Total vertex irregular labelings of wheels, fans, suns and friendship graphs Kristiana Wijaya¹ and Slamin² Department of Mathematics, Universitas Jember, Jalan Kalimantan Jember, Indonesia, kristiana_wijaya@yahoo.com Mathematics Education Study Program, Universitas Jember, Jalan Kalimantan Jember, Indonesia, slamin@unej.ac.id Abstract. A total vertex irregular labeling of a graph G with v vertices and e edges is an assignment of integer labels to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by tvs(G), is the minimum value of the largest label over all such irregular assignments. In this paper, we consider the total vertex irregular labelings of wheels W_n , fans F_n , suns S_n and friendship graphs f_n . We show that $tvs(W_n) = \lceil \frac{n+3}{4} \rceil$ for $n \geq 3$, $tvs(F_n) = \lceil \frac{n+2}{4} \rceil$ for $n \geq 3$, $tvs(S_n) = \lceil \frac{n+2}{4} \rceil$ for $n \geq 3$, and $tvs(f_n) = \lceil \frac{n+2}{4} \rceil$ for all n. ## 1 Introduction Throughout this paper all graphs are finite, simple, undirected, and connected. A total vertex irregular labeling on a graph G with n vertices and m edges is an assignment of integer labels to both vertices and edges so that the weights calculated at vertices are distinct. The weight of a vertex v in G is defined as the sum of the label of v and the labels of all the edges incident with v, that is, $$wt(v) = \lambda(v) + \sum_{uv \in E} \lambda(uv)$$ The notion of the total vertex irregular labeling was introduced by Bača, et al.[1]. The total vertex irregularity strength of G, denoted by tvs(G), is the minimum value of the largest label over all such irregular assignments. Bača et al.[1] proved that for a tree T with n pendant vertices and no vertices of degree 2, $\left\lceil \frac{n+1}{2} \right\rceil \leq tvs(T) \leq n$. In the same paper, Bača et al.[1] gave the lower bound and upper bound on total vertex irregularity strength of any graph with minimum degree δ and maximum degree Δ , that is $$\left\lceil \frac{|V|+\delta}{\Delta+1}\right\rceil \leq tvs(G) \leq |V|+\Delta-2\delta-1.$$ If G is r-regular, then obviously, $\left\lceil \frac{|V|+r}{r+1} \right\rceil \leq tvs(G) \leq |V|-r-1$. For cycles C_n , the total vertex irregularity strength of cycles C_n equals to the lower bound, that is $tvs(C_n) = \left\lceil \frac{n+2}{3} \right\rceil$. Because $C_4 \simeq K_{2,2}$, we have $tvs(K_{2,2}) = 2$. Moreover, if G is a regular hamiltonian graph then $tvs(G) \leq \left\lceil \frac{|V|+2}{3} \right\rceil$. Bača et al.[1] also proved that $tvs(K_{1,n}) = \left\lceil \frac{n+1}{2} \right\rceil$, $tvs(K_n) = 2$ for all $n \geq 2$ and for prisms D_n , $tvs(D_n) = \left\lceil \frac{2n+3}{4} \right\rceil$ for $n \geq 3$. Wijaya et al. [2] determined the total vertex irregularity strength of complete bipartite graphs, that is for $n \geq 3$, $tvs(K_{2,n}) = \lceil \frac{n+2}{3} \rceil$, $tvs(K_{n,n}) = 3$, $tvs(K_{n,n+1}) = 3$, for $n \geq 4$, $tvs(K_{n,n+2}) = 3$, and for all n, $tvs(K_{n,an}) = \lceil \frac{n(a+1)}{n+1} \rceil$ for a > 1. Wijaya et al. [2] also gave the lower bound on $tvs(K_{m,n})$ for m < n, that is $tvs(K_{m,n}) \geq \max\{\lceil \frac{m+n}{m+1} \rceil, \lceil \frac{2m+n-1}{n} \rceil \}$. In this paper we determine the total vertex irregularity