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Abstract. A fast dircct method for obtaining the incidence matrix
of a finite projective plane of order n via n — I mutually orthogonal
n X n latin squares is described. Conversely, n — 1 mutually orthog-
onal n X n latin squares arc directly exhibited from the incidence
matrix of a projective planc of order n. A projective plane of order
n can also be described via a digraph complete sct of latin squares
and a new procedure for doing it will also be described.

1. Introduction
A projective plane IT of order n consists of a collection {p1, g2,
- s fn24n41} Of points together with a collection {£,,Ls,...,Ly2454,} of
lines subject to the following three axioms (see p. 89 of [R]):

(A1) Any two distinct points of II are on one and only one common line of
1.

(A2) Any two distinct lines of Il pass through one and only one common
point of IT.

(A3) There exist four distinct points of II, no three of which are on the same
line.

The third axiom garantees that one does not deal with a degenerating
projective plane with only one line, and allows to define a projective plane
of order n without specifying that in practice there are n? 4+ n + 1 points
and n2 4+ n + 1 lines.

The incidence matrix of I7 will be a (n? +n+1) x (n®24+n+ 1) matrix
F where the (7, j) element of F is defined by

1 if gy is on £; (namely, £; is incident with ),

0 if g is not on £; (namely, £; is not incident with ;).
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This matrix reflects the facts that on each line there are exactly n + 1
points and through each point pass exactly n + 1 lines. Our definition of F
corresponds to the definition of F* (the transpose of F') given on page 286
of [D-K].

Before describing the content of the next sections, let us recall some
definitions.

A latin square of order n, also called a n X n latin square, is a
matrix A whose entries come from a set S of n elements no two of which
appear on the same row nor on the same column. In this paper, we will
take S = {1,2,...,n}.

Two n x n latin squares A, B are said to be mutually orthogonal
if the cardinality of the set of couples {(A(3,5), B(¢,5)) : 1 < 4,7 < n}is
exactly n2.

A digraph complete set of n x n latin squares is a set of n — 1
latin squares D, D, ..., D,_; having the following property: For all r,s €
{1,2,...,n} with r # s, the set of couples

{(—ﬁ(ivr), ﬁ(z,s)) :1<i<n—- 1}

obtained from the r-th and the s-th columns of the (n? — n) x n matrix

— D,
D= .

Dn—l

is of cardinality n? — n (and excludes the set {(j,7): 1 <j <n}).

It is known that out of a set of n — 1 mutually orthogonal latin squares
one can construct a digraph complete set of latin squares. Vice-versa, from
a digraph complete set of latin squares, one can construct a set of n — 1
mutually orthogonal latin squares. See page 289 of [D-K].

The first purpose of this paper is to exhibit a mechanical way of obtain-
ing directly the incidence matrix of a finite projective plane of order n from
n — 1 mutually orthogonal n x n latin squares. As a matter of fact, given
the incidence matrix of a finite projective plane of order n, we can reverse
the above procedure and exhibit directly n — 1 mutually orthogonal n x n
latin squares. This is the content of Chapter 2.

The second purpose of this paper is to describe (in Chapter 3) a new
direct method for exhibiting a digraph complete set of latin squares from the
incidence matrix of a projective plane, and to give a procedure for doing the
converse. The method is slightly different from the one described in pages
286-291 of [D-K], the latter method involving computations of permutation
matrices.



Note in passing that the lines of a finite projective plane of order n
can be used to form an error correcting code C; see Section 10.1 of [D-K].
Unfortunately, it is an open problem to describe the integers n for which
finite projective planes of order n do exist, though some mathematicians
conjecture that they exist if and only if n is a power of a prime.

