On describing the incidence matrix of a finite projective plane via orthogonal latin squares and via a digraph complete set of latin squares

Claude Levesque

Départment de Mathématiques et de Statistique Université Laval, Québec, Canada G1K 7P4 cl@mat.ulaval.ca

Dedicated to professor Mirka Miller on the occasion of her birthday

Abstract. A fast direct method for obtaining the incidence matrix of a finite projective plane of order n via n-1 mutually orthogonal $n \times n$ latin squares is described. Conversely, n-1 mutually orthogonal $n \times n$ latin squares are directly exhibited from the incidence matrix of a projective plane of order n. A projective plane of order n can also be described via a digraph complete set of latin squares and a new procedure for doing it will also be described.

1. Introduction

A projective plane Π of order n consists of a collection $\{\wp_1, \wp_2, \ldots, \wp_{n^2+n+1}\}$ of points together with a collection $\{\mathcal{L}_1, \mathcal{L}_2, \ldots, \mathcal{L}_{n^2+n+1}\}$ of lines subject to the following three axioms (see p. 89 of [R]):

- (A1) Any two distinct points of Π are on one and only one common line of Π .
- (A2) Any two distinct lines of Π pass through one and only one common point of Π .
- (A3) There exist four distinct points of Π , no three of which are on the same line.

The third axiom garantees that one does not deal with a degenerating projective plane with only one line, and allows to define a projective plane of order n without specifying that in practice there are $n^2 + n + 1$ points and $n^2 + n + 1$ lines.

The incidence matrix of Π will be a $(n^2+n+1)\times(n^2+n+1)$ matrix **F** where the (i,j) element of **F** is defined by

$$\mathbf{F}(i,j) \,=\, \left\{ \begin{array}{l} 1 \ \ \text{if} \ \wp_i \ \text{is on} \ \mathcal{L}_j \ \ \text{(namely,} \ \mathcal{L}_j \ \ \text{is incident with} \ \wp_i), \\ 0 \ \ \text{if} \ \wp_i \ \ \text{is not on} \ \mathcal{L}_j \ \ \text{(namely,} \ \mathcal{L}_j \ \ \text{is not incident with} \ \wp_i). \end{array} \right.$$

This matrix reflects the facts that on each line there are exactly n+1 points and through each point pass exactly n+1 lines. Our definition of \mathbf{F} corresponds to the definition of \mathbf{F}^t (the transpose of \mathbf{F}) given on page 286 of [D-K].

Before describing the content of the next sections, let us recall some definitions.

A latin square of order n, also called a $n \times n$ latin square, is a matrix A whose entries come from a set S of n elements no two of which appear on the same row nor on the same column. In this paper, we will take $S = \{1, 2, ..., n\}$.

Two $n \times n$ latin squares A, B are said to be mutually orthogonal if the cardinality of the set of couples $\{(A(i,j),B(i,j)): 1 \leq i,j \leq n\}$ is exactly n^2 .

A digraph complete set of $n \times n$ latin squares is a set of n-1 latin squares $D_1, D_2, \ldots, D_{n-1}$ having the following property: For all $r, s \in \{1, 2, \ldots, n\}$ with $r \neq s$, the set of couples

$$\left\{\left(\overline{\mathbf{D}}(i,r),\,\overline{\mathbf{D}}(i,s)\right):1\leq i\leq n-1\right\}$$

obtained from the r-th and the s-th columns of the $(n^2 - n) \times n$ matrix

$$\overline{\mathbf{D}} = \begin{pmatrix} D_1 \\ D_2 \\ \vdots \\ D_{n-1} \end{pmatrix}$$

is of cardinality $n^2 - n$ (and excludes the set $\{(j, j) : 1 \le j \le n\}$).

It is known that out of a set of n-1 mutually orthogonal latin squares one can construct a digraph complete set of latin squares. Vice-versa, from a digraph complete set of latin squares, one can construct a set of n-1 mutually orthogonal latin squares. See page 289 of [D-K].

The first purpose of this paper is to exhibit a mechanical way of obtaining directly the incidence matrix of a finite projective plane of order n from n-1 mutually orthogonal $n \times n$ latin squares. As a matter of fact, given the incidence matrix of a finite projective plane of order n, we can reverse the above procedure and exhibit directly n-1 mutually orthogonal $n \times n$ latin squares. This is the content of Chapter 2.

The second purpose of this paper is to describe (in Chapter 3) a new direct method for exhibiting a digraph complete set of latin squares from the incidence matrix of a projective plane, and to give a procedure for doing the converse. The method is slightly different from the one described in pages 286-291 of [D-K], the latter method involving computations of permutation matrices.

Note in passing that the lines of a finite projective plane of order ncan be used to form an error correcting code C; see Section 10.1 of [D-K]. Unfortunately, it is an open problem to describe the integers n for which finite projective planes of order n do exist, though some mathematicians conjecture that they exist if and only if n is a power of a prime.

- In this paper, different matrices come into play: I_m is the $m \times m$ identity matrix:
- $A_1, A_2, \ldots, A_{n-1}$ are $n \times n$ matrices;
- $D_1, D_2, \ldots, D_{n-1}$ are $n \times n$ matrices;
- C_j is a $n \times n$ matrix with 1's in its j-th column and 0 elsewhere (for $1 \leq j \leq n$;
- D_0 is the $n \times n$ matrix whose *i*-th row, for i = 1, ..., n, is $(i \ i \ ... \ i)$;
- \mathcal{P}_{ij} is a $n \times n$ permutation matrix (for $1 \leq i, j \leq n$);
- M, $M^{(1)}$, $M^{(2)}$, ..., $M^{(n)}$ are $n^2 \times (n+1)$ matrices;
- $M, M^{(1)}, M^{(2)}, \ldots, M^{(n)}$ are $n^2 \times (n+1)$ matrices;
- \mathbf{D} , $\mathbf{D}^{(1)}$, $\mathbf{D}^{(2)}$, ..., $\mathbf{D}^{(n)}$ are $n^2 \times n$ matrices; \mathbf{D} , $\mathbf{D}^{(1)}$, $\mathbf{D}^{(2)}$, ..., $\mathbf{D}^{(n)}$ are $n^2 \times n$ matrices;
- $\overline{\mathbf{D}}$ is a $(n^2 n) \times n$ matrix;
- \mathbf{F} , \mathbf{G} , \mathbf{H} are $(n^2 + n + 1) \times (n^2 + n + 1)$ matrices;
- $\overline{\mathbf{F}}$ is a $n^2 \times (n^2 + n)$ matrix.