strength of wheels, fans, suns, and friendship graphs. ## 2 Main Result In this section, we present the total vertex irregularity strength of wheels, fans, suns, and friendship graphs. A wheel W_n contains a cycle on n vertices and a vertex adjacent to all vertices on the cycle. A fan F_n consists of a path on n vertices and a vertex adjacent to every vertex on the path. is a graph obtained by joining all vertices of path P_n to a further vertex called the *center*. A sun S_n is a cycle on n vertices with an edge terminating in a vertex of degree 1 attached to each vertex on the cycle. A friendship graph f_n is obtained by identifying a vertex from n K_3 's. Note that if $f_1 \simeq K_3$. **Theorem 1.** The total vertex irregularity strength of wheel W_n satisfies $tvs(W_n) = \left\lceil \frac{n+3}{4} \right\rceil$, for $n \geq 3$. *Proof.* A wheel W_n has n vertices of degree 3 and one central vertex of degree n. The smallest weight of vertices of W_n must be 4. So, the largest weight of n vertices of degree 3 is at least (n+3) and the weight of central vertex is at least (n+4). As a result, the value of the largest label of one of vertices or edges of W_n is at least $\max\{\lceil \frac{n+3}{4} \rceil, \lceil \frac{n+4}{n+1} \rceil\} = \lceil \frac{n+3}{4} \rceil$. Thus, $tvs(W_n) \ge \lceil \frac{n+3}{4} \rceil$. To show that $tvs(W_n) \leq \left\lceil \frac{n+3}{4} \right\rceil$, let $V(W_n) = \{v, v_1, v_2, \dots, v_n\}$ and $E(W_n) = \{vv_1, vv_2, \dots, vv_n\} \cup \{v_1v_2, v_2v_3, \dots, v_nv_1\}$. The vertex irregular labeling of W_n is as follows: - 1. For n=3. The sets of labels of vertices and edges of W_3 are $\lambda(V(W_3))=\{2,1,1,2\}$ and $\lambda(E(W_3))=\{1,2,2\}\cup\{1,1,1\}$. The set of vertex-weights of W_3 is $wt(V(W_3))=\{7,4,5,6\}$. - 2. For $n \neq 3$. There are 4 cases of the labeling of vertices and edges of W_n , namely: (a) For $$n \equiv 0 \pmod{4}$$. $$\lambda(v) = \begin{cases} 2 \text{ for } n = 4, \\ 1 \text{ for } n \neq 4. \end{cases}$$ $$\lambda(v_i) = \left\{ egin{array}{ll} 1 & ext{for} & 1 \leq i \leq 3 ext{ and } i = n, \\ j & ext{with} & j = 2, \cdots, \lfloor rac{n+3}{4} floor & 2j \leq i \leq 2j+1 ext{ and} \\ n+2-2j \leq i \leq n+3-2j; \end{array} ight.$$ $$\lambda(vv_i) = \left\{egin{array}{ll} 1 & ext{for} & 1 \leq i \leq 2, \\ j & ext{with} & j = 2, \cdots, \lceil rac{n+3}{4} ceil & ext{for} & 2j-1 \leq i \leq 2j & ext{and} \\ n+3-2j \leq i \leq n+4-2j; \end{array} ight.$$ $$\lambda(v_i v_{i+1}) = \begin{cases} 1 & \text{for } i = 1 \text{ and } i = n, \\ j \text{ with } j = 2, \cdots, \lceil \frac{n+3}{4} \rceil & \text{for } 2j - 2 \le i \le 2j - 1 \text{ and } \\ n + 2 - 2j \le i \le n + 3 - 2j. \end{cases}$$ (b) For $n \equiv 1 \pmod{4}$. $$\lambda(v)=1;$$ $$\lambda(v_i) = \begin{cases} 1 & \text{for } 1 \le i \le 3 \text{ and } i = n, \\ j \text{ with } j = 2, \cdots, \lceil \frac{n-1}{4} \rceil & \text{for } 2j \le i \le 2j + 1 \text{ and } \\ n + 2 - 2j \le i \le n + 3 - 2j, \\ \lceil \frac{n+3}{4} \rceil & \text{for } i = 2\lceil \frac{n+3}{4} \rceil; \end{cases}$$ $$\lambda(vv_i) = \left\{egin{array}{ll} 1 & ext{for } 1 \leq i \leq 2, \\ j & ext{with } j = 2, \cdots, \lceil rac{n+3}{4} ceil & ext{for } 2j-1 \leq i \leq 2j ext{ and } \\ n+3-2j \leq i \leq n+4-2j; \end{array} ight.