o 1. SicRensrs Ssienb g gome to play:

e Ay, Ao, ..., A,_1 are n x n matrices;

e Dy, Dy, ..., D,y are n x n matrices;

e C; is a n x n matrix with 1’s in its j-th column and 0 elsewhere (for

1<j<n)
e Do is the n x n matrix whose i-th row, for i =1,...,n,is (i i ... i);
e P;; is a n X n permutation matrix (for 1 < i,j < n);
e M, M), M@, . M®™ are n? x (n + 1) matrices;
e M, M), M@, ..., M™ are n? x (n + 1) matrices;
e D, DU DA . DM are n? x n matrices;
e D, D), D® . . D™ are n? x n matrices;
e Disa (n? — n) x n matrix;
o F, G, H are (n?+n+1) x (n? +n+ 1) matrices;

o Fis an?x (n? + n) matrix.
Moreover, the (7, j) element of a matrix N is denoted N (3, j). It will not be
denoted N;; to avoid some conflicts with the n? permutation matrices Pij
involving a double set of indices (and coming into play out of n! possible
permutations).

§2. Incidence matrix via orthogonal latin squares

Let us define the notion of matriarchal matrix.

Definition. Let n > 2 and s > 1. A n? x s matrix M is called a
matriarchal matriz if the entries in the rows of the first two columns form
n? different couples in lexicographic order, and if the rows of each n2 x 2
submatrix of M are the n? couples of {(i,7):1 < i,j < n}.

We shall say that the n? x s matriarchal matrix M is attached to s
mutually orthogonal latin squares A, ..., A; of ordern (with 1 < s <
n — 1), if the entries in the rows of the first two columns of M are in
lexicographic order and if for j =1, ..., s, the (j + 2)-th column of M is
the concatenation of the rows of A;. In other words, the row of M containing
the couple (i, ) in the first two columns will then contain the (7, j) element
of respectively A;, ..., A, in that row. This matrix M can be found on
page 82 of [R].

Example. Let n = 4. To the orthogonal latin squares

1234

3412
A = 4321 | A=
2143



is attached the matriarchal matrix

/111
1 2{[2]2]|2
1 33/ 3(|3
1 4f|4l|a]|4
2 1[2[3][%
2 2|[1][4][3
2 3412
2 4||3]2{[1
M=\ 3 | |@EMae
3 2||4]|3]1
3 3l1[2]f4
3 4213
4 1|23
4 2||3][1]l4
4 3|[2[4]1
\ 4 4||1|[3][2 /

Remark. Let F be the incidence matrix of a finite projective plane.
Suppose that F’ is the matrix obtained from F by interchanging two rows or
two columns. Then F” is still the incidence matrix of some finite projective
plane of order n. A series of such exchanges of rows and columns on F will
be called a reordering of the rows and columns of F.

The first main result of this paper is the following one.

Theorem 2.1. (1) Suppose there exist n — 1 mutually orthogonal latin
squares A1, Az, ..., Ap—1, of order n, and let M be the matriarchal matrix
attachedto Ay, ..., An_1. Forj =1, ...,n, let M) be the matrix obtained
from M by writing 1 in place of j and 0 elsewhere. Suppose that 0 is a
column of 0’s, 1 is a column of 1’s, and I+, is the (n+1) x (n+1) identity
matrix. Then the (n? + n+1) x (n? +n + 1) matrix

F (M(l) M® ... M(")|0)
- In.+l In+1 [ In+1 |1

is the incidence watrix of a finite projective plane IT of order n.

(2) Conversely, let F be the incidence matrix of a finite projective plane
IT of order n and without loss of generality suppose that (after some even-
tual interchanges of rows and columns) there exist blocks M(!), M), ... |
M®™ such that F is defined by

F (M(l) M@ .. M(")lo)
- In+l In+l I'n+l |1

Forj=1,...,n, let MY be the matrix obtained from MY by writing j
in place of 1. Then an eventual reordering of the rows of

