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Abstract

The computation of the maximum toughness among graphs with n
vertices and m edges is considered for [5n/2] < m < 3n. We show that
there are only finitely many cases in which the toughness value 5/2 cannot
be achieved. This is in stark contrast with the known result that there is
a 3/2-tough graph on n vertices and [3n/2] edges if and only if n = 0,5
mod 6. However, constructions related to those used in the cubic case are
also employed here. Our constructions additionally provide an infinite
family of graphs that are supertough and not K 3-free.

Keywords: toughness, maximum connectivity, maximum toughness, infla-
tions

1 Introduction

A graph G = (V, E) is an (n,m)-graph if |V| = n and |E| = m. Given a set of
vertices U in a graph G, the subgraph of G induced by U shall be denoted by
(U). The toughness [1] of a non-complete graph G = (V, E) is

7(G) = min{w(%\ls) :SCVandw(G\S) > 1},

where w(G \ S) is the number of components in (V' \ S}. A graph G is said to
be t-tough if 7(G) > t. A 7-set for G is a separating set S for which 7(G) =
|S|/w(G\ 8). Among all (n,m)-graphs, the maximum toughness [1, 2, 5, 6]
is denoted by T, (m). An (n,m)-graph G is said to be maximally tough if
7(G) = T.(m) and supertough if 7(G) = (1/2) |2m/n]. All standard notation
and terminology not presented here can be found in [9)].

The farthest reaching known result on the values of T,,([5n/2]) is the fol-
lowing.
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Theorem 1.1 ([1, 2]). If n is divisible by 10 or 12, then T,,(32) = 5.

It is also known that T,,([5n/2]) is not always 5/2. In [4], we show that
T11(28) = T11(29) = 7/3. That T1,(30) = 5/2 is established in [5]. The contri-
bution of this paper to the problem of computing T,,([5n/2]) is the following
theorem.

Theorem 1.2. Forn > 6 with n ¢ {11,17,18,19, 21, 33},
T3 =%

We prove Theorem 1.2 by constructing a family of 5/2-tough (n, [5n/2])-
graphs Gs(n) that, in fact, has additional interesting properties. The search
for graphs which are maximally tough or supertough has typically focused on
the presence of K 3-centers. These are vertices with 3 non-adjacent neighbors.
Graphs without K 3-centers are said to be K 3-free. Matthews and Sumner
[8] show that, if a graph is K 3-free, then its toughness is half of its connec-
tivity. In [4], we provided an example of a (14, 35)-graph refuting a conjecture
of Goddard and Swart [6] that regular supertough graphs must be K 3-free.
Our constructions here generalize that example and provide an infinite family
of 5-regular 5/2-tough graphs that contain multiple K 3-centers.

2 Constructing 5/2-Tough Graphs

Let H3(2) be the graph on two vertices with three parallel edges. Forevenp > 4,
the cubic Harary graph Hj(p) is constructed from the p-cycle C, = (hy, ..., h,)
by adding edges, called diameter edges, between the antipodes. The inflation
of a graph G is the graph G* whose vertices are all ordered pairs (v, e), where
e is an edge of G and v is an endpoint of e, such that two vertices of G* are
adjacent if and only if they differ in exactly one coordinate. The graphs H3(4)
and Hs3(4)* are pictured in Figure 1. Very simply, each vertex h; in H3(p) is

hy

hq hg

h3

Figure 1: Harary Graph with its Inflation

inflated to a triangle {a;,b;,c;) in H3(p)*. Chvatal [1] shows that the toughness
of the inflation G* of G is half of the edge-connectivity of G. Since, for even
P > 2, Hi(p) has edge-connectivity three [7], it follows that the cubic graph
Hs(p)* has toughness 3/2. The graphs Hz(p)* play a central role in [3] and will
also do so here.
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Defining basic Gs(n). If n = 12d for some positive integer d, then we con-
struct the (n,5n/2)-graph Gs(n) from H3(2d)* x K, by adding more edges.
First, regard each of the two copies of H3(2d)* as a level of Gs5(n). In each
level, subscripts shall be taken mod 2d. For one level, let {(a;, b;,c;) be the tri-
angle corresponding to the vertex h; from H3(2d). We assume that {b;,a:41}
and {c;, ci+a} are also edges. For the other level, let (z;, y:, z;) be the analogous
triangle and assume that {y;, zi+1} and {zi, zi4q} are also edges. Moreover, the
edges {ai,z;}, {b:,4:}, and {c;, z;} join the levels together.