$$ $$\lambda(v_i v_{i+1}) = \begin{cases} 1 & \text{for } i = 1, \text{ and } i = n, \\ j \text{ with } j = 2, \cdots, \lceil \frac{n+3}{4} \rceil & \text{for } 2j - 2 \le i \le 2j - 1 \text{ and } \\ n + 2 - 2j \le i \le n + 3 - 2j. \end{cases}$$ (c) For $n \equiv 2 \pmod{4}$. $$\lambda(v) = 1;$$ $$\lambda(v_i) = \begin{cases} 1 & \text{for } 1 \le i \le 3 \text{ and } i = n, \\ j \text{ with } j = 2, \cdots, \lfloor \frac{n+3}{4} \rfloor & \text{for } 2j \le i \le 2j+1 \text{ and } \\ n+2-2j \le i \le n+3-2j; \end{cases}$$ $$\lambda(vv_i) = \begin{cases} 1 & \text{for } 1 \le i \le 2, \\ j \text{ with } j = 2, \cdots, \lfloor \frac{n-1}{4} \rfloor & \text{for } 2j - 1 \le i \le 2j \text{ and} \\ n + 3 - 2j \le i \le n + 4 - 2j, \\ \lfloor \frac{n+3}{4} \rfloor & \text{for } i = \frac{n}{2} \text{ and } \frac{n}{2} + 2 \le i \le \frac{n}{2} + 3, \\ \lceil \frac{n+3}{4} \rceil & \text{for } i = \frac{n}{2} + 1; \end{cases}$$ $$\lambda(v_i v_{i+1}) = \begin{cases} 1 & \text{for } i = 1 \text{ and } i = n, \\ j \text{ with } j = 2, \cdots, \lfloor \frac{n+3}{4} \rfloor & \text{for } 2j - 2 \le i \le 2j - 1, \text{ and } \\ n + 2 - 2j \le i \le n + 3 - 2j. \end{cases}$$ $$(d) \text{ For } n \equiv 3 \pmod{4}.$$ $$\lambda(v) = 1;$$ $$\lambda(v_i) = \begin{cases} 1 & \text{for } 1 \leq i \leq 3 \text{ and } i = n, \\ j & \text{with } j = 2, \cdots, \lfloor \frac{n+3}{4} \rfloor \text{ for } 2j \leq i \leq 2j+1, \text{ and } \\ n+2-2j \leq i \leq n+3-2j; \end{cases}$$ $$\lambda(vv_i) = \begin{cases} 1 & \text{for } 1 \leq i \leq 2, \\ j & \text{with } j = 2, \cdots, \lfloor \frac{n+3}{4} \rfloor \text{ for } 2j-1 \leq i \leq 2j, \text{ and } \\ n+3-2j \leq i \leq n+4-2j, \\ \text{for } i = \lceil \frac{n}{2} \rceil + 1; \end{cases}$$ $$\lambda(v_iv_{i+1}) = \begin{cases} 1 & \text{for } i = 1, \text{ and } i = n, \\ j & \text{with } j = 2, 3, \cdots, \lfloor \frac{n+3}{4} \rfloor \text{ for } 2j-2 \leq i \leq 2j-1, \text{ and } \\ n+2-2j \leq i \leq n+3-2j, \\ \text{for } i = \lceil \frac{n}{2} \rceil. \end{cases}$$ Thus, the vertex-weights of W_n satisfy $$wt(v_i) = \begin{cases} 4 & \text{for } i = 1, \\ 2i + 1 & \text{for } i = 2, 3, \dots, \lceil \frac{n+1}{2} \rceil, \\ 2(n+3-i) & \text{for } i = \lceil \frac{n+1}{2} \rceil + 1, \lceil \frac{n+1}{2} \rceil + 2, \dots, n; \end{cases}$$ $$wt(v) = \begin{cases} \frac{1}{8}(n^2 + 8n + 8) & \text{for } n \equiv 0 \pmod{4}, \\ \frac{1}{8}(n^2 + 8n + 7) & \text{for } n \equiv 1 \text{ and } 3 \pmod{4}, \\ \frac{1}{8}(n^2 + 8n + 12) & \text{for } n \equiv 2 \pmod{4}. \end{cases}$$ It is easy to see that the labeling is vertex irregular. Thus $tvs(W_n) = \left\lceil \frac{n+3}{4} \right\rceil$. **Theorem 2.** The total vertex irregularity strength of a fan F_n satisfies $tvs(F_n) = \left\lceil \frac{n+2}{4} \right\rceil$, for $n \geq 3$. *Proof.