M = MO + M® + ...+ M®
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namely
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The procedure can be reversed: from F extract MO, M®, MO, M©®;
consider M), M@, M®), M®); build M = M® + M® + M® + M©®
and an eventual reordering of the rows of M leads to a matriarchal matrix
M out of which one can extract 3 mutually orthogonal 4 x 4 latin squares.
Proof of Theorem 2.1. Part (1). Let us consider a set of points
{61, ©25---» Pn2+n+1} and aset of lines {L1, La,...,Lp24,41} containing
some points according to the rule that for 1 < i,j < n? +n+ 1 we have

oo ~ollocorOoC OO CORCCO—
cCo~=oo|l~mrcococO~rOO0OCOROCC O
O=mCc o ojloo=o—rC COCOCRC OO CO—
—-CcO0oColo~cocCcO~~O~~OCOCCOC—
DO O0OOOOCDOD DO, —~0 000
OO~ OlloOCOR OO0~ 000—,0D00—O0O
OO~ OO0~ DO, 0002000~ 00—~O0O
O~ OO0 OO R DD =2D0000 —~0O
-0 00 DPr ODOODODO0OOD=O~=DDO0 0 =0
OO oD OHF OO ODOOO OO
ocooo~ojloroco0o0o=000O0ORDDO0O0 OO
ScSo~oQollco~o0o000 RO OD0O OO
O~ OO0~ oco OO0~ OO0ODO~RO~, OO
-0 00j]occor=200000RDO0O—~0OO
DO OO |~ rRr~,OOODDO0ODO0OO00O0O0O0O0OO
fo N =N W] | I B = B B~ B = R — A = R — = =
ocoo~oOo0jcco~m0 0= O0O0~, OO0 D00
O~ 00 Qlorocoo0o0o0200~r 00RO~ DOO0O
— o000 Qlloo~r0o00o0=2000000 D00
=m0 000000000000 D0O0O

—

pi € L = F(i,5) =1

We want to prove that these n? + n + 1 points and these n? +n + 1 lines
will form a projective plane of order n.
Consider first the n? x (n? 4 n) submatrix

F=(MOM® .. M™)

of F. The integer 1 will appear exactly n times in each column of F (since
each integer of {1,2,...,n} occurs n times in any column of M) and n + 1
times in each row of F (since each row of M has n + 1 entries). Therefore 1
appears . + 1 times in each row of F and n + 1 times in each column of F.
To prove that F is the incidence matrix of a finite projective plane, there
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are three axioms to verify. It will prove useful to use the disjoint sets S and
T of points defined by

S= {S"’la £925 000 ﬁ’n?}s T= {ﬁ'-’nz+ly 242, -4, K’n’+n+l}-

First axiom. In order to verify the first axiom, we must prove that two
distinct points of II are on one and only one line of II.

It is clear that any pair of points of 7 are on £,24,4; and only on
Lp24n41- It is also clear that a point ¢; of S and a point g,,2 ; of 7 are on
and only on the line £ (;_1)(n4+1) Whose index is determined by the unique
value of ¢ verifying M(i, ) = t, i.e., MO (3,5) = F(i, i+ (t—1)(n+1)) = 1.

Finally, consider a pair g; and f; of points of S with, say, ¢ < j. If there
exists s € {1,2,...,n} such that,j € {(s—1)n+1,(s—1)n+2,...,(s—1)n+
n}, then it is clear that g; and p; are on and only on the line L(s-1)(n+1)+1-
Moreover, if i = j (mod n), then g; and p; are on and only on the line
L(s—1)(n+1)+2 Where s € {1,2,...,n} verifies s = i = j (mod n).

Let us consider now the case when the indices 7 of ; and j of ¢; satisfy
none of the last two properties. We want to prove that there exists a line
Lt with ¢ # 1,2 (mod n + 1) which has the property that ¢; and ¢; are on
L;. Suppose that there is no such line. This means that fors =1,...,n—1,
the elements (Z,s + 2) and (4, s + 2) of the matrix M are different from &
for all k € {1,2,...,n}. Since for s = 1,2,...,n — 1, the (2 + s)-th column
of M is made up with the concatenation of the rows of the latin square A
and since |i — j| > n with ¢ # j (mod n), we get a contradiction. In other
words, there exists k € {1,2,...,n} such that for some s € {1,2,...,n—1},
we have M(¢,2 4+ s) = M(j,2+s) =k, ie,