Moreover, the (i, j) element of a matrix N is denoted N(i, j). It will not be denoted N_{ij} to avoid some conflicts with the n^2 permutation matrices \mathcal{P}_{ij} involving a double set of indices (and coming into play out of n! possible permutations).

§2. Incidence matrix via orthogonal latin squares Let us define the notion of matriarchal matrix.

Definition. Let $n \geq 2$ and $s \geq 1$. A $n^2 \times s$ matrix M is called a matriarchal matrix if the entries in the rows of the first two columns form n^2 different couples in lexicographic order, and if the rows of each $n^2 \times 2$ submatrix of M are the n^2 couples of $\{(i, j) : 1 \le i, j \le n\}$.

We shall say that the $n^2 \times s$ matriarchal matrix M is attached to s mutually orthogonal latin squares A_1, \ldots, A_s of order n (with $1 \leq s \leq s$ n-1), if the entries in the rows of the first two columns of M are in lexicographic order and if for j = 1, ..., s, the (j + 2)-th column of M is the concatenation of the rows of A_i . In other words, the row of M containing the couple (i, j) in the first two columns will then contain the (i, j) element of respectively A_1, \ldots, A_s in that row. This matrix M can be found on page 82 of [R].

Example. Let n = 4. To the orthogonal latin squares

$$A_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1 \\ 2 & 1 & 4 & 3 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \end{pmatrix},$$

is attached the matriarchal matrix

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 3 & 3 & 3 & 3 \\ 1 & 4 & 4 & 4 & 4 \\ 2 & 1 & 2 & 3 & 4 \\ 2 & 2 & 1 & 4 & 3 \\ 2 & 3 & 4 & 1 & 2 \\ 2 & 4 & 3 & 2 & 1 \\ 3 & 1 & 3 & 4 & 2 \\ 3 & 2 & 4 & 3 & 1 \\ 3 & 3 & 1 & 2 & 4 \\ 3 & 4 & 2 & 1 & 3 \\ 4 & 1 & 4 & 2 & 3 \\ 4 & 2 & 3 & 1 & 4 \\ 4 & 3 & 2 & 4 & 1 \\ 4 & 4 & 1 & 3 & 2 \end{pmatrix}.$$

Remark. Let \mathbf{F} be the incidence matrix of a finite projective plane. Suppose that \mathbf{F}' is the matrix obtained from \mathbf{F} by interchanging two rows or two columns. Then \mathbf{F}' is still the incidence matrix of some finite projective plane of order n. A series of such exchanges of rows and columns on \mathbf{F} will be called a reordering of the rows and columns of \mathbf{F} .

The first main result of this paper is the following one.

Theorem 2.1. (1) Suppose there exist n-1 mutually orthogonal latin squares $A_1, A_2, \ldots, A_{n-1}$, of order n, and let M be the matriarchal matrix attached to A_1, \ldots, A_{n-1} . For $j = 1, \ldots, n$, let $M^{(j)}$ be the matrix obtained from M by writing 1 in place of j and 0 elsewhere. Suppose that 0 is a column of 0's, 1 is a column of 1's, and I_{n+1} is the $(n+1) \times (n+1)$ identity matrix. Then the $(n^2 + n + 1) \times (n^2 + n + 1)$ matrix

$$\mathbf{F} = \left(\begin{array}{cc|c} \mathbf{M}^{(1)} & \mathbf{M}^{(2)} & \dots & \mathbf{M}^{(n)} & \mathbf{0} \\ \hline I_{n+1} & I_{n+1} & \dots & I_{n+1} & \mathbf{1} \end{array} \right)$$

is the incidence matrix of a finite projective plane Π of order n.

(2) Conversely, let F be the incidence matrix of a finite projective plane Π of order n and without loss of generality suppose that (after some eventual interchanges of rows and columns) there exist blocks $M^{(1)}$, $M^{(2)}$, ..., $M^{(n)}$ such that F is defined by

$$\mathbf{F} = \begin{pmatrix} \mathbf{M}^{(1)} & \mathbf{M}^{(2)} & \dots & \mathbf{M}^{(n)} & \mathbf{0} \\ I_{n+1} & I_{n+1} & \dots & I_{n+1} & \mathbf{1} \end{pmatrix}$$