* A fan F_n has (n-2) vertices of degree 3, two vertices of degree 2 and one vertex of degree n. The smallest weight of vertices of F_n must be 3. So, the largest weight of (n-2) vertices of degree 3 is at least (n+2) and the weight of the vertex of degree n is at least (n+3). This implies that the largest label of one of vertices or edges F_n is at least $\max\{\lceil \frac{n+2}{4} \rceil, \lceil \frac{n+3}{n+1} \rceil\} = \lceil \frac{n+2}{4} \rceil$. Then $tvs(F_n) \ge \lceil \frac{n+2}{4} \rceil$. To show that $tvs(F_n) \leq \left\lceil \frac{n+2}{4} \right\rceil$, let $V(F_n) = \{v, v_1, v_2, \dots, v_n\}$ and $E(F_n) = \{vv_1, vv_2, \dots, vv_n\} \cup \{v_1v_2, v_2v_3, \dots, v_{n-1}v_n\}$. The vertex irregular labeling of F_n is as follows: 1. For $3 \le n \le 5$. The set of labels of vertices and edges of F_3 , F_4 , and F_5 are as follows: $$\lambda(V(F_3)) = \{1, 1, 1, 1\} \text{ and } \lambda(E(F_3)) = \{1, 2, 1\} \cup \{1, 2\}.$$ $\lambda(V(F_4)) = \{2, 1, 1, 2, 1\} \text{ and } \lambda(E(F_4)) = \{1, 1, 1, 1\} \cup \{1, 2, 2\}.$ $\lambda(V(F_5)) = \{2, 1, 1, 1, 1, 1\}$ and $\lambda(E(F_5)) = \{1, 1, 2, 1, 1\} \cup \{1, 2, 2, 2\}$. The sets of vertex-weights of F_3 , F_4 , and F_5 are $wt(V(F_3)) = \{5, 3, 6, 4\}$, $wt(V(F_4)) = \{6, 3, 5, 7, 4\}$, $wt(V(F_5)) = \{8, 3, 5, 7, 6, 4\}$. #### 2. For $n \geq 6$. The labeling of vertices and edges of F_n are as follows. (a) For $n \equiv 0 \pmod{4}$. $$\lambda(v) = 1;$$ $$\lambda(v_i) = \begin{cases} 1 & \text{for } i = 1, \\ j \text{ with } j = 1, 2, \cdots, \lceil \frac{n-2}{4} \rceil & \text{for } 2j \le i \le 2j+1 \text{ and } \\ n+1-2j \le i \le n+2-2j; \end{cases}$$ $$\lambda(vv_i) = \begin{cases} 1 & \text{for } 1 \leq i \leq 2 \text{ and} \\ & n-1 \leq i \leq n, \\ 2 & \text{for } 3 \leq i \leq 4 \text{ and } i = n-2, \\ j \text{ with } j = 3, \cdots, \lceil \frac{n-2}{4} \rceil & \text{for } 2j-1 \leq i \leq 2j \text{ and} \\ & n+2-2j \leq i \leq n+3-2j, \\ \lceil \frac{n+2}{4} \rceil & \text{for } i = 2\lceil \frac{n+2}{4} \rceil - 1; \end{cases}$$ $$\lambda(v_i v_{i+1}) = \begin{cases} 1 & \text{for } i = 1, \\ 2 & \text{for } i = n-1, \\ j \text{ with } j = 2, \cdots, \lceil \frac{n-2}{4} \rceil & \text{for } 2j - 2 \le i \le 2j - 1 \text{ and} \\ & n+1-2j \le i \le n+2-2j, \\ \lceil \frac{n+2}{4} \rceil & \text{for } i = 2\lceil \frac{n+2}{4} \rceil - 2. \end{cases}$$ (b) For $n \equiv 1 \pmod{4}$. $$\lambda(v) = 1;$$ $$\lambda(v_i) = \begin{cases} 1 & \text{for } i = 1, \\ j & \text{with } j = 1, 2, \dots, \lceil \frac{n-2}{4} \rceil & \text{for } 2j \le i \le 2j+1 \text{ and } \\ n+1-2j \le i \le n+2-2j; \end{cases}$$ $$\lambda(vv_i) = \left\{ egin{array}{lll} 1 & ext{for } 1 \leq i \leq 2 ext{ and} \\ & n-1 \leq i \leq n, \\ 2 & ext{for } 3 \leq i \leq 4 ext{ and } i = n-2, \\ j ext{ with } j = 3, 4, \cdots, \lceil rac{n+2}{4} ceil & ext{for } 2j-1 \leq i \leq 2j ext{ and} \\ & n+2-2j \leq i \leq n+3-2j; \end{array} ight.$$ $$\lambda(v_i v_{i+1}) = \left\{ egin{array}{ll} 1 & ext{for } i=1, \ 2 & ext{for } i=n-1, \ j ext{ with } j=2,\cdots, \lceil rac{n+2}{4} ceil & ext{for } 2j-2 \leq i \leq 2j-1 ext{ and } \ n+1-2j \leq i \leq n+2-2j. \end{array} ight.$$ (c) For $n \equiv 2 \pmod{4}$. $\lambda(v) = 1$; $$\lambda(v_i) = \begin{cases} 1 & \text{for } i = 1, \\ j \text{ with } j = 1, 2, \cdots, \lceil \frac{n-2}{4} \rceil & \text{for } 2j \leq i \leq 2j+1 \text{ and } \\ n+1-2j \leq i \leq n+2-2j \\ \lceil \frac{n+2}{4} \rceil & \text{for } i = 2\lceil \frac{n+2}{4} \rceil; \end{cases}$$ $$\lambda(vv_i) = \begin{cases} 1 & \text{for } 1 \le i \le 2 \text{ and} \\ n-1 \le i \le n, \\ 2 & \text{for } 3 \le i \le 4 \text{ and } i = n-2, \\ j \text{ with } j = 3, 4, \cdots, \lceil \frac{n+2}{4} \rceil & \text{for } 2j-1 \le i \le 2j \text{ and} \\ n+2-2j \le i \le n+3-2j; \end{cases}$$ $$\lambda(v_i v_{i+1}) = \left\{ egin{array}{ll} 1 & ext{for } i=1, \ 2 & ext{for } i=n-1, \ j ext{ with } j=2,3,\cdots, \lceil rac{n+2}{4} ceil & ext{for } 2j-2 \leq i \leq 2j-1 ext{ and } \ n+1-2j \leq i \leq n+2-2j. \end{array} ight.