M® (5,24 5) = M®(j,2+5) = F(i,2+ s+ (k- 1){(n+1))

=F(G2+s+{(k—-1)(n+1)) =1,

whereupon g; and ; are on the line Loy sy (k—1)(n+1)-

Let us prove now that two distinct points of § cannot be on two different
lines of II. Suppose the contrary, i.e., suppose that there exist i, j, r, s with
i < j, r < 8, such that F(i,r) =F(i,s) = F{j,r) = F(j,s) = L:

|... Lo .. Ly ...
£l 1 ... 1
f"j .01 .01
Table

It means that there are two different columns of M in which for some u,
v € {1,2,...,n} (not necessarily distinct) the couple (u,v) appears in row
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7 and in row j; this is a contradiction to either the property of having latin
squares (when u = v) or to the orthogonality hypothesis (when u # v). In
conclusion, two distinct points of S are on one and only one line of IT. This
secures the first axiom.

Second axiom. In order to verify the second axiom, we must prove
that two distinct lines of IT pass through one and only one point of II.

It is clear that the line £yy(s_1)(nt1) of I, with1 <t <n+1,1<s<
n — 1, and the line £,,2,,,,, have only the point (,2,; in common.

Let us prove now that the lines £;y(s_1)(n+1) and Ljq(s-1)(n+1) With
1 <i< j<n+1 have at least one point in common. Those two lines,
which are connected to the matrix M(*), have in common the point g,
where u is the index of the row in which the couple (s, s) appears in the i-
th and the j-th columns. This is in fact the only point in common. Suppose
that on the contrary there is another point. Then for some u and v with
1 < u < v < n?, we have in the matrix M(®) the following:

-~ Livs=1)(n+1) --- Ljt(s=1)(n+1) ---
] - 1 - 1 ..

ol 1 1

Table
This contradicts the first axiom.

Let us prove now that for 7 # j the lines £;; (s—1)(n+1) and Ljq(e—1)(n+1)»
with s # ¢, have at least one point in common. Those two lines come
respectively from the blocks M() and M®) and the point is g, where
u is the index of the row in which the couple (s,t) appears in the i-th
column and the j-th column of M) and M(*) respectively. As a matter
of fact, it is the only point in common, since otherwise for some u and v
with 1 < u < v < n?, we have in the blocks M) and M® the following
contradiction:

|- .- ACi+(s—1)(n+l) s £j+(t—1)(n+l) s
- - 1 e 1 ces

frol... 1 1

Table
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Third axiom. Consider the four distinct lines
L1 = {gn, $2, #3,--+» Pn=1s Pns Pn241}s
Ly = {p1, fit1, Pantls--r Pn2=2n4l) FnZontls s'-’n2+2},
Loys = {S”n-}-ly fm42; n43y-- -5 f2n-1, §2n, K’nz+l};

Lnys = {K’2a fIn42) 20425009 Em2-2n42; $n2-n42; ﬁ’n2+2}a

whose description is prescribed by the lexicographic order of the couples
of each row of the first two columns of M and the definition of M) and
M@, We will show that the four points

1, §92, fn+ls $n42

satisfy the third axiom. ;From the matrix F, one can extract the following
pertinent information:

L1 Ly ... Lug2 Loy ...
£n 1 1 . 0 0
§12 1 0 ... 0 1
§n+1 0 1 ... 1 0
gme2|0 0 ... 1 1
Table

We will show that among the four points (1, @2, fn+1, fn+2, DO three
of them belong to the same line. Suppose the contrary. Then there exists
r#1,2,n+1,n+ 2, such that the line £, contains

either g1, ge, gm+1, Whereupon g, g are on £; and L.,

or ©1, W2, fnt2, wWhereupon g, g are on £, and L.,
or 1, Pnt+l, Pnt2, Whereupon i1, 42 areon L,42 and L,
or ©2, fn+1, fn+2, Whereupon @ni1, Eut2 areon L,z and L.