For j = 1, ..., n, let $\widetilde{\mathbf{M}}^{(j)}$ be the matrix obtained from $\mathbf{M}^{(j)}$ by writing j in place of 1. Then an eventual reordering of the rows of

$$\widetilde{\mathbf{M}} = \widetilde{\mathbf{M}}^{(1)} + \widetilde{\mathbf{M}}^{(2)} + \ldots + \widetilde{\mathbf{M}}^{(n)}$$

gives a matriarchal matrix M attached to n-1 mutually orthogonal latin squares of order n. Example. Let n=4. Consider the three mutually

orthogonal latin squares A_1 , A_2 , A_3 of the preceding example, and the matriarchal matrix M attached to them. Then the matrices $M^{(1)}$, $M^{(2)}$, $M^{(3)}$, $M^{(4)}$ are defined by

$$\mathbf{M}^{(1)} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \, \mathbf{M}^{(2)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \, \mathbf{M}^{(3)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

whereupon one can build the incidence matrix

$$\mathbf{F} \, = \, \left(\frac{\mathbf{M}^{(1)} \; \mathbf{M}^{(2)} \; \mathbf{M}^{(3)} \; \mathbf{M}^{(4)} \, \big| \, \mathbf{0}}{I_5 \; I_5 \; I_5 \; I_5 \; | \, \mathbf{1}} \right),$$

namely

The procedure can be reversed: from F extract $M^{(1)}$, $M^{(2)}$, $M^{(3)}$, $M^{(4)}$; consider $\widetilde{M}^{(1)}$, $\widetilde{M}^{(2)}$, $\widetilde{M}^{(3)}$, $\widetilde{M}^{(4)}$; build $\widetilde{M} = \widetilde{M}^{(1)} + \widetilde{M}^{(2)} + \widetilde{M}^{(3)} + \widetilde{M}^{(4)}$ and an eventual reordering of the rows of \widetilde{M} leads to a matriarchal matrix M out of which one can extract 3 mutually orthogonal 4×4 latin squares.

Proof of Theorem 2.1. Part (1). Let us consider a set of points $\{\wp_1, \wp_2, \ldots, \wp_{n^2+n+1}\}$ and a set of lines $\{\mathcal{L}_1, \mathcal{L}_2, \ldots, \mathcal{L}_{n^2+n+1}\}$ containing some points according to the rule that for $1 \leq i, j \leq n^2+n+1$ we have

$$\wp_i \in \mathcal{L}_j \iff \mathbf{F}(i,j) = 1.$$

We want to prove that these $n^2 + n + 1$ points and these $n^2 + n + 1$ lines will form a projective plane of order n.

Consider first the $n^2 \times (n^2 + n)$ submatrix

$$\overline{\mathbf{F}} = \left(\mathbf{M}^{(1)} \, \mathbf{M}^{(2)} \, \dots \, \mathbf{M}^{(n)}\right)$$

of **F**. The integer 1 will appear exactly n times in each column of $\overline{\mathbf{F}}$ (since each integer of $\{1,2,\ldots,n\}$ occurs n times in any column of \mathbf{M}) and n+1 times in each row of **F** (since each row of \mathbf{M} has n+1 entries). Therefore 1 appears n+1 times in each row of **F** and n+1 times in each column of **F**. To prove that **F** is the incidence matrix of a finite projective plane, there

are three axioms to verify. It will prove useful to use the disjoint sets $\mathcal S$ and $\mathcal T$ of points defined by

$$S = \{ \wp_1, \ \wp_2, \dots, \ \wp_{n^2} \}, \qquad \mathcal{T} = \{ \wp_{n^2+1}, \ \wp_{n^2+2}, \dots, \ \wp_{n^2+n+1} \}.$$

First axiom. In order to verify the first axiom, we must prove that two distinct points of Π are on one and only one line of Π .

It is clear that any pair of points of \mathcal{T} are on \mathcal{L}_{n^2+n+1} and only on \mathcal{L}_{n^2+n+1} . It is also clear that a point \wp_i of \mathcal{S} and a point \wp_{n^2+j} of \mathcal{T} are on and only on the line $\mathcal{L}_{j+(t-1)(n+1)}$ whose index is determined by the unique value of t verifying $\mathbf{M}(i,j) = t$, i.e., $\mathbf{M}^{(t)}(i,j) = \mathbf{F}(i,j+(t-1)(n+1)) = 1$.

Finally, consider a pair \wp_i and \wp_j of points of \mathcal{S} with, say, i < j. If there exists $s \in \{1, 2, ..., n\}$ such that $i, j \in \{(s-1)n+1, (s-1)n+2, ..., (s-1)n+n\}$, then it is clear that \wp_i and \wp_j are on and only on the line $\mathcal{L}_{(s-1)(n+1)+1}$. Moreover, if $i \equiv j \pmod{n}$, then \wp_i and \wp_j are on and only on the line $\mathcal{L}_{(s-1)(n+1)+2}$ where $s \in \{1, 2, ..., n\}$ verifies $s \equiv i \equiv j \pmod{n}$.

Let us consider now the case when the indices i of \wp_i and j of \wp_j satisfy none of the last two properties. We want to prove that there exists a line \mathcal{L}_t with $t \not\equiv 1, 2 \pmod{n+1}$ which has the property that \wp_i and \wp_j are on \mathcal{L}_t . Suppose that there is no such line. This means that for $s=1,\ldots,n-1$, the elements (i,s+2) and (j,s+2) of the matrix \mathbf{M} are different from k for all $k \in \{1,2,\ldots,n\}$. Since for $s=1,2,\ldots,n-1$, the (2+s)-th column of \mathbf{M} is made up with the concatenation of the rows of the latin square A_s and since |i-j| > n with $i \not\equiv j \pmod{n}$, we get a contradiction. In other words, there exists $k \in \{1,2,\ldots,n\}$ such that for some $s \in \{1,2,\ldots,n-1\}$, we have $\mathbf{M}(i,2+s) = \mathbf{M}(j,2+s) = k$, i.e.,

$$\mathbf{M}^{(k)}(i,2+s) = \mathbf{M}^{(k)}(j,2+s) = \mathbf{F}(i,2+s+(k-1)(n+1))$$
$$= \mathbf{F}(j,2+s+(k-1)(n+1)) = 1,$$

whereupon \wp_i and \wp_j are on the line $\mathcal{L}_{2+s+(k-1)(n+1)}$.