The edges that we add to H3(2d)* x K> to obtain Gs(n) are those of the
form {b;, zi+1}, {¥i,@i+1}, {Ci, Zita}, and {zi,ciyq}. In sum, we say that Gs(n)
is obtained from H3(2d) by inflating each vertex of H3(2d) to a prism K3 x K,
in Gs(n) and inflating each edge in H3(2d) to a K4 subgraph in Gs(n). The
cycle Cyq in H3(2d) thus induces a cyclic ordering on the prisms in Gs(n). For
each diameter edge in H3(2d), the four corresponding edges joining antipodal
prisms in Gs(n) are also called diameter edges. The graph Gs5(24) with our
vertex labeling conventions is pictured in Figure 2.

ar b

C1

ZI\Y

21
by A 2 a3z
a Gz Z4 22\l yo €2\ b

23

yall =

c3

b3 as

Figure 2: Maximally Tough (24, 60)-Graph Gs5(24)

For n divisible by 12, since each level of Gs(n) is the 3-connected graph
H3(n/6)*, it is easy to argue that Gs(n) is 5-connected. Since Gs(n) is K 3-
free, it follows that Gs(n) is 5/2-tough. These graphs thus provide an alternate
construction yielding part of Theorem 1.1. The utility of our construction for
yielding further results here comes out of the prominent placement of prisms
K3 x K3 within it. As we shall see, each prism can be replaced by certain other
special subgraphs, and the resulting graph is 5/2-tough. The three special
subgraphs we employ are pictured in Figure 3 together with vertex labeling
conventions that reflect how these subgraphs can be interchanged. Of course, P
is the prism K3 x K. In the graphs W and X, note that the additional vertices
w,u,v are K 3-centers.
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Figure 3: Key Plug-Ins P, W, and X

Definition 2.1. Given a subset H C {P, W, X}, an H-wheel is a graph obtained
from some graph Gs(12d) by replacing each subgraph of type P by one of type
H for some H € H.

An example of a {P, W, X}-wheel obtained from G5(24) by replacing one
prism by a copy of W and another by a copy of X is shown in Figure 4.

ag bl

Figure 4: Maximally Tough (27, 68)-Graph G5(27)

Theorem 2.2. For any {P,W, X}-wheel G, we have 7(G) = %

The proof of Theorem 2.2 is given in Section 3. Here, we first use Theorem 2.2
to extend our construction of Gs(n) and prove Theorem 1.2.

Defining general Gs(n). For ng divisible by 12, the graph Gs(ng) contains
P = no/6 subgraphs of type P. By using at most one copy of W and up to p
copies of X, we construct, for each ng < n < max{no+2p,no+11}, a {P,W, X}-
wheel Gs5(n) on n vertices and [5n/2] edges. Theorem 2.2 tells us that Gs(n)
is 5/2-tough.
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Since the graphs Gs(n) are not defined for all n, we additionally define
a relative that achieves toughness 5/2 in some of the missing cases, namely
n=22,23,34,35.

Filling gaps with G5(n). For np divisible by 12, assume that the prisms
P; = {a;,b;,¢i, Ti, yi, 2:) in Gs(ng) are ordered cyclically. We construct G§(22)
from G3(24) by identifying ¢, with ¢4 and 22 with z4. Then, G§(23) is obtained
from G%(22) by replacing P; by a copy of W. Similarly, we construct G5(34)
from G5(36) by identifying c; with c5 and zp with z5, and we obtain G§(35) by
replacing P; with W. That the graphs G5(22), G£(23), G5(34), and G§(35) are
5/2-tough has been verified by computer.

Proof of Theorem 1.2. The cases in which n < 10 are completed in [5]. The
case in which n = 20 is handled by Theorem 1.1, and the cases in which
n = 22,23,34,35 are handled by the graphs Gi(n). The remaining cases are
managed by our graphs Gs(n) and Theorem 2.2. ]

Note that one quarter of the vertices in an {X }-wheel are K 3-centers. This
provides an infinite family of regular supertough graphs rich in K 3-centers.

3 Proof of Theorem 2.2

Since a { P, W, X }-wheel G has minimum degree 5, it follows that 7(G) < 5/2.
Hence, it suffices to establish that 7(G) > 5/2.

Lemma 3.1. Let G be a {P,W, X}-wheel. Then, there is a {P,W}-wheel G’
such that 7(G) > 7(G").