$$ (d) For $$n \equiv 3 \pmod{4}$$. $\lambda(v) = 1;$ for $i = 1,$ $\lambda(v_i) = \begin{cases} 1 & \text{for } i = 1, \\ j \text{ with } j = 1, 2, \cdots, \lceil \frac{n-2}{4} \rceil & \text{for } 2j \le i \le 2j+1 \text{ and } \\ n+1-2j \le i \le n+2-2j; \end{cases}$ $$\lambda(vv_i) = \begin{cases} 1 & \text{for } 1 \leq i \leq 2 \text{ and} \\ n-1 \leq i \leq n, \\ 2 & \text{for } 3 \leq i \leq 4 \text{ and } i = n-2, \\ j \text{ with } j = 3, \cdots, \lceil \frac{n-6}{4} \rceil & \text{for } 2j-1 \leq i \leq 2j \text{ and} \\ n+2-2j \leq i \leq n+3-2j, \\ \lceil \frac{n-2}{4} \rceil & \text{for } i = 2\lceil \frac{n+2}{4} \rceil - 3 \text{ and} \\ 2\lceil \frac{n+2}{4} \rceil & \text{for } i = 2\lceil \frac{n+2}{4} \rceil - 2; \end{cases}$$ $$\lambda(v_i v_{i+1}) = \begin{cases} 1 & \text{for } i = 1, \\ 2 & \text{for } i = n-1, \\ j \text{ with } j = 2, \cdots, \lceil \frac{n-2}{4} \rceil & \text{for } 2j - 2 \le i \le 2j - 1 \text{ and } \\ n + 1 - 2j \le i \le n + 2 - 2j. \end{cases}$$ Thus, the vertex-weights of F_n are as follows. $$wt(v_i) = \begin{cases} 3 & \text{for } i = 1, \\ 4 & \text{for } i = n, \\ 2i + 1 & \text{for } i = 2, 3, \dots, \lceil \frac{n}{2} \rceil, \\ 2(n + 2 - i) & \text{for } i = \lceil \frac{n}{2} \rceil + 1, \lceil \frac{n}{2} \rceil + 2, \dots, n - 1; \end{cases}$$ $$wt(v) = \begin{cases} \frac{1}{8}(n^2 + 6n) & \text{for } n \equiv 0 \text{ and } 2(\mod 4), \\ \frac{1}{8}(n^2 + 6n + 1) & \text{for } n \equiv 1(\mod 4), \\ \frac{1}{8}(n^2 + 6n + 5) & \text{for } n \equiv 3(\mod 4). \end{cases}$$ It is easy to see that the labeling is vertex irregular. Thus $tvs(F_n) = \left\lceil \frac{n+2}{4} \right\rceil$. **Theorem 3.** The total vertex irregularity strength of a sun S_n satisfies $tvs(S_n) = \left\lceil \frac{n+1}{2} \right\rceil$, for $n \geq 3$. *Proof.* A sun S_n has n vertices u_i of degree 1 and n vertices v_i of degree 3. Not that the smallest weight of vertices of S_n must be 2. It follows that the largest weight of n vertices of degree 1 is at least (n+1) and of n vertices of degree 3 is at least (2n+1). As a consequence, at least one vertex u_i or one edge incident with u_i has label at least $\lceil \frac{n+1}{2} \rceil$. Moreover, at least one vertex v_i or one edge incident with v_i has label at least $\lceil \frac{2n+1}{4} \rceil$. Then $tvs(S_n) \ge \max\{\lceil \frac{n+1}{2} \rceil, \lceil \frac{2n+1}{4} \rceil\}$. Because of $\lceil \frac{n+1}{2} \rceil = \lceil \frac{2n+1}{4} \rceil$, then $tvs(S_n) \ge \lceil \frac{n+1}{2} \rceil$. To show that $tvs(S_n) \leq \left\lceil \frac{n+1}{2} \right\rceil$, let $V(S_n) = \{u_1, u_2, \dots, u_n\} \cup \{v_1, v_2, \dots, v_n\}$ where $\deg(u_i) = 2$ and $\deg(v_i) = 3$ for all $i = 1, 2, \dots, n$ and $E(S_n) = \{u_1v_1, u_2v_2, \dots, u_nv_n\} \cup \{v_1v_2, v_2v_3, \dots, v_nv_1\}$. The labeling of vertex u_i and edge u_iv_i of S_n for $i = 1, 2, \dots, n$ is as follows: $$\lambda(u_i) = \begin{cases} 1 & \text{for } i = 1, \\ i - 1 & \text{for } i = 2, 3, \cdots, \left\lceil \frac{n+1}{2} \right\rceil, \\ n + 2 - i & \text{for } i = \left\lceil \frac{n+1}{2} \right\rceil + 1, \left\lceil \frac{n+1}{2} \right\rceil + 2, \cdots, n; \end{cases}$$ $$\lambda(u_iv_i) = \begin{cases} i & \text{for } i = 1, 2, \cdots, \left\lceil \frac{n+1}{2} \right\rceil, \\ n+2-i & \text{for } i = \left\lceil \frac{n+1}{2} \right\rceil + 1, \left\lceil \frac{n+1}{2} \right\rceil + 2, \cdots, n. \end{cases}$$ There are 6 cases of the labeling of vertex v_i and edge $v_i v_{i+1}$ of S_n for $i = 1, 2, \dots, n$, namely: 1. For $$n \equiv 0 \pmod{6}$$. $$\lambda(v_i) = \begin{cases} \left\lfloor \frac{n+1}{3} \right\rfloor & \text{for } 1 \le i \le 3 \text{ and } i = n, \\ \left\lfloor \frac{n+1}{3} \right\rfloor + j \text{ with } j = 1, \cdots, \left\lfloor \frac{n-6}{6} \right\rfloor & \text{for } 3j + 1 \le i \le 3j + 3 \text{ and } \\ n - 3j \le i \le n + 2 - 3j, & \text{for } \left\lceil \frac{n+1}{2} \right\rceil \le i \le \left\lceil \frac{n+3}{2} \right\rceil; \end{cases}$$ $$\lambda(v_i v_{i+1}) = \begin{cases} \left\lfloor \frac{n+1}{3} \right\rfloor & \text{for } i = 1, \\ \left\lfloor \frac{n+1}{3} \right\rfloor + j \text{ with } j = 1, \cdots, \left\lfloor \frac{n}{6} \right\rfloor & \text{for } 3j - 1 \le i \le 3j + 1 \text{ and } \\ n + 1 - 3j \le i \le n + 3 - 3j. \end{cases}$$ 2. For $$n \equiv 1 \pmod{6}$$. $$\lambda(v_i) = \begin{cases} \left\lfloor \frac{n+1}{3} \right\rfloor & \text{for } 1 \leq i \leq 2, \\ \left\lfloor \frac{n+1}{3} \right\rfloor + j \text{ with } j = 1, \cdots, \left\lfloor \frac{n}{6} \right\rfloor & \text{for } 3j \leq i \leq 3j + 2 \text{ and } \\ n+1-3j \leq i \leq n+3-3j; \end{cases}$$ $$\lambda(v_i v_{i+1}) = \begin{cases} \left\lfloor \frac{n+1}{3} \right\rfloor + j \text{ with } j = 1, \cdots, \left\lfloor \frac{n}{6} \right\rfloor & \text{for } 3j - 2 \leq i \leq 3j \text{ and } \\ n+2-3j \leq i \leq n+4-3j, \\ \left\lceil \frac{n}{2} \right\rceil & \text{for } \left\lceil \frac{n}{2} \right\rceil \leq i \leq \left\lceil \frac{n+2}{2} \right\rceil. \end{cases}$$ 3. For $$n \equiv 2 \pmod{6}$$. $$\lambda(v_i) = \begin{cases} \left\lfloor \frac{n+1}{3} \right\rfloor & \text{for } 1 \le i \le 4 \text{ and} \\ \left\lfloor \frac{n+1}{3} \right\rfloor + j \text{ with } j = 1, \cdots, \left\lfloor \frac{n-6}{6} \right\rfloor & \text{for } 3j + 2 \le i \le 3j + 4 \text{ and} \\ \left\lfloor \frac{n}{2} \right\rfloor & \text{for } \left\lceil \frac{n+1}{2} \right\rceil \le i \le \left\lceil \frac{n+3}{2} \right\rceil; \end{cases}$$ $$\lambda(v_i v_{i+1}) = \begin{cases} \left\lfloor \frac{n+1}{3} \right\rfloor & \text{for } 1 \leq i \leq 2 \text{ and } i = n, \\ \left\lfloor \frac{n+1}{3} \right\rfloor + j \text{ with } j = 1, \cdots, \left\lfloor \frac{n}{6} \right\rfloor & \text{for } 3j \leq i \leq 3j+2 \text{ and } \\ n - 3j \leq i \leq n+2-3j. \end{cases}$$ $$4. \text{ For } n \equiv 3 \pmod{6}.