Let us prove now that two distinct points of S cannot be on two different lines of H. Suppose the contrary, i.e., suppose that there exist i, j, r, s with i < j, r < s, such that $\mathbf{F}(i, r) = \mathbf{F}(i, s) = \mathbf{F}(j, r) = \mathbf{F}(j, s) = 1$:

	 	\mathcal{L}_r		\mathcal{L}_s	
$\beta^{j}i$		1	• • •	1	
				÷	
819		1		1	

Table

It means that there are two different columns of M in which for some u, $v \in \{1, 2, ..., n\}$ (not necessarily distinct) the couple (u, v) appears in row

i and in row j; this is a contradiction to either the property of having latin squares (when u = v) or to the orthogonality hypothesis (when $u \neq v$). In conclusion, two distinct points of S are on one and only one line of Π . This secures the first axiom.

Second axiom. In order to verify the second axiom, we must prove that two distinct lines of Π pass through one and only one point of Π .

It is clear that the line $\mathcal{L}_{t+(s-1)(n+1)}$ of Π , with $1 \le t \le n+1$, $1 \le s \le n-1$, and the line \mathcal{L}_{n^2+n+1} have only the point \wp_{n^2+t} in common.

Let us prove now that the lines $\mathcal{L}_{i+(s-1)(n+1)}$ and $\mathcal{L}_{j+(s-1)(n+1)}$ with $1 \leq i < j \leq n+1$ have at least one point in common. Those two lines, which are connected to the matrix $\mathbf{M}^{(s)}$, have in common the point \wp_u where u is the index of the row in which the couple (s,s) appears in the i-th and the j-th columns. This is in fact the only point in common. Suppose that on the contrary there is another point. Then for some u and v with $1 \leq u < v \leq n^2$, we have in the matrix $\mathbf{M}^{(s)}$ the following:

	 $\mathcal{L}_{i+(s-1)(n+1)}$	 $\mathcal{L}_{j+(s-1)(n+1)}$	
€)u	 1	 1	• • •
÷	:	:	
800	 1	 1	

Table

This contradicts the first axiom.

Let us prove now that for $i \neq j$ the lines $\mathcal{L}_{i+(s-1)(n+1)}$ and $\mathcal{L}_{j+(t-1)(n+1)}$, with $s \neq t$, have at least one point in common. Those two lines come respectively from the blocks $\mathbf{M}^{(s)}$ and $\mathbf{M}^{(t)}$ and the point is \wp_u where u is the index of the row in which the couple (s,t) appears in the i-th column and the j-th column of $\mathbf{M}^{(s)}$ and $\mathbf{M}^{(t)}$ respectively. As a matter of fact, it is the only point in common, since otherwise for some u and v with $1 \leq u < v \leq n^2$, we have in the blocks $\mathbf{M}^{(s)}$ and $\mathbf{M}^{(t)}$ the following contradiction:

	 $\mathcal{L}_{i+(s-1)(n+1)}$	 $\mathcal{L}_{j+(t-1)(n+1)}$	
8,722	 1	 1	
:	:	:	
8.00	 1	 1	

Table

Third axiom. Consider the four distinct lines

$$\mathcal{L}_{1} = \{ \S_{1}, \S_{2}, \S_{3}, \dots, \S_{n-1}, \S_{n}, \S_{n^{2}+1} \},$$

$$\mathcal{L}_{2} = \{ \S_{1}, \S_{n+1}, \S_{2n+1}, \dots, \S_{n^{2}-2n+1}, \S_{n^{2}-n+1}, \S_{n^{2}+2} \},$$

$$\mathcal{L}_{n+2} = \{ \S_{n+1}, \S_{n+2}, \S_{n+3}, \dots, \S_{2n-1}, \S_{2n}, \S_{n^{2}+1} \},$$

$$\mathcal{L}_{n+3} = \{ \S_{2}, \S_{n+2}, \S_{2n+2}, \dots, \S_{n^{2}-2n+2}, \S_{n^{2}-n+2}, \S_{n^{2}+2} \},$$

whose description is prescribed by the lexicographic order of the couples of each row of the first two columns of M and the definition of $M^{(1)}$ and $M^{(2)}$. We will show that the four points

$$\S_{1},\ \S_{2},\ \S_{n+1},\ \S_{n+2}$$

satisfy the third axiom. ξ From the matrix \mathbf{F} , one can extract the following pertinent information:

	\mathcal{L}_1	\mathcal{L}_2	 \mathcal{L}_{n+2}	\mathcal{L}_{n+3}	
<i>§</i> .71	1	1	 0	0	
\wp_2	1	0	 0	1	
:	:	:	: 1 1	:	
$\S^{j}n+1$	0	1	 1	0	
$\S^{0}n+2$	0	0	 1	1	

Table

We will show that among the four points \wp_1 , \wp_2 , \wp_{n+1} , \wp_{n+2} , no three of them belong to the same line. Suppose the contrary. Then there exists $r \neq 1, 2, n+1, n+2$, such that the line \mathcal{L}_r contains

$$\begin{cases} \text{ either } \wp_1, \ \wp_2, \ \wp_{n+1}, & \text{whereupon } \wp_1, \ \wp_2 \text{ are on } \mathcal{L}_1 \text{ and } \mathcal{L}_r, \\ \text{or } & \wp_1, \ \wp_2, \ \wp_{n+2}, & \text{whereupon } \wp_1, \ \wp_2 \text{ are on } \mathcal{L}_1 \text{ and } \mathcal{L}_r, \\ \text{or } & \wp_1, \ \wp_{n+1}, \ \wp_{n+2}, & \text{whereupon } \wp_{n+1}, \ \wp_{n+2} \text{ are on } \mathcal{L}_{n+2} \text{ and } \mathcal{L}_r, \\ \text{or } & \wp_2, \ \wp_{n+1}, \ \wp_{n+2}, & \text{whereupon } \wp_{n+1}, \ \wp_{n+2} \text{ are on } \mathcal{L}_{n+2} \text{ and } \mathcal{L}_r. \end{cases}$$

In each of the four possibilities, we have a contradiction to the second axiom. The third axiom is now secured.