Proof. Suppose G has X as a subgraph, and let G’ be the graph obtained from
G by replacing X by W. Since we can repeat this process until no copies of X
remain, it suffices to show that 7(G) > 7(G’). Let S be a 7-set for G. We shall
form a disconnecting set S’ for G’ such that

/
sl I8!

™0 = TG\ 5 Z oG\ )

If u,v € S, then let S’ = S. So suppose exactly one of u or v is in S, say
u€ Sand v ¢ S. Since v € S, it follows that z and ¢ are not in different
components of G\ S. Thus, let $' = (S\ {u})U{w}. It now remains to assume
that u,v € S.

Case 1: zor cisin S.

Let 8" = (S\ {u,v}) U {w}.

Case 2: z or c is not an isolated vertex component, say z is not.
Let §' = (S\ {u,v}) U{w,z}.

Case 3: x or c are both isolated vertex components.

Since a and z must each separate at least two components, b,y € S. Let
S1 =(S\ {a}) U {d}. So|Si| =|S5] and w(G \ S1) = w(G \ S). Using the 7-set
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Sy, we see that z is not an isolated vertex component. So we can apply case 2
to S to get S'.

Definition 3.2. Let G be a {P, W}-wheel.

(a) Given a subgraph of type W in G, say W = {(a, b, ¢, z,y, z, w) with neigh-
boring K, subgraphs (a,z,b,y'), (b,y,a',z'), and {c, 2,¢', 2'), we define
Rw = {w,z,b,2,V,y,a’,2',c,2'} and Ry, = {w,q,y,¢,¥,y',d',2',,2'}.

(b) A disconnecting set S for a {P, W}-wheel G is said to be W-reduced if
each vertex of S is adjacent to (separates) at least two components of G\ S
and, for each subgraph of type W in G, either Ry C S or Ry, C S.

Note that, for the graph G in Figure 4, Ry provides a 7-set for G.

Lemma 3.3. Let G be a {P,W}-wheel. Then, there is a {P,W}-wheel G’ and
a W -reduced disconnecting set S’ for G' such that 7(G) > |S'|/w(G'\ ).

Proof. Let S be a 7-set for G. Suppose there is a subgraph of type W in G such
that Rw ¢ S and Rj, € S. Let G’ be the graph obtained from G by replacing
W by a copy of P. We shall define a disconnecting set S’ for G’ such that

ISI/w(G\ 5) 2 |5'|/w(G"\ §')

and each vertex of S’ separates at least two components of G \ 5.

Ifw¢gS, thenlet §' = S. If w € S, then we consider three cases requiring
different modifications to S.

Case I: z and carein S.

Let §' = S\ {w}.

Case 2: z and c are not in S.

Since w must separate two components of G \ S, one of b or y is not in S.
Without loss of generality, say b¢ S,soa € S. If y € S, and hence z € S, then
let ' = (S\ {w,2})U{c,y}. f y € S, then let §' = (S\ {w}) U {c}.

Case 8: Exactly one of z or ¢ is not in S, say .

If  is not an isolated vertex component of G\ S, then let 5’ = (S\ {w})U {z}.
So we may assume that z is an isolated vertex component, and hence a € S.
Since a must separate two components, b € S. If b is not an isolated vertex
component, then Sy = (S\ {a}) U {b} leaves x not isolated, as handled above.
So we may assume that b is an isolated vertex component, and hence y € S.
Since y must separate two components, z ¢ S. Of course, since Ry, € S, it
follows that z is not an isolated vertex in G\ S. Thus S; = (S'\ {y}) U {=}
leaves b not isolated, as handled above.

We can repeat this process of removing subgraphs of type W as necessary to
obtain a {P, W}-wheel G’ and a disconnecting set S’ such that each remaining
subgraph of type W has either Rw C S or Ry, C S. Moreover, if necessary,
we can further remove any vertices of S’ outside of a subset of the form Ry or

w that do not separate two components. O
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Definition 3.4. Let G be a {P,W}-wheel, and let S be a W-reduced discon-
necting set for G.

(a) Let Wh,..., Wy be the subgraphs of type W, ordered cyclically around
G. A W-segment of G is a subgraph M of G such that, for some i, the
vertices of M are those of the prisms strictly between W; and Wi+, (in
the cyclic ordering) and the edges of M are those induced by its vertices
but excluding any diameter edges. We regard Wy, = W;.