$$ $$\lambda(v_i) = \begin{cases} \lfloor \frac{n+1}{3} \rfloor & \text{for } 1 \leq i \leq 3 \text{ and } i = n, \\ \lfloor \frac{n+1}{3} \rfloor + j \text{ with } j = 1, \cdots, \lfloor \frac{n}{6} \rfloor & \text{for } 3j + 1 \leq i \leq 3j + 3 \text{ and } \\ n - 3j \leq i \leq n + 2 - 3j; \end{cases}$$ $$\lambda(v_i v_{i+1}) = \begin{cases} \lfloor \frac{n+1}{3} \rfloor & \text{for } i = 1, \\ \lfloor \frac{n+1}{3} \rfloor + j \text{ with } j = 1, \cdots, \lfloor \frac{n}{6} \rfloor & \text{for } 3j - 1 \leq i \leq 3j + 1 \text{ and } \\ n + 1 - 3j \leq i \leq n + 3 - 3j, \\ \lceil \frac{n}{2} \rceil & \text{for } \lceil \frac{n}{2} \rceil \leq i \leq \lceil \frac{n+2}{2} \rceil. \end{cases}$$ 5. For $$n \equiv 4 \pmod{6}$$. $$\lambda(v_i) = \begin{cases} \left\lfloor \frac{n+1}{3} \right\rfloor & \text{for } 1 \le i \le 2, \\ \left\lfloor \frac{n+1}{3} \right\rfloor + j \text{ with } j = 1, \cdots, \left\lfloor \frac{n}{6} \right\rfloor & \text{for } 3j \le i \le 3j + 2 \text{ and } \\ n+1-3j \le i \le n+3-3j, \\ \left\lfloor \frac{n}{2} \right\rfloor & \text{for } \left\lceil \frac{n+1}{2} \right\rceil \le i \le \left\lceil \frac{n+3}{2} \right\rceil; \\ \lambda(v_i v_{i+1}) = \begin{cases} \left\lfloor \frac{n+1}{3} \right\rfloor + j \text{ with } j = 1, \cdots, \left\lceil \frac{n}{6} \right\rceil & \text{for } 3j - 2 \le i \le 3j \text{ and } \\ n+2-3j \le i \le n+4-3j. \end{cases}$$ $$\delta. \text{ For } n \equiv 5 \pmod{6}.$$ $$\lambda(v_i) = \begin{cases} \lfloor \frac{n+1}{3} \rfloor & \text{for } 1 \leq i \leq 4 \text{ and} \\ & n-1 \leq i \leq n, \\ \lfloor \frac{n+1}{3} \rfloor + j \text{ with } j = 1, \cdots, \lfloor \frac{n}{6} \rfloor & \text{for } 3j+2 \leq i \leq 3j+4 \text{ and} \\ & n-1-3j \leq i \leq n+1-3j; \end{cases}$$ $$\lambda(v_iv_{i+1}) = \begin{cases} \left\lfloor \frac{n+1}{3} \right\rfloor & \text{for } 1 \leq i \leq 2 \text{ and } i = n, \\ \left\lfloor \frac{n+1}{3} \right\rfloor + j \text{ with } j = 1, \cdots, \left\lfloor \frac{n}{6} \right\rfloor & \text{for } 3j \leq i \leq 3j + 2 \text{ and } \\ n - 3j \leq i \leq n + 2 - 3j, \\ \left\lceil \frac{n}{2} \right\rceil & \text{for } \left\lceil \frac{n}{2} \right\rceil \leq i \leq \left\lceil \frac{n+2}{2} \right\rceil. \end{cases}$$ Thus, the vertex-weights of S_n satisfy $$wt(u_i) = \begin{cases} 2 & \text{for } i = 1, \\ 2i - 1 & \text{for } i = 2, 3, \dots, \lceil \frac{n+1}{2} \rceil, \\ 2(n+2-i) & \text{for } i = \lceil \frac{n+1}{2} \rceil + 1, \lceil \frac{n+1}{2} \rceil + 2, \dots, n; \end{cases}$$ $$wt(v_i) = \begin{cases} n+2 & \text{for } i = 1, \\ n-1+2i & \text{for } i = 2, 3, \cdots, \lceil \frac{n+1}{2} \rceil, \\ 3n+4-2i & \text{for } i = \lceil \frac{n+1}{2} \rceil + 1, \lceil \frac{n+1}{2} \rceil + 2, \cdots, n. \end{cases}$$ It is easy to see that the labeling is vertex irregular. Thus $tvs(S_n) = \left\lceil \frac{n+1}{2} \right\rceil$. **Theorem 4.** For all n, the total vertex irregularity strength of a friendship graph f_n satisfy $tvs(f_n) = \left\lceil \frac{2n+2}{3} \right\rceil$. *Proof.* A friendship graph f_n has 2n vertices v_i of degree 2 and one vertex v of degree 2n. The smallest weight of vertices of f_n must be 3. So, the largest weight of 2n vertices of degree 2 is at least (2n+2). Hence, the largest label of one vertex v_i or one edge incident with v_i is at least $\lceil \frac{2n+2}{3} \rceil$. On the other hand, the weight of vertex v is at least (2n+3). This means that the label of vertex v or one edge incident with v is at least $\lceil \frac{2n+3}{2n+1} \rceil$. Then $tvs(f_n) \ge \max\{\lceil \frac{2n+2}{3} \rceil, \lceil \frac{2n+3}{2n+1} \rceil\} = \lceil \frac{2n+2}{3} \rceil$. To show that $tvs(f_n) \leq \left\lceil \frac{2n+2}{3} \right\rceil$, let $V(f_n) = \{v, v_1, v_2, \dots, v_{2n}\}$ and $E(f_n) = \{vv_1, vv_2, \dots, vv_{2n}\} \cup \{v_1v_2, v_3v_4, \dots, v_{2i-1}v_{2i}, \dots, v_{2n-1}v_{2n}\}$. Let the labeling of vertices of f_n be as follows: of vertices of $$f_n$$ be as follows: $$\lambda(v) = \begin{cases} 2 \text{ for } n = 1, \\ 1 \text{ for } n \geq 2; \end{cases}$$ $$\lambda(v_i) = j \text{ with } j = 1, 2, \dots, \lfloor \frac{2n+2}{2} \rfloor \text{ for } 3j - 2 < i < 3j.$$ There are 3 cases of the labeling of edges of f_n , namely: 1. For $n \equiv 0 \pmod{3}$. $$\lambda(vv_i) = \begin{cases} 1 & \text{for} \quad i = 1, \\ j & \text{with} \begin{cases} j = 2, 4, \dots, \lfloor \frac{2n+2}{3} \rfloor & \text{for} \ 3j - 4 \le i \le 3j - 1, \\ j = 3, 5, \dots, \lceil \frac{2n+2}{3} \rceil & \text{for} \ 3j - 3 \le i \le 3j - 2; \end{cases}$$ $$\lambda(v_i v_{i+1}) = j \quad \text{with} \begin{cases} j = 1, 2 & \text{for } i = 2j - 1, \\ j = 3, 5, \cdots, \lceil \frac{2n+2}{3} \rceil & \text{for } i = 3j - 4 \text{ and } \\ i = 3j - 2, \\ j = 4, 6, \cdots, \lceil \frac{2n+2}{3} \rceil & \text{for } i = 3(j-1). \end{cases}$$ 2. For $$n \equiv 1 \pmod{3}$$. $$\lambda(vv_i) = \begin{cases} 1 \text{ for } i = 1, \\ j \text{ with } \begin{cases} j = 2, 4, \cdots, \left\lceil \frac{2n+2}{3} \right\rceil \text{ for } 3j - 4 \le i \le 3j - 1, \\ j = 3, 5, \cdots, \left\lfloor \frac{2n+2}{3} \right\rfloor \text{ for } 3j - 3 \le i \le 3j - 2; \end{cases}$$ $$\lambda(v_i v_{i+1}) = j \quad \text{with} \begin{cases} j = 1, 2 & \text{for } i = 2j - 1, \\ j = 3, 5, \cdots, \lfloor \frac{2n+2}{3} \rfloor & \text{for } i = 3j - 4 \text{ and } \\ i = 3j - 2, \\ j = 4, 6, \cdots, \lfloor \frac{2n-1}{3} \rfloor & \text{for } i = 3(j-1). \end{cases}$$ 3. For $n \equiv 2 \pmod{3}$. $$\lambda(vv_i) = \begin{cases} 1 \text{ for } i = 1, \\ j \text{ with } \begin{cases} j = 2, 4, \dots, \lceil \frac{2n+2}{3} \rceil \text{ for } 3j - 4 \le i \le 3j - 1, \\ j = 3, 5, \dots, \lceil \frac{2n-1}{3} \rceil \text{ for } 3j - 3 \le i \le 3j - 2; \end{cases}$$ $$\lambda(v_i v_{i+1}) = j \quad \text{with} \begin{cases} j = 1, 2 & \text{for } i = 2j - 1, \\ j = 3, 5, \cdots, \lceil \frac{2n-1}{3} \rceil & \text{for } i = 3j - 4 \text{ and } \\ i = 3j - 2, \\ j = 4, 6, \cdots, \lceil \frac{2n+2}{3} \rceil & \text{for } i = 3(j-1). \end{cases}$$ Thus, the vertex-weights of f_n are as follows. $$wt(v_i) = i + 2$$ for $i = 1, 2, \dots, 2n$; $$wt(v_i) = \begin{cases} 5 & \text{for } n = 1, \\ \frac{1}{3}(2n^2 + 6n + 3) & \text{for } n \equiv 0 \pmod{3}, \\ \frac{1}{3}(2n^2 + 6n + 4) & \text{for } n \equiv 1 \text{ and } 2 \pmod{3} \text{ with } n \neq 1. \end{cases}$$ It is easy to see that the labeling is vertex irregular. Thus $tvs(f_n) = \left\lceil \frac{2n+2}{3} \right\rceil$. #### References - Martin Bača, Stanislav Jendrol', Mirka Miller and Joseph Ryan, Total Irregular Labelings, Discrete Math. to appear. - Kristiana Wijaya, Slamin, Surahmat and Stanislav Jendrol', Total Vertex Irregular Labeling of Complete Bipartite Graphs, The Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC), 55, (2005), 129-136.