Part (2). This part simply reverses the process of Part (1). \Box .

3. Incidence matrix via a digraph complete set of latin squares

us first recall how J. Dénes and A.D. Keedwell [D-K] defined the canonical incidence matrix G of a projective plane Π of order that Π has the following properties:

- (A) For i = 1, ..., n + 1, \wp_i is a point of \mathcal{L}_1 and \mathcal{L}_i is a line through \wp_1 .
- (B) For all $k, j \in \{1, ..., n\}$, \wp_{nk+j+1} is a point of \mathcal{L}_{k+1} and \mathcal{L}_{nk+j+1} passes through \wp_{k+1} .

These two properties imply (see Section 8.5 of [D-K]) that the incidence matrix **G** can be written as

$$\mathbf{G} = \begin{pmatrix} 1 & 1 & 0 & 0 & \dots & 0 \\ \hline C_1 & 0 & C_1^t & C_2^t & \dots & C_n^t \\ \hline C_2 & 0 & \mathcal{P}_{11} & \mathcal{P}_{12} & \dots & \mathcal{P}_{1n} \\ C_3 & 0 & \mathcal{P}_{21} & \mathcal{P}_{22} & \dots & \mathcal{P}_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ C_n & 0 & \mathcal{P}_{n-1,1} & \mathcal{P}_{n-1,2} & \dots & \mathcal{P}_{n-1,n} \\ 0 & 1 & \mathcal{P}_{n1} & \mathcal{P}_{n2} & \dots & \mathcal{P}_{nn} \end{pmatrix}$$
(1)

where 0 and 1 are respectively appropriate blocks of 0's and 1's, and where the following properties are satisfied:

- (1) For i = 1, ..., n, C_i is a $n \times n$ matrix with 1's in its i-th column and 0 elsewhere; moreover, C_i^t is the transpose of C_i .
- (2) For all $i, j \in \{1, ..., n\}$, the $n \times n$ matrix \mathcal{P}_{ij} turns out to be some permutation matrix (i.e., \mathcal{P}_{ij} has exactly one entry 1 in each row and in each column and has 0 elsewhere).

Suppose now that we require that

(3) for all $i, j \in \{1, ..., n\}$, $\mathcal{P}_{i1} = \mathcal{P}_{1j} = I_n$.

Then **G** is called the **canonical incidence matrix** of a finite projective plane Π and we have the following:

- (a) For all $i, j \in \{2, ..., n\}$, \mathcal{P}_{ij} has no entry 1 on its main diagonal.
- (b) For all $i, r, s, k \in \{1, ..., n\}$ with $r \neq s$ and $i \geq 2$, the k-th rows (resp. columns) of \mathcal{P}_{ir} and \mathcal{P}_{is} are distinct.
- (c) For all $i, r, s, m, k, t \in \{1, \ldots, n\}$ with $r \neq s, m \geq 2$ and $i \geq 2$, the k-th rows (resp. columns) of \mathcal{P}_{ir} and \mathcal{P}_{is} cannot be simultaneously identical to the t-th rows of \mathcal{P}_{mr} and \mathcal{P}_{ms} in that order.

As explained in [D-K], the construction of a digraph complete set of latin squares is very simple and elegant: for i = 2, ..., n, take

$$D_{i-1} = (\mathcal{P}_{i1}T \quad \mathcal{P}_{i2}T \quad \dots \quad \mathcal{P}_{in}T) \quad \text{with} \quad T = \begin{pmatrix} 1 \\ 2 \\ \vdots \\ n \end{pmatrix}.$$

In general, these latin squares $D_1, D_2, \ldots, D_{n-1}$ need not to be mutually orthogonal.

Examples. The 3×3 matrices

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix}$$

form a set of mutually orthogonal latin squares which is not a digraph complete set of latin squares. The 3×3 matrices

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 3 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{pmatrix}$$

form a digraph complete set of latin squares which is not a set of mutually orthogonal latin squares.

In the rest of this section, we would like to describe another way of exhibiting a digraph complete set of latin squares from an incidence matrix of a projective plane.

Before proceeding, we need to define the notion of basic incidence matrix H of a projective plane Π of order n. First, suppose that Π verifies the following properties:

- (a) For i = 1, ..., n, \mathcal{P}_i is a point of \mathcal{L}_1 , and \mathcal{L}_i is a line through \mathcal{P}_1 ; moreover, \mathcal{P}_{n^2+n+1} is a point of \mathcal{L}_1 and \mathcal{L}_{n+1} is a line through \mathcal{P}_1 .
- (b) For all $k, j \in \{1, ..., n\}$, \mathcal{P}_{nk+j} is a point of \mathcal{L}_{k+1} and \mathcal{L}_{nk+j+1} passes through \mathcal{P}_{k+1} , except for k = n, where \mathcal{L}_{n^2+j+1} passes through \mathcal{P}_{n^2+n+1} .