In each of the four possibilities, we have a contradiction to the second
axiom. The third axiom is now secured.
Part (2). This part simply reverses the process of Part (1). O.

3. Incidence matrix via a digraph complete set
of latin squares
- us first recall how J. Dénes and A.D. Keedwell [D-K] defined the
“canonical incidence matrix G of a projective plane IT of order
‘hat I has the following properties:
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(A) Fori=1,...,n+1, ¢ is a point of £ and L; is a line through ¢
(B) Forallk,j € {1, ..., n}, puksj+1 is a point of Lyyq and Lok j41 passes
through g4 -

These two properties imply (see Section 8.5 of [D-K]) that the incidence
matrix G can be written as

/1 1{ O o ... 0 \
¢ |0 C& cs ... Ct
Cz 0 Pu P12 Pln
G=| C3|0| Pa Pas ... Pon (1)

Cn 0 Pn—l,l Pn—l.2 Pn—l,n
K 0]1 Pnl Pn.2 v Pnn /

where 0 and 1 are respectively appropriate blocks of 0’s and 1’s, and where
the following properties are satisfied:

(1) Fori=1,...,n, C; is an x n matrix with 1's in its i-th column and
0 elsewhere; moreover, C} is the transpose of C; .

(2) For alli, j € {1,..., n}, the n x n matrix P;; turns out to be some
permutation matrix (i.e., Pi; has exactly one entry 1 in each row and
in each column and has 0 elsewhere).

Suppose now that we require that
(3) [Ol' a.l] i,] € {1, P n}, Pil = Pl] = In_

Then G is called the canonical incidence matrix of a finite projective
plane IT and we have the following:

(a) Foralli,j e {2,...,n},Pi; has no entry 1 on its main diagonal.

(b) For alli,r,s,k € {1, ..., n} withr # s and i > 2, the k-th rows (resp.
columns) of P;, and P;, are distinct.

(c) Foralli,r,s,m,k,t € {1,...,n} withr # s, m > 2 and i > 2, the k-th
rows (resp. columns) of P;; and P;; cannot be simultaneously identical
to the t-th rows of Py, and Pn, in that order.

As explained in [D-K], the construction of a digraph complete set of latin

squares is very simple and elegant: for i = 2, ..., n, take
1
2
D;_, = ('PilT Pl ... 'PinT) with T = .
n

16



In general, these latin squares Dy, Ds,..., D, _; need not to be mutually
orthogonal.
Examples. The 3 x 3 matrices

123 123
231}, 312
312 231

form a set of mutually orthogonal latin squares which is not a digraph
complete set of latin squares. The 3 x 3 matrices

123 132
231, 321
312 213

form a digraph complete set of latin squares which is not a set of mutually
orthogonal latin squares.

In the rest of this section, we would like to describe another way of
exhibiting a digraph complete set of latin squares from an incidence matrix
of a projective plane.

Before proceeding, we need to define the notion of basic incidence
matrix H of a projective plane II of order n. First, suppose that IT verifies
the following properties:

(a) Fori = 1,...,n, P; is a point of L1, and L; is a line through Pi;
moreover, Py2., .1 is a point of L1 and L, is a line through P.

(b) For all k,j € {1,...,n}, Purs; is a point of Lxy1 and Logsjsr
passes through Py, except for k = n, where L2441 passes through
Pn2intr-

This implies that H can be written as

/ 1 0 0o ... 0 1 \
ol — < o
C2 P]l P]2 cee ’Pln
H=| G| Pa  Pa ... Py [0, (2)
Col[Pr-1,1 Pu-12 ... Pno1.0|0
\of| P P2 ... P |1/

where 1 is some judicious block of 1’s, 0 is some judicious block of 0’s, and
where we have:

17



(1) fori=1,...,n, C; is an x n matrix having only 1's in its i-th column
and 0’s elsewhere, C! being the transpose of C; ;

(2) foralli,j € {1, ..., n}, P is anxn permutation matrix (i.e., P;; has
exactly one entry 1 in each row and in each column and 0 elsewhere).