{b) We say that S is W -normalized if every component of G\ S that intersects
a W-segment in just one vertex is an isolated vertex component.

Lemma 3.5. Let G be a {P,W}-wheel, and let S be a W -reduced disconnecting
set for G. Let C be a component of G\ S that intersects a W-segment M in at
least two vertices. Then,

(a) IN(C)NSAM| > 4.
(b) if C C M, then [N(C)N S| > 6.

Proof. Let d be the integer such that, if each copy of W in G is replaced by a
copy of P, then the resulting graph is G5(12d). Let Py,..., P, be the prisms in
M, listed according to the cyclic ordering. Say P; = {a;, b;, c;, z:, i, 2:), for each
i. Since M is a W-segment and S is W-reduced, we must have ay,z1,bq,y, € S
and ¢ > 1. Vertices known to be in S are circled in Figure 5. Note that there

a) bl <£/1 L& Qq b
9 v B )
4 IR e J
1 Lz L4 Yq

Figure 5: W-segment M

must be some edge in CN M.
Case 1: C N M does not contain both ends of any diameter edge.

First, suppose that there is an edge e of C N M that is contained in some
prism P;. Now ¢; and z; have neighbors c;iq and zj;4 outside of P;. In all
possible cases, it is easy to see that there are paths Li,...,Ls that do not
intersect outside of e such that L; is a path in M from e to a;, L, is a path
in M from e to x;, Lj is a path in M from e to by, L4 is a path in M from
e to yq, Ls is a path in (P}, cjid, zj+a) from e to cj4q4, and L is a path in
(P;j,cj+d, 2j+d) from e to zj1q. The assertion in part (a) now follows, since each
of the paths L,,..., L4 must have some initial encounter with S. In the case of
part (b), Ls and Lg must add two more distinct encounters with S.

Second, suppose that no edge of C N M is contained in a prism. Hence, C
must be a single edge in a K subgraph. It is thus easy to see that C has 6
neighbors in SN M.
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Case 2: C N M contains both ends of some diameter edge e.

Say e has one endpoint f; in prism P; with j < d and the other endpoint
gi+d in Pjyq4. As in case 1, we encounter the asserted vertices of S along
paths Ly, ..., Lg. However, in this case, we make the following adjustments, as

Figure 6: Viewing { P, W}-wheel G from a Distance

reflected in Figure 6: L, is a path in M from f; to a;, Ly is a path in M from
fi to x1, L3 is a path in M from g;4q to by, L4 is a path in M from g;;4 to y,,
Ls is a path in M from f; to ca, and Le is a path in M from g;4q4 to za. 0

Lemma 3.6. Let G be a {P,W}-wheel, and let S be a W -reduced disconnecting
set for G. Then, there is a W-normalized disconnecting set S’ for G such that
IS"l/w(G'\ §") = |S|/w(G\ S).

Proof. Suppose C is a component of G \ S that is not an isolated vertex but
intersects a segment in exactly one vertex. Without loss of generality, say that
vertex is ¢;. So z; € S. Since z; must separate two components, without loss of
generality, say that y; is in a component of G \ S different from C. Hence, we
must have b; € S. Let §' = (S\ {b;}) U {:}, and observe that |S’| = |S| and
w(G\ 8’y = w(G\ S). By repeating this process as necessary, we can obtain a
W-normalized disconnecting set. O

Lemma 3.7. Let G be a {P,W}-wheel, and let S be a W-normalized discon-
necting set for G. Then, for each W -segment, there is some component of G\ S
that intersects that W-segment in at least two vertices.

Proof. Suppose to the contrary that some W-segment M contains only isolated
vertex components of G\ S. As in Lemma 3.5 and as shown in Figure 5, say
M consists of the prisms P,..., P, and a;,1,by,y, € S. Since each vertex of
S separates two components, no triangle of any prism can be entirely contained
in S. It follows that one of the vertices b; or y; must form an isolated vertex
component of G \ S, forcing az,z2 € S. Repeating this argument along M, we
get agq,z, € S. That by, y, € S contradicts the fact that one of b, or y; must
now be in G\ S. a

Proof of Theorem 2.2. By Lemmas 3.1, 3.3, and 3.6, it suffices to consider
a {P,W}-wheel G and a W-normalized disconnecting set S for G and to show
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that |S|/w(G\ S) > 5/2. Let k be the number of subgraphs of G of type
W. Since S is W-reduced, each subgraph of type W contains three isolated
vertex components of G\ S. Let j be the number of remaining isolated vertex
components of G\ S. Let » be the number of components of G \ S that are
not isolated vertices and are completely contained within a W-segment. Let
C1,-..,C¢ be the remaining components of G \ S that are not isolated vertices.
For each 1 < 7 < t, let n; be the number of W-segments that intersect C;.