This implies that H can be written as

$$\mathbf{H} = \begin{pmatrix} \frac{1}{C_{1}} & 0 & 0 & \dots & 0 & | 1\\ \hline \frac{C_{1}}{C_{1}} & C_{1}^{t} & C_{2}^{t} & \dots & C_{n}^{t} & | 0\\ \hline C_{2} & \mathcal{P}_{11} & \mathcal{P}_{12} & \dots & \mathcal{P}_{1n} & | 0\\ C_{3} & \mathcal{P}_{21} & \mathcal{P}_{22} & \dots & \mathcal{P}_{2n} & | 0\\ \vdots & \vdots & \vdots & & \vdots & \vdots\\ C_{n} & \mathcal{P}_{n-1,1} & \mathcal{P}_{n-1,2} & \dots & \mathcal{P}_{n-1,n} & | 0\\ 0 & \mathcal{P}_{n1} & \mathcal{P}_{n2} & \dots & \mathcal{P}_{nn} & | 1 \end{pmatrix},$$

$$(2)$$

where 1 is some judicious block of 1's, 0 is some judicious block of 0's, and where we have:

- (1) for i = 1, ..., n, C_i is a $n \times n$ matrix having only 1's in its i-th column and 0's elsewhere, C_i^t being the transpose of C_i ;
- (2) for all $i, j \in \{1, ..., n\}$, \mathcal{P}_{ij} is a $n \times n$ permutation matrix (i.e., \mathcal{P}_{ij} has exactly one entry 1 in each row and in each column and 0 elsewhere).

If we require that

(3) for all $i, j \in \{1, ..., n\}$, $\mathcal{P}_{i1} = \mathcal{P}_{nj} = I_n$,

then H is called a basic incidence matrix. If the weaker condition

(3') for all $j \in \{1, ..., n\}, \ \mathcal{P}_{nj} = I_n$,

is satisfied, then H is called a semi-basic incidence matrix.

When **H** is a basic incidence matrix of a projective plane of order n, the following properties are satisfied:

- (a) For all $i, r, s, k \in \{1, ..., n\}$, with $r \neq s$ and i < n, the k-th rows of \mathcal{P}_{ir} and \mathcal{P}_{is} are distinct.
- (b) For all $i, r, s, m, k, t \in \{1, ..., n\}$, with $r \neq s, i \neq m, m < n$ and i < n, the k-th rows of \mathcal{P}_{ir} and B_{is} cannot be simultaneously identical to the t-th rows of \mathcal{P}_{mr} and \mathcal{P}_{ms} in that order.
- (c) For all $i \in \{1, ..., n-1\}$ and for any $j \in \{2, ..., n\}$, \mathcal{P}_{ij} has no entry 1 on its main diagonal.

When **H** is semi-basic, the last properties (a) and (b) are satisfied. The matrix **G** in (1) and the matrix **H** in (2) are almost the same: the (1+n)-th column of **G** has been relocated to become the last column in **H**; eventually, some identity matrices have also been relocated. The nice feature of **H**, when we ignore its first row and its last column, is that we deal with $n \times n$ blocks.

Let us state now the second result of this paper.

Theorem 3.1. (i) Suppose there exists a digraph complete set D_1, \ldots, D_{n-1} of $n \times n$ latin squares. Let

$$\mathbf{D} = \begin{pmatrix} \frac{D_0}{D_1} \\ D_2 \\ \vdots \\ D_{n-1} \end{pmatrix}, \quad with \quad D_0 = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 2 & 2 & \cdots & 2 \\ \vdots & \vdots & & \vdots \\ n & n & \cdots & n \end{pmatrix},$$

and for j = 1, ..., n, denote

$$\mathbf{D}^{(j)} = \begin{pmatrix} \frac{D_0^{(j)}}{D_1^{(j)}} \\ \vdots \\ D_{n-1}^{(j)} \end{pmatrix}$$

the matrix obtained from **D** by writing 1 in place of j and 0 elsewhere, with the blocks $\mathbf{D}^{(j)}$ having a naturally inherited meaning. Define the $n^2 \times n$ matrix **C** by

$$\mathbf{C} = \begin{pmatrix} \mathcal{C}_1 \\ \mathcal{C}_2 \\ \vdots \\ \mathcal{C}_n \end{pmatrix},$$

where for i = 1, ..., n, C_i is a $n \times n$ matrix having only 1's in its *i*-th column and 0's elsewhere. Then for some judiciously chosen blocks of 0's and blocks of 1's

$$\mathbf{H} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 1 \\ \hline \mathbf{C} & \mathbf{D}^{(1)} & \mathbf{D}^{(2)} & \cdots & \mathbf{D}^{(n)} & 0 \\ \hline 0 & I_n & I_n & \cdots & I_n & 1 \end{pmatrix}$$

is the semi-basic incidence matrix of a finite projective plane Π of order n. If there are only entries 1 on the main diagonal of D_i for $i = 1, \ldots, n-1$, then **H** is basic.

(ii) Conversely, let **H** be the incidence matrix of a finite projective plane Π of order n and (without loss of generality) assume that there exist $n^2 \times n$ blocks $\mathbf{D}^{(1)}, \mathbf{D}^{(2)}, \ldots, \mathbf{D}^{(n)}$ such that for some judiciously chosen blocks of 0's and blocks of 1's, the $(n^2 + n + 1) \times (n^2 + n + 1)$ matrix

$$\mathbf{H} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & | \mathbf{1} \\ \mathbf{C} & \mathbf{D}^{(1)} & \mathbf{D}^{(2)} & \cdots & \mathbf{D}^{(n)} & | \mathbf{0} \\ \hline \mathbf{0} & I_n & I_n & \cdots & I_n & | \mathbf{1} \end{pmatrix}$$

is semi-basic. For $j=1,\ldots,n$, let $\tilde{\mathbf{D}}^{(j)}$ be the matrix obtained from the block $\mathbf{D}^{(j)}$ by writing j in place of 1. Then the last (n-1)n rows of the $n^2 \times (n+1)$ matrix

$$\mathbf{D} = \widetilde{\mathbf{D}}^{(1)} + \widetilde{\mathbf{D}}^{(2)} + \dots + \widetilde{\mathbf{D}}^{(n)} = \begin{pmatrix} D_0 \\ D_1 \\ \vdots \\ D_{n-1} \end{pmatrix}, \quad \text{where } D_0 = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 2 & 2 & \cdots & 2 \\ \vdots & \vdots & & \vdots \\ n & n & \cdots & n \end{pmatrix},$$

