
(vj, vj41, ¥, vj). Then ¢ = {P, P,,C,C2} U S, where S is the set of
edges of G not covered by P, P,, C; and Cs is a simple graphoidal cover of
G such that |¢| < ¢ —d + 1, which is a contradiction. Hence it follows that
N(z) N\ N(y) = .

The proof for the cases when deg z = 3 and deg y = 2 or when deg z =
deg y = 2 is similar and we omit the details.

We now prove the second part of 2(iv). Let w be a vertex not on
P such that deg w = 2 and N(w) = {v;,v;42}, where 2 < i < d. We
claim that deg viy1 = 2. Suppose there exists a vertex z not on P,
which is adjacent to viy1. Now, it follows from (3) that N(z) = {vi41}
or {Vi41,Vita} or {vi_1,viy1}. Since the conditions N(z) = {viy1,vis3}
and N(z) = {vi—1,vi41} are similar, we assume that N(z) = {vi41} or
{vi+1,vi43}. Now,let P, = (v1,v2,...,0;,vi41,Z) and P = (v;,w, vi40,...,
va+1). Then ¢ = {Py, P,} US, where S is the set of edges of G not covered
by P, and P; is a simple graphoidal cover of G such that || < g—d+1,which
is a contradiction. Hence deg v;+; = 2. This proves the second part of con-
dition 2(iv) of the theorem.

Thus if 7,(G) = ¢—d+1, then conditions (1),(2) and (3) of the theorem
are satisfied.

Conversely, suppose conditions (1),(2) and (3) of the theorem are sat-
isfied for any diameter path P = (v = v;,v2,...,v441 = v). Let ¢ be a
minimum simple graphoidal cover of G
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Case 1. P is a member in .

We claim that every vertex not on P is exterior to . Suppose there
exists a vertex w not on P which is interior to 1. Let @ be the path (cycle)
in ¥ having w as an internal vertex. It follows from condition 2(i) that P
and @ have two vertices in common, which is a contradiction. Hence the
number of vertices interior to ¢ isd—1sothatt=p—(d—1)=p—-d+1.
Thus n(G) =¢—p+t=qg—d+1.

Case 2. P is not a member in 1.

We claim that if there exists a vertex w not on P which is interior to
1, then there exists a vertex v; on P, where 2 < j < d, which is exterior
to . Let @ be the path (cycle) in ¥ having w as an internal vertex.
Now, by conditions 2(i) to 2(iv), we have N(w) = {v;,viy1} or {vi,viqa}
or {v;,Vit1,Vi+2} for some i, where 2 < i < d.

Suppose N(w) = {v;,v;4+1}. Then we may assume without loss of gen-
erality that @ = (v;, w, vi4+1,v;). Now, by conditions 2(v) and (3) we have
deg v; = 3 and hence v; is exterior to 1.

Suppose N(w) = {v;,vit2}. If Q is a cycle, then we may assume
that Q@ = (v;,w, vit2,vi+1,v;). Now, by conditions 2(v) and (3) we have
deg v; = 3 and hence v; is exterior to ¥. If Q is a path, then (v;,w, vi12)
is a section of @ and hence by condition 2(iv), deg v;+1 = 2 so that v;41 is
exterior to .

Suppose N(w) = {vi,vig1,vis2}. If Q is a cycle, then we may assume
that @ = (vi,w,vi41,v;) and hence by conditions 2(v) and (3) the vertex
v; is exterior to . If Q is a path, then (v;,w,v;42) is a section of Q and
hence by conditions 2(v) and (3), the vertex v;y is exterior to 1.

Thus for every vertex w not on P which is interior to ¥ there exists
a vertex v; on P, where 2 < j < d, which is exterior to 9. Also it is
clear that for any two distinct vertices not on P which are interior to ¢ the
corresponding vertices on P which are exterior to v are also distinct. Hence
number of vertices interior to 1 is at most d —1sothat t > p— (d - 1) =
p—d+1. Hence n,(G)=q—-p+t>2qg—d+1.

Thus 75(G) =g —d + 1. O

Theorem 2.21.  For any graph G, 1,(G) > [%] Moreover, the follow-
ing are equivalent.

(i) 1:(G) = [2].
() n(G) =[]
(iit) G is homeomorphic to one of the graphs given in Figure 3.
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= copies

—

3- I) copies

Figure 3

Proof. The inequality is obvious.

Suppose 75(G) = [%] . Let 9 be a minimum simple graphoidal cover of
G. Let v be a vertex of G with deg v = A. Then v lies on every member
of ¥ and except possibly for at most one member, all other members of
% cover two edges incident with v. Also, among the members of 1 which
cover two edges incident with v except possibly for at most one member all
other members are cycles. Thus G is homeomorphic to one of the graphs
given in Figure 3. Hence (i) and (iii) are equivalent. Equivalence of (ii) and
(iii) can be proved by a similar argument. O
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