If, in G, we contract each component of G\ S to a point and delete all edges
with both endpoints in S, then we obtain a bipartite graph in which vertices in
S are only adjacent to components of G \ S. Let e be the number of edges in
this bipartite graph. Since the K 3-centers of G are precisely the centers of the
subgraphs of type W, there are k vertices of S adjacent to three components of
G\ S. Since each vertex of S must separate at least two components of G \ S,
the remaining vertices of S must be adjacent to two components of G\ S. Thus,

S| +k=e. (3.1)

Each of the j + 3k isolated vertex components of G\ S is adjacent to five vertices
of S. By Lemma 3.5(b), each component of G\ S that is not an isolated vertex
and is contained in some W-segment is adjacent to at least six vertices of S. By
Lemma 3.5(a), for each 1 < i < t, |N(C;) N S| = 4n;. Hence,

e >4() _ni) +6r +5(j + 3k). (3.2)
i=1

From (3.1) and (3.2) it follows that

¢
1S] > 20} ni) + 3r + 55 + Tk
i=1
Since each subgraph of G of type W contains three components of G\ S, we
have w(G\ S) =t +r + j + 3k. For each 1 < i < ¢, by definition, n; > 2. So,

t
W(G\S) < 3D _ni)+r+j+3k.
=1

We conclude that

_Isl 2(z:=1ﬂi)+3r+§-j+7k
w(G\S) ~ ;(Zf—lni)+r+j+3k
5 + HEin) +3(r— k) 3

2(2‘_ n)+r+7+3k

Since the number of W-segments in G is k, it follows from Lemma 3.7 that
T+ 3i_ ni > k, and hence

t t
>1 l
Q) 23Q m) 2 3=
i=1 i=1
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Therefore, the right-hand side of (3.3) is at least 5/2. ]

4 Loose Ends

In light of Theorem 1.2 and the known results for n = 11, it remains to consider
the cases in which n € {17,18,19,21,33}. In this final section, we make some
progress on these rogue cases. All toughness values asserted here have been
verified by computer. Most of our results relate to the graphs A5(17), Bs(18),
Ds(20), and Q5(33) defined by their pictures in Figures 7 and 8.
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Figure 8: The (20, 50)-Graph Ds5(20) and the (33,90)-Graph Qs(33)

Since T(A5(17)) = 12/5, and the (17,46)-graph obtained from Gg(16) by
joining a new vertex v to the vertices in the set {ay,z,u1, b2, y2, 22} has tough-
ness 5/2,

12

TS T17(43) < T17(46) =

N on
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Since 7(Bs(18)) = 12/5, and the (18,48)-graph obtained from Ds(20) by
contracting the edges e; and e; has toughness 5/2,

5
1?2 < Tia(45) S Tis(48) = .

The (19, 48)-graph obtained from Bs(18) by replacing one of the subgraphs
of type P by one of type W has toughness 12/5. The (19, 49)-graph obtained
from Ds5(20) by contracting the edge e; has toughness 5/2. Hence,

2 < Tio(48) < Tuo(49) = 2.

The (21, 53)-graph obtained from B5(18) by replacing one of the subgraphs
of type P by one of type W and another by one of type X has toughness 7/3.
The (21, 54)-graph obtained from D5(20) by removing the edge {v;,v,} and
joining a new vertex v to the vertices in the set {vy,va,v3,vq,vs} has toughness
12/5. The (21,55)-graph obtained from Ds5(20) by adding a new vertex and
joining it to each vertex of one of the K5 subgraphs has toughness 5/2. Hence,

TS Ty(s9) and 1 < To(54) < Toa(55) = 2.

Since the (33, 83)-graph obtained from G§(35) by identifying c3 with ¢ and
23 with z¢ has toughness 22/9, and 7(Qs(33)) = 5/2,

2 < Tus(83) < Tus(00) = .

For n € {17,18,19,21,33} with [5n/2] < m < 3n, the inequalities above
thus leave a number of open problems in the computation of T,,(m).
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