give birth to a digraph complete set D_1, \ldots, D_{n-1} of latin squares. If **H** is basic, then there are only 1's on the main diagonal of D_i for $i = 1, \ldots, n-1$. **Example.** Let n = 4. Consider the digraph complete set of latin squares

$$D_1 = \begin{pmatrix} 1 & 4 & 2 & 3 \\ 2 & 3 & 1 & 4 \\ 3 & 2 & 4 & 1 \\ 4 & 1 & 3 & 2 \end{pmatrix}, \quad D_2 = \begin{pmatrix} 1 & 3 & 4 & 2 \\ 2 & 4 & 3 & 1 \\ 3 & 1 & 2 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}, \quad D_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1 \end{pmatrix},$$

(which by the way happen to be mutually orthogonal). Then from

$$\mathbf{D} = \begin{pmatrix} D_0 \\ \hline \hline \\ D_1 \\ \hline \\ D_2 \\ \hline \\ D_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ \hline 4 & 4 & 4 & 4 \\ \hline \hline 1 & 4 & 2 & 3 \\ 2 & 3 & 1 & 4 \\ 3 & 2 & 4 & 1 \\ \hline 4 & 1 & 3 & 2 \\ 1 & 3 & 4 & 2 \\ 2 & 4 & 3 & 1 \\ 3 & 1 & 2 & 4 \\ \hline 4 & 2 & 1 & 3 \\ \hline 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1 \end{pmatrix},$$

one can build

$$\mathbf{D}^{(1)} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0$$

This leads to the *semi-basic* incidence matrix

$$\mathbf{H} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{C} & \mathbf{D}^{(1)} & \mathbf{D}^{(2)} & \mathbf{D}^{(3)} & \mathbf{D}^{(4)} & \mathbf{0} \\ \hline \mathbf{0} & I_4 & I_4 & I_4 & I_4 & \mathbf{1} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \hline C_1 & D_0^{(1)} & D_0^{(2)} & D_0^{(3)} & D_0^{(4)} & \mathbf{0} \\ \hline C_2 & D_1^{(1)} & D_1^{(2)} & D_1^{(3)} & D_1^{(4)} & \mathbf{0} \\ \hline C_3 & D_2^{(1)} & D_2^{(2)} & D_2^{(3)} & D_2^{(4)} & \mathbf{0} \\ \hline C_4 & D_3^{(1)} & D_3^{(2)} & D_3^{(3)} & D_3^{(4)} & \mathbf{0} \\ \hline \mathbf{0} & I_4 & I_4 & I_4 & I_4 & I_4 \end{pmatrix},$$

namely to

	<u> </u>	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
	1	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	
	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	
	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	1	0	
	0	1	0	0	0	0	0	1	0	1	0		1	0	0	0	0	0	1	0	0	
	0	1	0	0	0	1	0	0	0	0	0	1	0	0	1	0	1	0	0	0	0	
	0	0	1	0	1	0	0	0	Ô	0	0	1	0	1	0	0	0	0	1	0	0	
$\mathbf{H} =$	0	0	1	0	0	0	0	1	1	0	0	0	0	0	1	0	0	1	0	0	0	
	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	1	0	
	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0	0	
	0	0	0	1	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	
	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	
	0	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	0	0	0	
	0	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	0	
	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	
	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	1	
	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	1	
	0 /	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	1/	

Proof of Theorem 3.1. Part (1). Notice that 1 appears n+1 times in each row of **H** and n+1 times in each column of **H**. We want to prove that the three axioms for a projective plane Π of order n are verified.

First axiom. We want to prove that two distinct points \wp_i , \wp_j of Π are on one and only one line of Π .

Let i=1. When j corresponds to a row of \mathcal{C}_u , then \wp_1 and \wp_j are on and only on \mathcal{L}_u . When $j \in \{n^2+2, n^2+3, \ldots, n^2+n+1\}$, then \wp_1 and \wp_j are on and only on \mathcal{L}_{n^2+n+1} .

Suppose that i corresponds to a row of $D_0^{(u)}$ for some $u \in \{1, 2, ..., n\}$ and that j corresponds to a row of $D_s^{(u)}$ ($s \in \{1, 2, ..., n-1\}$) or to a row of I_n . Then on that row of $D_s^{(u)}$ or of I_n , we can find 1 exactly once in, say, column t of $D_s^{(u)}$. As a matter of fact, the absence of such a 1 in $D_s^{(u)}$ translates into the absence of u in column t of D_s , a contradiction to the latin square property of D_s . Therefore \wp_i and \wp_j are on $\mathcal{L}_{t+(u-1)n}$. The value of t is unique; otherwise, $D_s^{(u)}$ would not be a permutation matrix.

Suppose that i corresponds to the row a of D_r and that j corresponds to the row b of D_s ($s \neq r$) or to the row b of I_n . Here $r, s \in \{1, 2, ..., n-1\}$. Let us now provide a proof of the following claim and the proof of the first axiom will be finished.

CLAIM: There exist unique integers u and $t \in \{1, 2, ..., n\}$ such that one can find 1 as the (a, t) element of $D_r^{(u)}$ and as the (b, t) element of $D_s^{(u)}$.

This is clear when a = b since the first column of each D_i is $\begin{pmatrix} 1 \\ 2 \\ \vdots \\ n \end{pmatrix}$.