If we require that

(3) foralli,je{l,...,n}, Py =Pnj=1I,,

then H is called a basic incidence matrix. If the weaker condition
(8") forallje{1,...,n}, Py =1y,

is satisfied, then H is called a semi-basic incidence matrix.
When H is a basic incidence matriz of a projective plane of order n, the
following properties are satisfied:

(a) For alli,r,s, k€ {1,...,n}, withr # s and i < n, the k-th rows of
P, and P;, are distinct.

(b) For all i,r,s, m, k,t € {1,...,n}, withr #s,1# m, m <n and
i < n, the k-th rows of Pi and B;, cannot be simultaneously identical
to the t-th rows of Py and P in that order.

(c) Forallie {1,...,n—1} and for any j € {2, ..., n}, Pi; has no entry
1 on its main diagonal.

When H is semi-basic, the last properties (a) and (b) are satisfied.
The matrix G in (1) and the matrix H in (2) are almost the same: the
(1 + n)-th column of G has been relocated to become the last column in
H; eventually, some identity matrices have also been relocated. The nice

feature of H, when we ignore its first row and its last column, is that we
deal with n x n blocks.

Let us state now the second result of this paper.
Theorem 3.1. (i) Suppose there exists a digraph complete set

D,, ..., D,_1 of n x n latin squares. Let
g" 11-.-1
! 222
D=| D2 with Do = , :
. n e n
Dn—-l n

18



the matrix obtained from D by writing 1 in place of j and 0 elsewhere, with
the blocks DY) having a naturally inhcrited meaning. Define the n? x n
matrix C by

G
C2
C= A
c"
where for i = 1,...,n, C; is a n X n matrix having only 1's in its i-th

column and 0’s elsewhere. Then for some judiciously chosen blocks of 0’s
and blocks of 1’s

1] 0 o -.- 0|1
H=| ¢[D® D® ... D®]o
o1, I, --- I, |1

is the semi-basic incidence matrix of a finite projective plane II of order n.
If there are only entries 1 on the main diagonal of D; fori =1, ...,n—1,
then H is basic.

(ii) Conversely, let H be the incidence matrix of a finite projective plane
I of order n and (without loss of generality) assume that there exist n? xn
blocks D), D@ .. D™ such that for some judiciously chosen blocks of
0’s and blocks of 1’s, the (n? + n + 1) x (n? + n + 1) matrix

11 O o --- 0|1
H={ c[D® D® ... Do
o\, I, --- I, |1
is semi-basic. For j = 1, ..., n, let D be the matrix obtained from the

block DY by writing j in place of 1. Then the last (n — 1)n rows of the

n? x (n+ 1) matrix
Do 11---1
- . . Dy 22---2
D =DW+D®@4...4 DM = . , Wwhere Dg=1| . . s,
D';_l n n T n
give birth to a digraph complete set Dy, ..., D,_; of latin squares. If H is
basic, then there are only 1’s on the main diagonal of D; fori =1, ..., n—1.
Example. Let n = 4. Consider the digraph complete set of latin squares
1423 13142 12341
2314 2431 2143
Di=|3o41 | P2={3124]| Po=|3412]
4132 1213 4321
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(which by the way happen to be mutually orthogonal). Then from

b

el ~~
— AN TN <~ AN = MDA~
— N TN - T MAN ~N T -
- aNMm MmN M T = NN - ™
LA NG AR | R B Bar) N[N
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i
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N o
Il
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This leads to the semi-basic incidence matrix
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namely to
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Proof of Theorem 3.1. Part (1). Notice that 1 appears n + 1 times
in each row of H and n + 1 times in each column of H. We want to prove
that the three axioms for a projective plane IT of order n are verified.

First axiom. We want to prove that two distinct points g;, g; of IT
are on one and only one line of IT.