Therefore, when a=b, we have t=1 and \wp_i and \wp_j are on \mathcal{L}_{an+1} . Suppose $a\neq b$ and suppose that the row a of of D_r is $(a_1 \ a_2 \ a_3 \ \dots \ a_n)$. Now the elements a_2, a_3, \dots, a_n appear in columns $2, 3, \dots, n$ respectively of D_s . Moreover, the elements a_2, a_3, \dots, a_n appear in rows r_2, r_3, \dots, r_n of D_s , where $\{r_2, r_3, \dots, r_n\} = \{1, 2, \dots, n\} \setminus \{b\}$. Therefore in the row b of D_s , we are sure to find an integer u which has also the property that u appears in the row a of D_r and also the property that u appears in the same column of D_r and D_s . Let us prove that t and u are unique. Otherwise, suppose there exist u', t', with $u' \neq u$, $t' \neq t$, with also the property that one can find 1 as the (a,t') element of $D_r^{(u)}$ and as the (b,t') element of $D_r^{(v)}$. Then we get a contradiction with the property (b) of a semi-basic incidence matrix. This secures the above claim.

Second axiom. In order to verify the second axiom, we must prove that two distinct lines of Π pass through one and only one point of Π .

This is clear for the line \mathcal{L}_i $(1 \leq i \leq n^2 + n)$ and the line \mathcal{L}_{n^2+n+1} . This is also clear for the line \mathcal{L}_i and the line \mathcal{L}_j when $sn+1 \leq i < j \leq (s+1)n$ for any $s \in \{1, 2, \ldots, n\}$.

This is obvious for the lines \mathcal{L}_i and the line \mathcal{L}_j when $1 \leq i \leq n$ and $n+1 \leq j \leq n^2+n$, and also when $n+1 \leq i < j \leq n^2+n$. At each step, it is important to remember that the matrices $\mathbf{D}^{(i)}$ are made of blocks which are $n \times n$ permutation matrices.

Third axiom. Consider the four distinct lines

$$\mathcal{L}_{1} = \{ \S^{j}_{1}, \ \S^{j}_{2}, \ \S^{j}_{3}, \dots, \ \S^{j}_{n-1}, \ \S^{j}_{n}, \ \S^{j}_{n+1} \},$$

$$\mathcal{L}_{2} = \{ \S^{j}_{1}, \ \S^{j}_{n+2}, \ \S^{j}_{n+3}, \dots, \ \S^{j}_{2n-1}, \ \S^{j}_{2n}, \ \S^{j}_{2n+1} \},$$

$$\mathcal{L}_{n+1} = \{ \S^{j}_{2}, \ \S^{j}_{n+2}, \ \S^{j}_{2n+2}, \dots, \ \S^{j}_{(n-2)n+2}, \ \S^{j}_{(n-1)n+2}, \ \S^{j}_{n^{2}+2} \},$$

$$\mathcal{L}_{2n+1} = \{ \S^{j}_{3}, \ \S^{j}_{n+3}, \ \S^{j}_{2n+3}, \dots, \ \S^{j}_{(n-2)n+3}, \ \S^{j}_{(n-1)n+3}, \ \S^{j}_{n^{2}+2} \},$$

the four distinct points

$$\S^{j_1}, \S^{j_2}, \S^{j_{n+3}}, \S^{j_{n^2+2}},$$

and the following pertinent information:

	$ \mathcal{L}_1 $	\mathcal{L}_2	 \mathcal{L}_{n+1}	 \mathcal{L}_{2n+1}	
621	1	1	 0	 0	• • •
£12	1	0	 1	 0	
; β³n+3 ;	:	:	:	:	
\wp_{n+3}	0	1	 0	 1	• • •
:	:	:	:	:	
\wp_{n^2+2}	0	0	 1	 1	

Table

Then we can show as above that among the four points \wp_1 , \wp_2 , \wp_{n+3} , \wp_{n^2+2} , no three of them belong to the same line. Suppose the contrary. Then there exists $r \neq 1, 2, n+3, n^2+2$, such that the line \mathcal{L}_r contains

```
\begin{cases} \text{ either } \wp_1, \ \wp_2, \ \wp_{n+3}, & \text{whereupon } \wp_1, \ \wp_2 \text{ are on } \mathcal{L}_1 \text{ and } \mathcal{L}_r, \\ \text{or} & \wp_1, \ \wp_2, \ \wp_{n^2+2}, & \text{whereupon } \wp_2, \ \wp_{n^2+2} \text{ are on } \mathcal{L}_{n+1} \text{ and } \mathcal{L}_r, \\ \text{or} & \wp_1, \ \wp_{n+3}, \ \wp_{n^2+2}, & \text{whereupon } \wp_1, \ \wp_{n+3} \text{ are on } \mathcal{L}_2 \text{ and } \mathcal{L}_r, \\ \text{or} & \wp_2, \ \wp_{n+3}, \ \wp_{n^2+2}, & \text{whereupon } \wp_{n+3}, \ \wp_{n^2+2} \text{ are on } \mathcal{L}_{2n+1} \text{ and } \mathcal{L}_r. \end{cases}
```

In each of the four possibilities, we have a contradiction to the second axiom. The third axiom is now secured.

Part (2) This part simply reverses the process of Part (1). \Box

Acknowledgements. I wish to express my deepest gratitude to the members of the mathematics department of the University of Hawai'i at Mānoa for the facilities provided during my academic visits, with a special "Mahalo" to professor JB Nation and to professor Adolf Mader for their support. I am also grateful to the organizers of the International Conference on Graph Theory and Information Security (ICGTIS 2007, Bandung, Indonesia), for being given the opportunity of contributing this paper.

References

[D-K] J. Dénes and A.D. Keedwell, Latin Squares and Their Applications, Academic Press, (1974), 547 pages.

[R] H.J. Ryser, Combinatorial Mathematics, The Carus Math. Monographs of MAA, No. 14, (1963), xiv+154 pages.