Let ¢ = 1. When j corresponds to a row of C,, then g, and ; are on
and only on £,,. When j € {n?+2,n2+3,...,n2+n+ 1}, then g, and
g»; are on and only on L,z 541-

Suppose that i corresponds to a row of D((,") for some u € {1, 2,..., n}
and that j corresponds to a row of D{*) (s€{l,2,...,n—1}) or to arow

of I,,. Then on that row of Dg“) or of I,, we can find 1 exactly once in,
say, column ¢ of D{™. As a matter of fact, the absence of such a 1 in Dg")
translates into the absence of u in column t of D,, a contradiction to the
latin square property of D;. Therefore f; and gp; are on L4 (y—1)n- The
value of ¢ is unique; otherwise, D§") would not be a permutation matrix.

Suppose that i corresponds to the row a of D, and that j corresponds
to the row b of D, (s # r) or to the row b of I,. Here r,s € {1,2,...,n—1}.
Let us now provide a proof of the following claim and the proof of the first
axiom will be finished.
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CLAIM: There exist unique integers v and ¢ € {1,2,...,n} such that one
can find 1 as the (a,t) element of D) and as the (b, t) element of D).

1
2

This is clear when @ = b since the first column of each D; is

n
‘Therefore, when a = b, we have t = 1 and ¢; and ¢; are on Lan41. Suppose
a # b and suppose that the rowa of of D, is (a1 a2 a3 ... a;). Now
the elements as, as,..., a, appear in columns 2, 3,..., n respectively of
D;. Moreover, the elements a3, a3,..., a, appear in rows ra, r3,..., T, of
D,. where {ra,73,...,7,} = {1,2,...,n}\{b}. Therefore in the row b of D,
we are sure to find an integer u which has also the property that u appears
in the row a of D,. and also the property that u appears in the same column
of D, and D;. Let us prove that ¢t and u are unique. Otherwise, suppose
there exist v/, t/, with v’ # u, t’ # t, with also the property that one
can find 1 as the (a, ') element of D{™ and as the (b, t') element of D{".
Then we get a contradiction with the property (b) of a semi-basic incidence
matrix. This secures the above claim.

Second axiom. In order to verify the second axiom, we must prove
that two distinct lines of /T pass through one and only one point of IT.

This is clear for the line £; (1 < i < n?+n) and the line £,,24,4,. This
is also clear for the line £; and the line £; when sn+1<i<j<(s+1)n
for any s € {1, 2,..., n}.

This is obvious for the lines £; and the line £; when 1 < ¢ < n and
n+1<j<n?+n,and also when n+ 1 < i < j < n? +n. At each step, it
is important to remember that the matrices D() are made of blocks which
are n X n permutation matrices.

Third axiom. Consider the four distinct lines

Ll = {f?’la 92y §231- -5 Fin=1, fn, "')11+1}’
C? = {K"la fIn+42y fm+3s--0y F2n-1y 20, K)Zn-l-l})

Loy = {5‘721 42, £2n+42,-- - Pm=2)n+2: Fn-1)n+2> K’n2+2}a

£21;+1 = {K"3a $n+3, £2n+43, -+ s F(n-2)n+3, Pn-1)n+3> f.’-’n?+2}a

the four distinct points

£21, £92, 43, 8"'1!21-27
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and the following pertinent information:

Ly Lo ... Lug1 oo Lopgr ..
¢m (11 ... 0 ... O
g2 {1 0 ... 1 ... O
s3]0 1 ... 0 ... 1
fm242(0 0 ... 1 ... 1
Table

Then we can show as above that among the four points p1, p2, Pn+3, Pn242,
no three of them belong to the same line. Suppose the contrary. Then there
exists r # 1,2,n+ 3,n% + 2, such that the line £, contains

either 1, P2, Pn+s, whereupon ¢, g9 are on £, and £,

or ©1, P2, 242, Whereupon g, g2, are on L,41 and L.,

or 1, Pn+3, §n24+2, Whereupon (i, gn+3 are on L and L,

or £2, ©n+3, fm24+2, Whereupon gn43, En240 are on Lony and L;.

In each of the four possibilities, we have a contradiction to the second
axiom. The third axiom is now secured.
Part (2) This part simply reverses the process of Part (1). O
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